Considering General Use of MCV4 Among Children Aged 2-10 Years

Amanda Cohn, MD LCDR, USPHS Ismael Ortega-Sanchez, PhD Advisory Committee on Immunization Practices February 27th, 2008

Meningococcal Disease Prevention, United States

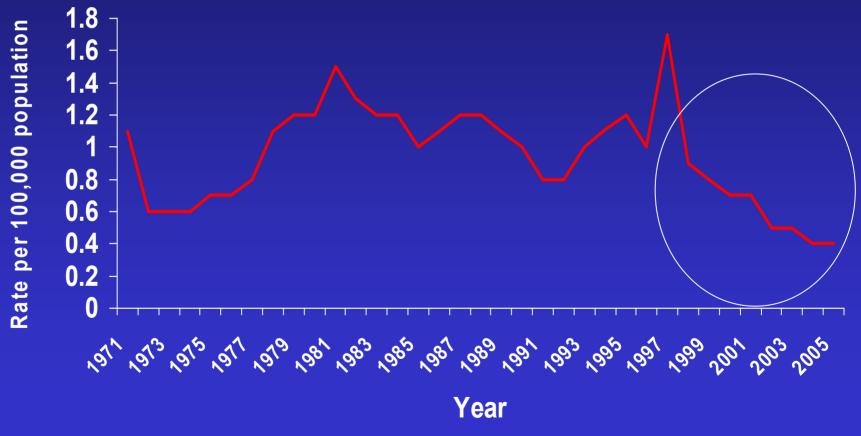
An evolving strategy

- —A single conjugate vaccine (MCV4) available for use in 2-55 year-olds
- -Covering serogroups A,C,Y, W-135
- —Several vaccines in the pipeline targeting infants, toddlers, and adolescents
- -Vaccines including serogroup B

 Long-term goal to prevent all cases of meningococcal disease

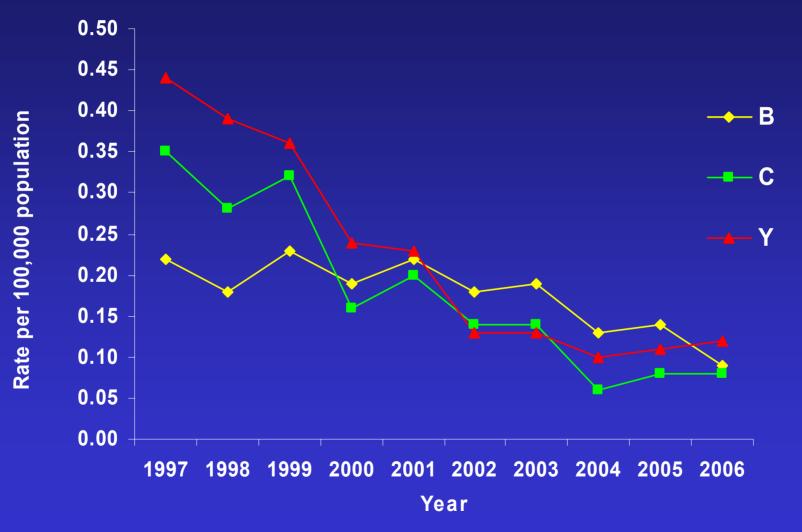
But for now....

 Adolescents aged 11-18 years recommended for routine MCV4 vaccination


AND high-risk people aged 2-54 years

 Should ACIP recommend routine MCV4 vaccination in 2-10 year olds?

