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ABSTRACT

Magnetotelluric field measurements can generally be viewed as
sums of signal and additive randan noise components. The standard
unweighted least squares estimates of the impedance and tipper
functions which are usually calculated from noisy data are not optimal
when the measured fields are nonstationary. The nonstationary
behavior of the signals and noises should be exploited by weighting
the data appropriately to reduce errors in the estimates of the
impedances and tippers.

Insight into the effects of noise on the estimates is gained by
careful development of a statistical model, within a linear system
framework, which allows for nonstationary behavior of both the signal
and noise components of the measured fields. The signal components
are, by definition, linearly related to each other by the impedance

and tipper functions. It.is therefore appropriate to treat them as‘
deterministic parameters, rather than as réndom vafiables, when
analyzing the effects of noise on the:ca1cu1ated impedances and
tippers. From this viewpoint; weighted least squares procedurés are
developed to reduce the errors in ihpedénces and tippers which are

calculated from nonstationary data.




INTRODUCTION

Magnetotelluric (MT) data are obtained as sets of simultaneous
measurements of orthogonal electric and magnetié field components at a
given site on the earth's surface. The data sets are Fourier
transformed and used to calculate complex transfer functions which
relate the field components to each other in the frequency domain at
the air-earth interface. When the usual assumptions concerning the
plane-wave nature of the source fields are satisfied (e.g. Madden and
Nelson, 1964; Swift, 1967), the signal components (subscript s) of the

measured fields are related to each other in the following manner:

Z; M i=xory (1)

Esi = ZixHsx * ZiyHsys

and Hy, = ToxHgy + szHsy‘ (2)

The tensor impedances, Z;j, and Ziy’ and the tipper functions, T, and
sz, are functions of frequency and conductivity structure. The goal
of MT is to deduce the conductivity structure of the earth from the
frequency dependent behavior of the impedance and tipper functions.
Generally, MT field measurements consist of signal components of
variable amplitude, contaminated by noise. Noise can be defined in
general terms as any components of the processed field measurements
which do not satisfy the plane-wave impedance relationships given by
equations (1) and (2). This general definition includes systematic

errors in addition to additive random noise components. Systematic




errors are caused by deviations from the assumed model, e.g., errors
due to sources which are not plane waves, cultural noise, and analogue
or digital processing errors from instrument drift, aliasing, or
truncation effects. It is important to distinguish between systematic
errors and random noise when developing estimation procedures and
error analysis for the impedance and tipper functions. The primary
goal of this paper is to suggest processing procedures which may lead
to improved impedance and tipper estimates when systematic errors are
negligible and the field measurements are contaminated by additive
random noise.

Impedances and tippérs are usually calculated as unweighted'iéast
squares estimates. We distinguish between conventional and remote
" reference impedance and tipper estimates. Conventional estimates are
calculated entirely from field measurements obtained at a single base
site (e.g. Sims et al, 1971). Two of the horizontal field
measurements are used as references with equations (1) or (2) to
compute the estimates. In contrast, remote reference estimates
(Goubau, et al, 1978; Gamble et al, 1979a) are computed by introddcing
two reference fields which are measured at a separate location. This
is done to avoid correlations between the noises in the base and
reference field measurements which introduce_bias errors into the
estimates. Such bias errors have long'been recognized in conventional
estimates (e.g. Swift, 1967). Attempts to remove them (Kao and
Rankin, 1977; Boehl et al, 1977; unbéﬁ et al, 1978), or to avoid them
by using more sophisticated estimation procedures (Jupp, 1978), have
met with 1imited success.

In view of the nonstationary behavior of MT data, it seems




reasonable to attempt to improve the estimates by introducing
weighting in the least squares estimation procedure. The problem is
to develop quantitative weighting procedures which can be applied
automatically to produce estimates of equal or superior quality when
compared to the unweighted estimates.

Preliminary sections of the paper provide the background to meet
this objective. First, a general linear system representation for the
MT process is developed which includes additive random noise in all
field components. Then a statistical model of the signal and noise
components is developed which is consistent with the viewpoint that
signals are related deterministically to each other through the linear
system, while the noises are not. Particular attention is paid to the
definition of a statistical expectation operator that is appropriate
for error analysis of the impedance and tipper estimates. Ordinary
and multiple coherence functions, which are associated with the linear
system and are used in optimizing the estimation procedure, are
defined and their properties are examined within the framework of the
statistical model. Then the least squares nature of both conventional
and remote reference estimates is examined. Finally, insights gained
from these deve]opments are used to formulate weighted averaging
procedures which are expected to reduce the effects of noise when

either the signals or noises are non-stationary.




LINEAR SYSTEM REPRESENTATION FOR MT

In this section, a general linear model is presented which
applies to both the impedance and tipper relations between the signal
components of the measured fields. Additionally estimates fof the
transfer functibns of the model are developed.

Equations (1) and (2) can be written in the general form

Osi = Gixst + Giylsy’ i=x,y, or z. (3)

From the viewpoint of linear system theory, ISx and ISy are input
signals which are linearly related to an output signal Osi through a
dual input, single output linear system with transfer functions Gj,
and Giy’ as shown in Figure 1. With regard to the conventional
viewpofnt in MT, the inputs are the horizontal components, st and
Hsy’ of the magnetic field. The transfer functions G;, and Giy afe
the tensor impedances when the output is an electric field component,
Egis i=xory. If the output is the induced vertical magnetic
field, Hg,, then G;, and Giy are the tipper functions. The formal

solutions for the transfer functions are

G, =1[0_,I

ix sil Isylosiz]/v ’

sy2 =

and ‘(4)

Giy - [stlosiz - Osilstzj/V ’




where V = [stllsyz - Isyllsxzj and subscripts 1 and 2 identify
Fourier transforms from two different sets of input-output data. The
existence of the equations (4) requires that stl/st2 # Isyl/IsyZ s
i.e., the inputs from the two data sets must not be linearly
dependent. Physically, this condition requires a change in
polarization of the inputs. |

Our goal is to estimate G;, and Giy as accurately as possible
from input and output measurements containing additive random noises
which are assumed not to be processed by the linear system, as shown
in Figure 2. In this paper, the noise components are designated by
lower case letters, whi1é the measured fields are designated by upper
case letters without the subscript s. The input and output
" measurements, IX, Iy, and Oi’ are sums of signal and noise, e.g. I, =
Igp + 1ye

Averaging over a number of independent data sets is required to
suppress random errors caused by omnipresent noise in the measured

input and output data. Commonly, Gix and Giy are calculated as the

least squares estimates (subscript m),

Gm'ij =uwmij/vm ‘f : (5)
where
a * *., *0 *
Woig = [OiA IyB - IyA 1.3 1,
. _ * - * * *
wmiy = [IXA TOiB - OiA IXB ),
and
* * * *
Vm = [IXA IyB - IyA IXB 1 .




In equation (5), A and B are the reference fields, whose signal

components, Ay and By, are linearly related to the input signals,

Isx and Igy, i.e., [Ag BS]T = MI ., Isy]T where M is a non-

singular transfer matrix. The bar represents averaging, e.g.

* -1N * R *
OiA =N kEI OikAk » where the individual products, OikAk , are cross

periodograms (e.g. Oppenheim and Schafer, 1975) at a given harmonic,

and * indicates complex conjugate. In practice, the averaging can be
carried out over a number of adjacent harmonics within a narrow
bandwidth of an individual periodogram, or over a number of
periodograms. We refer to either type of averaging loosely as
"averaging over N harmonics” in subsequent developments. Hereafter
the subscripts ij in Gjj, Gpjj and Wyi5 are suppressed except where

required to distinguish between estimates.




STATISTICAL DESCRIPTION OF THE MEASURED FIELDS

The analysis of the effects of additive noise in the field
measurements on the estimates of the transfer functions is facilitated
by first developing a clear statistical model of the measured
fields. Both the signal and noisebcomponents are described

statistically by their respective joint probability distributions.