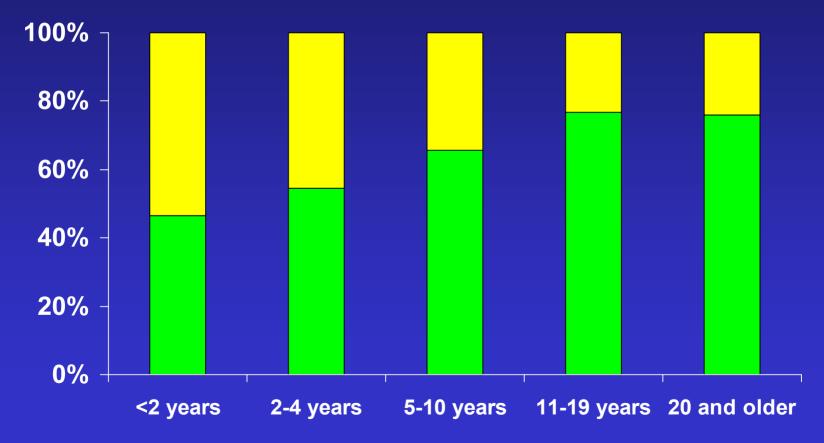
Working Group Considerations


- Burden of Disease
- Population Impact
- Economic Analysis
- Vaccine Safety
- Vaccine- Immune Response
- Programmatic Implications

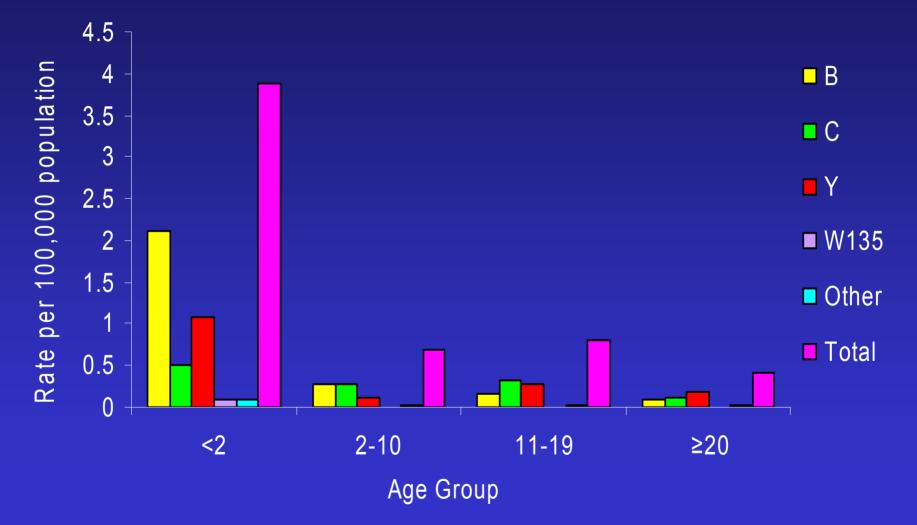
Meningococcal Disease Incidence and Case-Fatality, United States 1970-2005

NETSS data

Projected Rates of Meningococcal Disease by Year, 1997-2006


ABCs cases from 1997-2006 and projected to the U.S. population

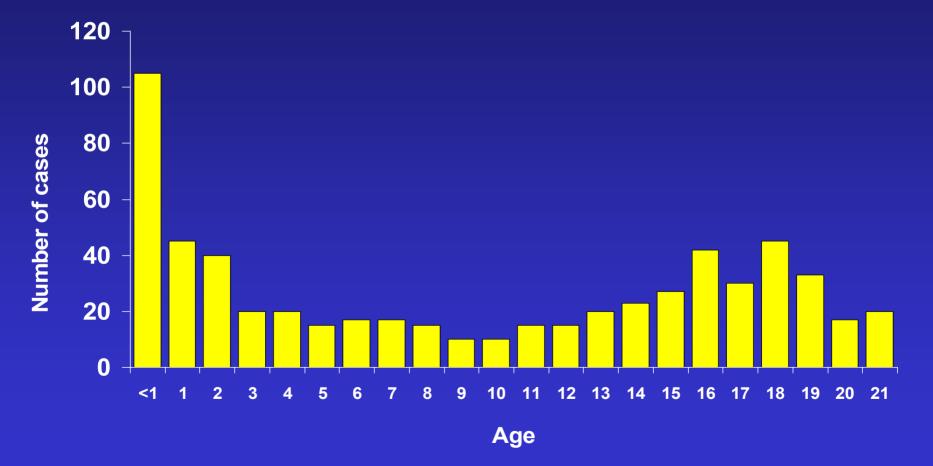
Rate of Meningococcal Disease by Single Age Year - All Serogroups