Note however, that with regard to estimating the transfer functions

G;, and Giy it is appropriate to treat the signal components of each
data set as parameters, rather than as random variables which can
introduce errors into the estimates. Treating the signals as
parameters accounts for the fact that they are related
deteministically through Gix and Giy' The signal components can be
treated as parameters while treating the noise components as random
variables by introducing the concepts of marginal and conditional
probability distributions (e.g. Hamilton, 1964, p. 17), and of
statistical expectation with respect to the conditional distribution.
The signal and noise components of the measured fields can be
viewed as two sets of statistically independent measurements from two
different random processes. The two processes are described by their
respective joint probability distributibns and are assumed to be zero
mean, but are otherwise unspecified. In particular, neither process

is assumed to be stationary, i.e., the probability distributions which

describe the processes can be time dependent. We are interested in




the joint distribution of discrete Fourier transforms of sequences of
sampled signal and noise components at a given harmonic. Since

Fourier transformation is a linear operation, we have

F.T.

Us(t) + u(t)f____>ZS(w) + z(w)

where U = U, + u is any field measurement and Z = Z; + z is its

S
transform. Since U and u are statistica]iy independent with zero
means, ZS and z, which are obtained from US and u by Tlinear
processing, exhibit theée properties as well (e.g. Miller, 1974).
Thus, individual harmonics of the discrete Fourier transforms of the
sampled field measurements are random variables of‘zero mean wﬁich are
sums of statistically independent signals and noises. Let

Zs = 15 + jl; be an n-dimensional complex vector of Fourier
transformed signal components, and let z = x + jy be the cofresponding
vector of noise components. Then, since the signals and noises are
statistically independent, the joint 4n-dimensional distribution of

real and imaginary parts is synthesized from the product

h(ls’ lS’ 1’ X) = f(—X-S’ ls)g(i, !_) s

where f(}s, 15) and g(x, Z} are; respective]y, the joint 2n-
dimensional distributions of the signal components and the noise
components.

With appropriate processing, and assuming plane wave signals,
errors'in the qn exist'on1y when noise components are present in the
measured fields. Therefore, we treat the signal components as
parameters rather than as random variables and the errors in the Gm

are governed by the conditional distribution of the noises only,




rather than by the joint distribution of the signals and noises. The

conditional density function of the noises is defined as

ho(x, ¥ | X Yo) = hXg, Yo, x, ¥)/h (X, Y)

where hm(ls’ 15) is the marginal density function defined by

The conditional distribution of the noises is the joint probability
density function of the 2n noise components, given that the 2n signal
components have certain fixed values. On the other hand, the marginal
distribution of the signals is obtained by integrating over the range
of the 2n noise variables, and represents the probability that the

" signals lie in given ranges irrespective of the values of the

noises. In our case, we have h (x, Y | Xe» 15) = g(x, y) = hm(g, Y)s;
the conditional and marginal densities of the noises are equal because
the signals ana noises are statistically independent.

The statistical expectation operator is used to calculate bias
errors and variances of the G and it is important to recognize that
statistical expectation is defined with respect to an underlying
probability distribution. Suppose q(Z) is some function of the
measured fields, Z =.;S + z . If the signal components are treated as
parameters, then the expected value E[q(Z)] is calculated from the
conditional distribution, hc(lj y I.LS, ls) = g9(x, y), rather than the
joint distribution, h(X, Y, X, y) . |

To illustrate the difference in the two viewpoints, we calculate
the expected value and variancebof a single field component, Z = Z¢ +

z, treating the signal first as a random variable and then as a

10




parameter. If both ZS and z are treated as random variables, then

there results (e.g. Miller, 1974)

gz =z h(XgaYaxay) dX_dY dxdy = 0. (5)

XsY:’
Ssxy

Alternatively, we find

E[Z] = [7 7 glx,y) dxdy = Z_ | (7)
X,y |

when the signals are treated as parameters. Continuing, the variance

of a complex random variable is defined by (e.g. Miller, 1974)
2 2
Var Z = E[|Z|°] - |ECZ]|". (8)

Treating Zs as a random variable, then in view of eqUation (6), Var Z

= E[IZIZJ, where

2

29 - rry2 2 2
ECIZITY = EDXQ + 2X x + x* + YC + 2Y y + y°1.

The quantities E[sz] and E[Ysy] are zero because the signals and
“noises are statistically independent so that, e.g., E[X x] = E[X.]

E[x]. Thus, we obtain
Var 7 = Eg]zsjzj,+ e[ ]z/%1. (9)

A]ternative]y, treatinngS as a parameter, then in view of equation

(7), Var Z = E[lZ|2] - IZSIZ, where
EC12127 = |2412 + E[|z]20.
Now we obtain

var 7 = £[|z]?]. (10)

11




We shall see in a later section that equations (7) and (10) lead to
error analysis which is consistent with the hypothesis that signal
components are related deterministically through the transfer

functions G;, and Giy' Equations (6) and (9) do not.

12




COHERENCE FUNCTIONS

Ordinary and multiple coherence functions can be defined (é.g.
Bendat and Piersol, 1971) which provide measures of the linear
relationships between the field components associated with the linear
system in Figures 1 and 2 and are thus useful in noise analysis. In
this section we define ordinary and multiple coherence functions
within the framework of the statistical model presented in the
previous section. The properties of the coherence functions and their
estimates must be understood in order that they may be used
intelligently in subsequent developments. Therefore, we digress to
examine them.

The ordinary coherence Y%B is a measure of the correlation
between two field components in the frequency domain, and its

. 2 .
estimate, CAB , 1S

(1)

where the quantities PA = AA PB = BB*, and AB* are auto and Cross

J

spectral density estimates calculated from discrete Fourier transforms
of the two field components. The muitiple coherence YZI I -0

X'y i
measures the frequency domain correlation of the measured output to

the measured inputs of the linear system in Figure 2 and is estimated

from

13




2 * 2 * * *
) |1,0.]°P; + |1yoi| Py - 2Re[10, [,0; IXIy]
= Yy X
CI I _0. - 2 . (12)
i Tx vy X'y

Theoretical coherencies are defined for stationary random
processes of zero mean by replacing the spectral density estimates in
equations (11) and (12) with their theoretical values, which are
obtained using expectation defined with respect to the joint
distribution of the signals and noises. However, dffferent
definitions are required under the statistical model of the previous
section. We define the theoretical ordinary coherence between two

field measurements A = AS + aand B = Bg + b as
— AB +E[ab ]
J2 - ELAB ] - ss
AB ELPA]E[PB] (PAs + E[Pa])(PBS

FEP,T)

where expectation is taken with respect to the conditional
distribution of the noises, a and b. The theoretical multiple

coherence is defined similarly. Both theoretical coherencies satisfy

the inequality 0 < Y2 <1, where the value 1 signifies perfect linear
correlation at a given frequency. Note that Y% I -0 is unity by
sX sy si

definition. In practice, the multiple coherence between the signals
could be less than ﬁnity if the transfer functions Gjyx and Giy varied
significantly over the bandwidth of the calculated signal spectra
(Foster and Guinzy, 1967). However, we have already assumed
implicitly that such variations are insignificant so that G;, and Giy
can be calculated accurately from noise-free data.

The ccherence estimates given by equations (11) and (12) also
range in value from zero to one but they contain random and bias