Proportion of Serogroup A,C,Y,W-135 Meningococcal Disease, 1996-2005

Serogroups A, C, Y, W-135 Serogroups B, NG, Other

Rates of Meningococcal Disease by Serogroup, 1997-2006


ABCs cases from 1997-2006 and projected to the U.S. population

Estimated Number of Deaths Annually from Meningococcal Disease, 1997-2006

ABCs cases from 1997-2006 and projected to the U.S. population

Estimated Annual Number of Cases of Serogroup A,C,Y,W-135 Meningococcal Disease, United States: Age 0 - 21 years

ABCs cases from 1996-2005 and projected to the U.S. population

11

Estimated Annual Cases of A,C,Y,W-135 Meningococcal Disease

Age 2-10 years: 160 cases
 -2 years= 40 cases (25%)
 -2-4 years= 80 cases (50%)

• Age 11-19 years: 250 cases

Working Group Considerations

Routine Vaccination

2-10 year-olds

Burden of Disease

Population Impact

Economic Analysis

Vaccine Safety

Vaccine- Immune Response

Programmatic Implications

+/-

Population Impact

 In most studies, young children have low prevalence of carriage of Neisseria meningitidis

Adolescents are generally considered a reservoir of carriage

Nasopharyngeal carriage, by age

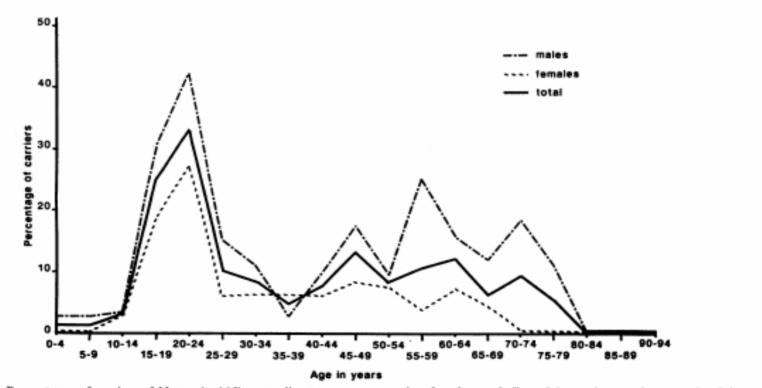


FIG. 1. Percentages of carriers of N. meningitidis according to age among males, females, and all participants in a random sample of the Norwegian population.

Caugant et al. "Asymptomatic Carriage of Neisseria meningitidis in a randomly selected population. J. Clin Micro. 1994;32;323-330.

Working Group Considerations

Routine Vaccination

2-10 year-olds

Burden of Disease

Population Impact

Economic Analysis

Vaccine Safety

Vaccine- Immune Response

Programmatic Implications

+/-

Cost-effectiveness of Vaccinating Young Children with MCV4*: Model Design

Monte Carlo simulation analysis
Hypothetical population

—4 million birth cohort
—4 million adolescent cohort (11 yos)

Time Frame: 22 years
Analytic Horizon: Age-specific Life Expectancy
Discount rate: 3% (0%-5%)

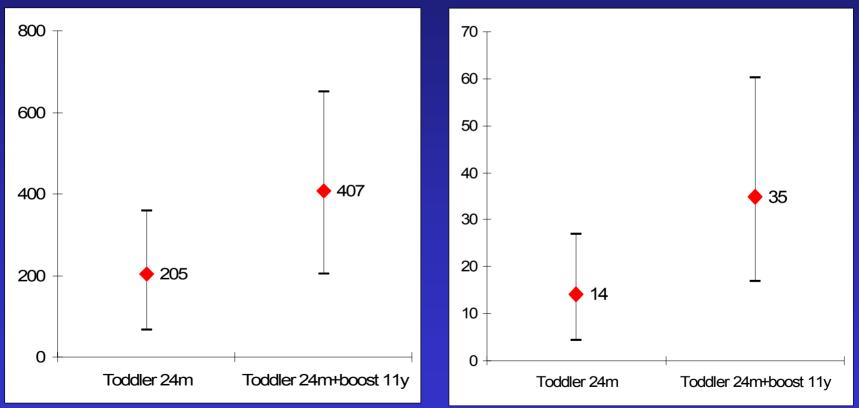
Ortega-Sanchez et al, CDC (Preliminary)