errors which are decreased as the number, N, of harmonics averaged to

14




obtain the spectral estimates increases. Useful discussions of the
errors in ordinary coherencies estimated from stationary Gaussian
random processes are provided by Benignus (1969) and Carter ef al
(1973). Foster and Guinzy (1967) provide experimental evidence which
suggests that the assumption of normality is not critical in the error
analysis. For our purposes, the behavior of the bias error is
particularly important. 1In geheral, E[CiB] is greater than YﬁB when
’ﬁB is less than unity. Carter et al (1973) show that an upper bound
on the bias error is given by (1 - y%B)/N . It is important to
understand the behavior of this bias error since it influences our
interpretation of the coherence estimates and limits our subsequent .
use of them. It is well known that when N is unity, the bias error
is (1 - yﬁB), and CiB is unity regardless of the true relationship
between the processes. This bias error behaves as O(N‘l) as N
increases and it exists because CﬁB is a nonlinear function of A and
B. Thus, although the results are derived for coherencies calculated
from stationary random processes, this general behavior is also to be
expected when A and B are nonstationary. The behavior of the
estimates of the multiple coherence is similar to that of the
estimates of ordinary coherence (e.g. Bendat and Piersol, 1971).

The relationship of coherencies between the signal components to
coherencies between the measured fields is of interest. For example,
if the noises a and b are independent, then for large N the

relationship between C2 and C2 is given by
AB AsBs

2
C
C2 - AsBs
AB Py Py ¢
A B
S s

15




so that CgB < C% B * Note that the inequality becomes Targer as the
s'S

ratio of noise power to signal power in A or B increases.

The multiple coherence estimate also exhibits this behavior, so
that it is less than unity when Iy, Iy, or 0; are noisy. If noise
exists only in the output measurement, 01, the equality

C% I -0.° P0 /P0 is valid for large N. Then asymptotically
si

sx sy i i
unbiased estimates of the output noise power and of the ratio of

output noise power to output signal power are obtained from the

expressions
PO = PO [1 - C% I -0 3 s (13)
i i sx sy i
2
Po,  [1-C1 1 o
and Lage X sy 1, (14)
Po_. c2
si stIsy'Oi

If the input measurements Iy or I, are noisy then C% [ -0. s less
X i '

than C% [ -g.» and it is easy to verify from equation (12) that the
sx'sy i

inequality becomes larger as the ratio of the noise power to the
signal power of either input increases. Note that the estimates of
output noise power and of noise to signal ratio, given by equations
(13) and (14), are inflated by this behavior. These expressions, and

their behavior when the inputs are noisy, are exploited subsequently.

16




LEAST SQUARES NATURE OF THE ESTIMATES

Sims et al (1971) have shown that the estimates G, satisfy
various minimum mean squared error criteria when the references are
chosen as any pair of the horizontal field measurements at a base
site. Insight into the general estimation problem is gained by
developing the estimates within a least squares framework. Suppose N
independent harmonics are available to estimate Gjy and Giy' Then we

can write the system of equations,

x1 yl ix il
: Gyl = | : .
v Tyn 0N

Using the matrix notation, I G = 0 , then the solution,

T T
s=0 117" o, (15)

is the unweighted least squares solution to the system of equations.
The solutions given by equation (15) are identical to those given by
equation (5) when the references (A,B) are chosen as (IX’Iy)'

Equation (15) can be generalized to allow for other reference

field pairs, i.e.

6=RT1I R0, (16)

where R is the matrix of N-dimensional column vectors of the reference

field measurements, R = [A B] . The signal components of any

17




orthogonal pair of reference fields are related linearly to the input

signals through a transfer matrix M at the earth's surface, i.e.,

,gs = M_ls . If both the inputs and the references are noise-free, we
have
i B R O L
6= I LI WL 0= [ LI L0,

and the result is identical to equation (15). However, if in addition
to output noise, there is noise in either the input or the reference
field measurements, then the solutions from equation (16) are not the
same as those from equation (15). We defer treatment of this general
case to the next section.

In the remainder of this section, we assume that only the output
. measurements 0 are noisy. Then the classical theory of linear least
squares can be applied to determine solutions for Gix and Giy which
are optimal in the sense that they are unbiased and have minimum

variance. From the Gauss-Markov theorem (e.g., Miller, 1974), these

- estimates are given by

ATyl q-1,%T, -1
6= IV LTI V"0, (17)

where_y_0 is the covariance matrix of the elements of the vector 0 .
We assume for simplicity that the individual harmonics Oik’ k =
1,2,...,N are statistically independent so that yo is a diagonal
matrix, even though certain processing techniques may have been
utilized which resu]E in some harmonics being largely, but not
totally, independent of each other (Welch, 1967; Wight et al, 1977).

The diagonal elements of yu are the variances,
Var 0., = E[]o |2] (18)
“ik R Sl

18




where E[!oiklz] is the noise power in the kth harmonic. The variance
is calculated from equation (8), with expectation defined with respect
to the conditional distribution of the noises.

When the output noise is nonstationary, approximately optimal
solutions can be obtained in practice by partitioning the data,
I and 0, into M subsets, 1,and 0, ,1=1,2,...,M each containing
N/M harmonics. The average noise power (and thus the variance) in

each data vector 94 can then be estimated from equation (13), i.e.

)y = (P I - Cf 1 o)y - (19)
1

sx sy i

(P
0

In practice, the number of subsets, M, is chosen large enough to take
advantage of the nonstationary behavior of the noise, but not so large
- that bias errors in C% [ -0 invalidate equation (19). The optimal

sx sy i
solution given by equation (17) is then calculated approximately as

M o Y *T
- I
6= 0z WolyLolm L WL 00 (20)

where the wr] are relative weights defined as wr] = wi/W; with W
defined as the average, M-l]gl w] . The individual weights are the
reciprocals of the average variances of the output vectors gh s
i.e. w] = (I/Poi)l .

The covariance matrix of the solution vector G is also of
interest. From least squares theory, the covariance matrix !G of the

optimal solution calculated from equation (17) is given by

v =0yt (21)

Similarly, the covariance matrix of the approximately optimal solution

calculated from equation (18) is estimated from

19




—1 M *T
Yo =W Lz g Iglgd (22)

whereW’1 estimates the average variance of the output vectors,_gi] .
When the output noise is stationary, the relative weights are all
unity and equations (21) and (22) are equivalent. Then, by

* -
calculating Po LLSYLS] 1 and normalizing the numerator and denominator
i .

of the elements by NZ, it can be shown that the variances have the

form
P /P
0.1 .
Var G_.. = 1 ;J , (23)

mJ N1 - ¢t ¢ ]
SX“sy

where C% I is the sample coherence between the inputs Iy and
SX sy

I For purposes of comparison, it is straightforward to show that

sy*
the variance expression derived by Gamble et al (1979b) reduces to
equation (23) under identical assumptions.

In concluding this section, we note that when the output noise is
stationary, the diagonal elements of 10 all have the same value,
Poi « Then, regardless of the behavior of the signals, the unweighted
least squares estimate is optimal and any differential weighting will
actually increase the variance of the estimates. In particular, it is

not appropriate to weight by either the output noise to signal ratio,

or the total power, P0 = PO" +'P0 .

i s i

20




GENERAL WEIGHTING PROCEDURES

The classical least squares theory presented in the previous
section is not optimal when noise:is present in either the input or
reference field measurements. In particular, the presence of such
noise introduces errors into the coefficient matrix, [Bfrl] , in
equation (16). In this section we examine the effects of such errors
on the estimates. Then weighting procedures are devised which may
broduce improved estimates when the signal or noise components of the
measured fields are nonstationary.

Assuming for the moment that the output measurements are noise-
free, then the effect of errors in the coefficient matrix can be
examined from the matrix equation [A + AAJ(G + AG) = B , where

G = Af¥§ . The errors AG satisfy the sharp bound (e.g. Forsythe and
Moler, 1967 p. 23)

[aG[] [14A]] .
e+ 61T 5,K—H_TTA (24)
where ||*|| is any matrix norm and K = ||A[] - ||Af1|| is the

condition number of A . The bound given by equation (24) is the
sharpest bound which can be specified for arbitrary matricies