Epidemiologic Data

- Age- year- and C+Y+W135 serogroup-specific incidence rates using ABCs data (1991-2005)
- Age- and serogroup-specific case fatality ratios
- Proportion of survivors with sequelae by condition
- Vaccine efficacy per strategy
- Duration of vaccine efficacy: 10 years
- Coverage assumptions

 Toddlers at 24 mos 91%
 Adolescents at 11 yrs 70%

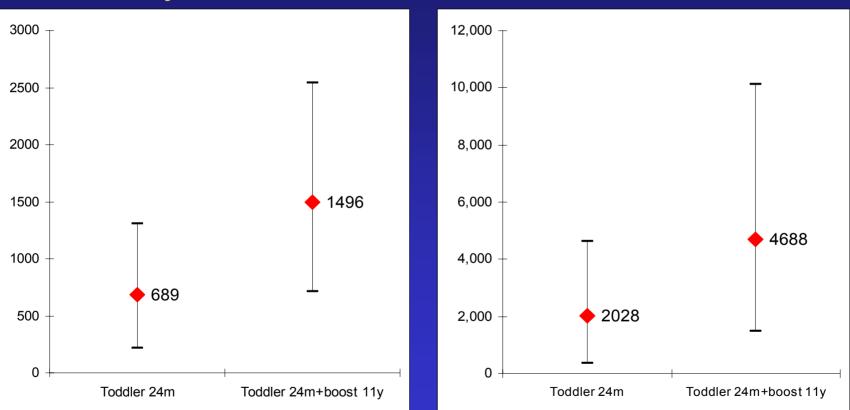
Results: No vaccination per 4M Cohort: Median (5th, 95th Percentile)*


	Adolescent Cohort 11 to 32 yrs	Birth Cohort 0 to 22 yrs
Cases	468 (225-754)	788 (483-1,123)
Deaths	<mark>29</mark> (11-52)	43 (21-76)
Life years lost	2,074 (966-3,661)	2,575 (1,446-3,990)
QALY's lost	<mark>4,796</mark> (1,500- 11,828)	6,625 (2,902-13,073)
Total cost of illness (in Millions \$)	\$112 (\$52-\$194)	\$144 (84-223)