A and AA , since equality is possibTe for certain choices of A ahd
AA. We desire a bound on the ratio ||aG||/]||G||. By substituting the
inequality [|G + aG}| < [|G|| + ||aG]| into equation (24) and

rearranging terms, we obtain the bound

21




el o T1ed] 1 KIIA_AH] -1 (25)
[&rr = ° TIAIT 0 ° © TIAT ’
which is valid provided K| |aA||/]|A|| is less than unity.
If we use the 1, norm, then the norm of an n-dimensional complex

vector X is defined by
_ 2.1/2
X1 = R 1x 1%
where the X; are the components of X, and the norm of an n x n complex

matrix C is defined by

Hell e X1} = vy,

= max
[1X][=1
where u; is the largest singular value of C. The singular values are
defined as the square roots of the eigenvalues of the Hermitian
matrix, ngg . In our case, A and aA are 2 x 2 matrices. When n = 2,

it can be shown that the singular values of C are given by

2 1/2
. St (S" -4D)
U19U2 = 2 s (26)
where S is the trace and D is the determinant of the matrix‘gftg.

Applying these results, we obtain the expression

| |2A] | 1 max (up)
CTET T VAT 1Al Gy -

Note from equation (26) that the largest singular value of AA,
max(uAA), is related directly to the magnitude of the largest
component of AA, while the smallest singular value of A approaches
zero as the determinant of,AftA approaches zero, i.e. as the linear
dependence of the System of equations A G = B increases.

An approximate expression for K| [aA||/[[A|| can be derived which

yields further insight by making use of the bound (Forsythe and Moler,
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1967 p. 4)
maxlcijl < 1IC)] & n maxlcijl, i, =1,2,..un,

where the Cij are the elements of C. Applying this bound, we obtain

the relation

[ |aA]] max|Aa; . |
— i
K—ma ¢ X ﬁE§T3§3+_ . (27)

Additionally, it can be shown that the condition number K of the 2 x 2

matrix A is given by
2 1/2
K=p+ (p°-1)V2, (28)

where p is given by

2 2 2 2
} Ialll + Ialzl + |321| + Iazzl
P 2|Det A] :

Equations (25), (27), and (28) together show clearly that the relative
errors in the solution vector, G + AG, depend on the noise to signal
ratio of the elements of [A + AA] and the degree of linear dependence
of the system A G = B. |

Equations (24) and (25) suggest that AG can be reduced by
weighting which reduces the. noise t0'sfgna1 ratio ||aA||/||A]] more
than it increases the condition number K. It is likely that such
weighting is possible when the signals are nonstationary, even if the
noises are stationary. Thus, although no general prescription for a
weighting procedure which is optimal in any sense is available, it is
clear from equations (24) and (25) that subsets of the data should be
weighted to reflect the ratios of noise to signal in the input and

reference field measurements, in addition to the absolute noise level
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in the output measurements.
Relative weights which satisfy these requirements can be devised
by exploiting the behavior of the multiple coherence estimates. We

recall from previous discussion that when I, and Iy are noisy, the

inequality C? [ -0. § C? [ 0. becomes larger as the ratios of noise

X'y i sx sy i
to signal in the inputs increase. Thus the quantity, p =

(1 - C2 P~ , calculated for each subsét of data, has the
Iny-Oi 01 :
property, E[p] > Po; » and reflects both the nonstationary character
1 .
of the output noise and the changing noise to signal ratios of the

inputs. Note also that since the reference signals, AS and Bs’ are
linearly related to the input signals, st and Isy’ the noise to

signal ratios of the references can be estimated from u =
2 2 2
(1 -Cy o _a)C7; _pandvs=(1-C7 )
IXIy A Iny A Iny B
references, A and B, are different from Ix and Iy. The estimates, u

/C%xl _g When the

and v, are also inflated as the ratios of noise to signal in Ix ahd Iy
increase. Thus, p, u, and v exhibit the different types of functional
behavior we wish to incorporate in a general weighting scheme.