* Estimates from Monte Carlo Simulation

Cases & Deaths Prevented per 4M Birth Cohort Median, 5th and 95th Percentiles*

CASES

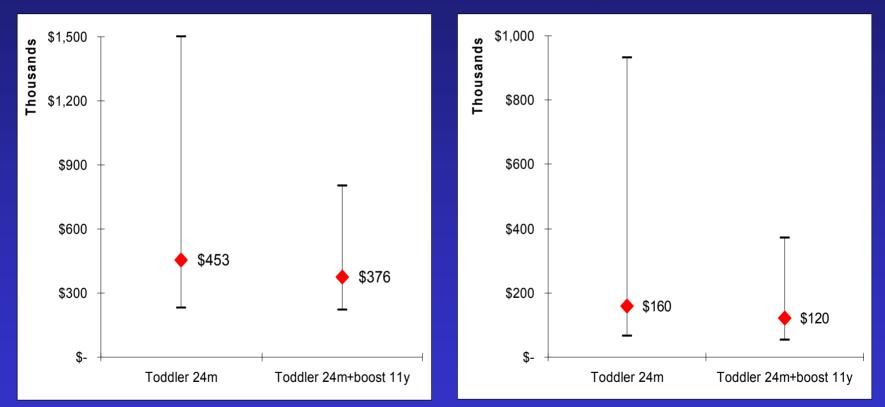


Estimates from Monte Carlo Simulation

Life-years & QALYs saved* per 4M Birth Cohort Median, 5th and 95th Percentiles**

Life-years saved

QALYs saved


Undiscounted

Estimates from Monte Carlo Simulation

Cost per LYS & QALY saved* per 4M Cohort Median, 5th and 95th Percentiles**

\$/Life-year saved

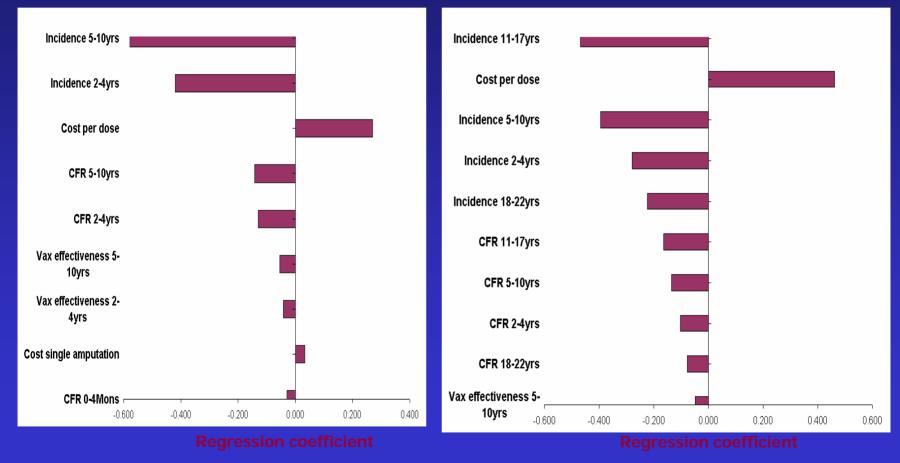
\$/QALY saved

* Cost per dose \$93 (\$50-\$130) including adm+AE+wastage
** Discounted 3% and excluding indirect cost from deaths

Comparisons

Intervention	Doses/ vaccine	Cost per vaccinee	Societal \$/LYS	Societal \$/QALY
Toddler 24mos	1-MCV4	\$95	\$453,000	\$160,000
Toddler 24mos+ boost 11y	2-MCV4	\$156	\$376,000	\$120,000
Adolescents 11 yos	1 -MCV4	\$95	\$261,000	\$90,000
Toddler 12 mos *	1-MCV4	\$83	\$166,000	\$105,000
Infants 2-4-6 mos*	3-MCV4	\$232	\$482,000	\$271,000
1 st -year college students in dorms ^{**}	1 -	\$70	\$297,000	n/a
Meningitis prevented in infants with PCV7***	4-	\$232	\$316,000	n/a

* Shepard et al., *Pediatrics* 2005 (20 yrs duration of efficacy, data 1993-2002)


** Scott et al., Am J Prev Med 2002 (with updated values)

*** Lieu et al JAMA 2000 (with updated values)

Sensitivity Analyses \$/Life-years saved "correlated" with inputs*

Toddlers 24mos

Toddlers 24mos + booster 11yr

* Estimates from Monte Carlo Simulation

Working Group Considerations Routine Vaccination 2-10 year-olds **Burden of Disease** +/-**Population Impact Economic Analysis** +/-Vaccine Safety Vaccine- Immune Response **Programmatic Implications**

MCV4 in 2-10 year-olds

- Comparative, modified double-blind study comparing to quadrivalent meningococcal polysaccharide vaccine (MPSV4)
 - -All subjects received 4 doses of DTaP
 - ---N=696
 - -Mean age 3.7 years (+-2.2), >80% 2-5 years
- Safety and immunogenicity

Safety of MCV4 in 2-10 year olds

- No serious adverse events in either group
- Majority mild or moderate reactions —91.4% of MCV4 recipients —98.8% of MPSV4 recipients
- All reactions resolved without sequelae
- MCV4 recipients experienced more severe local reactions

Pichichero et al. PIDJ. 2005:24;57-62.