We can combine p, u, and v in various ways to obtain weightgiwith
appropriate behavior. For example, one choice of weighting for tﬁe
Tth subset of data which incorporates a]T three terms and reduceswto

the least squares weight when the inputs and references are noise free

is given by
W, = p7l[1 +:u +v, 77", n>o0 (29)
U L T R . ‘

No claim is made that this choice of weighting is optimal in any'ﬁense
when input or reference field noise introduces noise into the

*
coefficient matrix, A = [R TLJ . In particular, the exponent, n,
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which leads to estimates with the smallest error must be chosen from
experience. The goal is to choose the value of n which produces the
maximum reduction in K| [AA||/||A]| . Note that the weights given by
equation (29) eventué]ly become large as the noise in the base fields
becomes small, regardless of the noise in the reference fields. This
is desirable behavior, since Var Gij is zero when the base fields are
noise free, regardless of the reference field noise (Goubau et al,
1978).

The weights given by equation (29) are used in practice to

calculate weighted estimates which are similar to equation (20), i.e.,

G—[@W&l]]['gw&g]] (30)

. where the W.; are relative weights defined as for equation (20). Note

that the elements of the matrices in equation (30) are obtained easily
as weighted averages of the spectral estimates which are computed for
each subset of data. In general, three different sets of weighted
spectra are required, corresponding to the three different outputs, 05
= Ey, Ey, or H,. Finally, the variances and covariances of the
weighted estimates can be calculated easily by substituting these
weighted spectra for the unweighted spectra in the expressions for the

variances and covariances derived by Gamble et al (1979b).
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DISCUSSION AND CONCLUSIONS

In this paper, we have developed a weighted averaging technique
for MT data which is to be appiied at the spectral level. The
estimate given by equation (30) is approximately optimal when only the
output measurements are noisy, but no prescription for optimal
weighting is available when in addition to output noise, either the
inputs or references are noisy. Instead of weighting at the spectral
level, we might consider estimating the transfer functions Gy,
1=1,2,...M directly from each subset of the data and then computing

the weighted average of the M estimates,
G, = 121 60>

where the weights are given by
1/var G
a1=—Tm}%—'
? ml

We require that Fa] be unity to avoid introducing bias errors
into Eﬁ from the weighting procedure. When the estimated variances,
Var Gy, adequately represent the dispersions of the-distributions of
the estimates, this weighting procedure is optimal in the sense
that Var Eﬁ is minimized (e.g., Hamilton, 1964 p. 41). However,
variance and bias errors in the individual estimates, Gyj, can be

severe due to nonlinear propagation of errors. Weighting at the

spectral level, although not guaranteed optimal, can lead to estimates
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- of the transfer functions with smaller errors than Eﬁ because
nonlinear error propagation is reduced.

The weighting procedure described in the previous section can be
applied to either conventional or remote reference data, but the best
value for the parameter n may depend on which type of data is being
collected. In particular, it may be appropriate to use larger values
of n with conventional data in.order to provide stronger rejection of
data sets with noisy references, since noise in the references
generates bias errors in conventional estimates which can be severe.
In any case, weighted averaging can be expected to yield improved
estimates of the transfer functions only if the output noise is
nonstationary, or if the input or reference signal to noise ratios are
nonstationary. Finally, since the objective of weighted averaging is
to take advantage of any nonstationary behavior in the signa]sror
noises, weighted averaging schemes might be more successful when
applied to data processed using decimation techniques (Wight et al,
1977), instead of FFT processing with subsequent averaging of adjacent
harmonics, since the higher harmonics of an FFT represent averages of
signal and noise over a larger time window than is necessary for |

adequate spectral resolution.
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1.

LIST OF FIGURES

Dual input, single output linear system model of the MT process.
The input signals, Ig4 and Isy’ are related linearly to the output

signal, 0 through the transfer functions G;, and Giy'

si»

Dual input, single output linear system with additive random
noises, i, and iy, in the input measurements, I, and Iy, and
additive random noise, 055 in the output measurement, Oi‘ The

noise components, ix, iy, and o5, are by definition statistically

independent of the signals, I Isy’ and Osi’ and are not

SX?
processed by the system which is represented in the dashed box.
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FIGURE 1
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FIGURE 2
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