Proportion of study group presenting with reported solicited local reactions within 7 days of immunization

	MCV4	MPSV4
Local Reaction	N=692	N=700
Any local reaction	58.8%	58.3%
Redness	29.5%	30.4%
Swelling	20.5%	14.6%
Induration	22.1%	15.6%
Pain	48.1%	46.9%

Pichichero et al. *PIDJ.* 2005:24;57-62.

Working Group ConsiderationsRoutine Vaccination2-10 year-olds

Subjects with No Detectable Serum Bactericidal Antibody (<8) at Day 0 who Seroconverted (Titer≥32) by Day 28

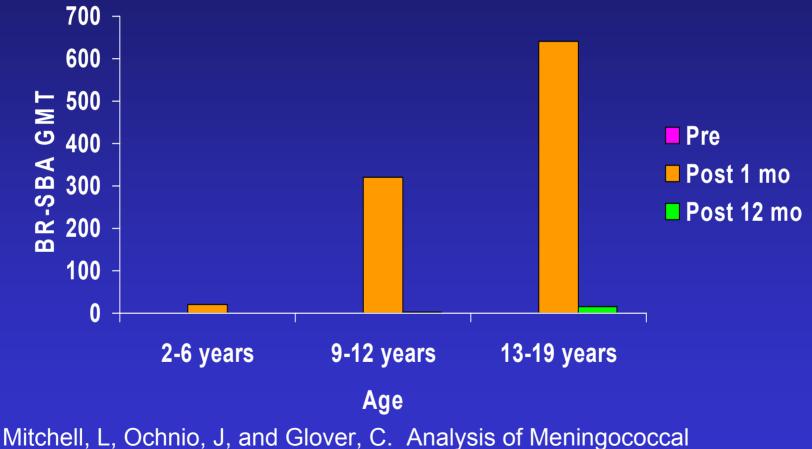
Serogroup	MCV4	MPSV4	P-value
А	98.6%	94.7%	0.005
С	87.9%	80.1%	0.002
Y	86.2%	75.0%	0.026
W-135	96.0%	89.6%	0.001

Pichichero et al. PIDJ. 2005:24;57-62.

MCV4: SBA GMTs, 2-10 year-olds: Serogroup C

	MCV-4	MPSV-4*
Day 0	21 (18,24)	19 (16,22)
Day 28	354 (308,407)	231 (198,270)
6 months	137 (116,161)	66 (55, 79)

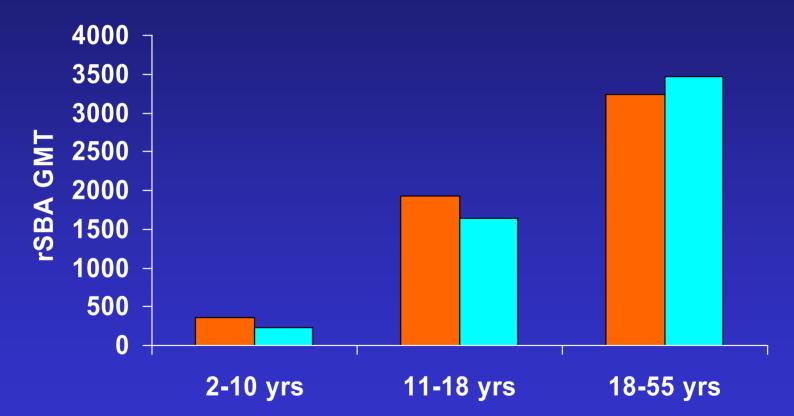
*P<0.001


Pichichero et al. *PIDJ.* 2005:24;57-62.

Meningococcal Vaccines- Immune Response

MCV4 compared to MPSV4

- MPSV4 does *not* provide long-lasting protection in young children
- Conjugate vaccines should provide longer lasting protection than polysaccharide vaccines

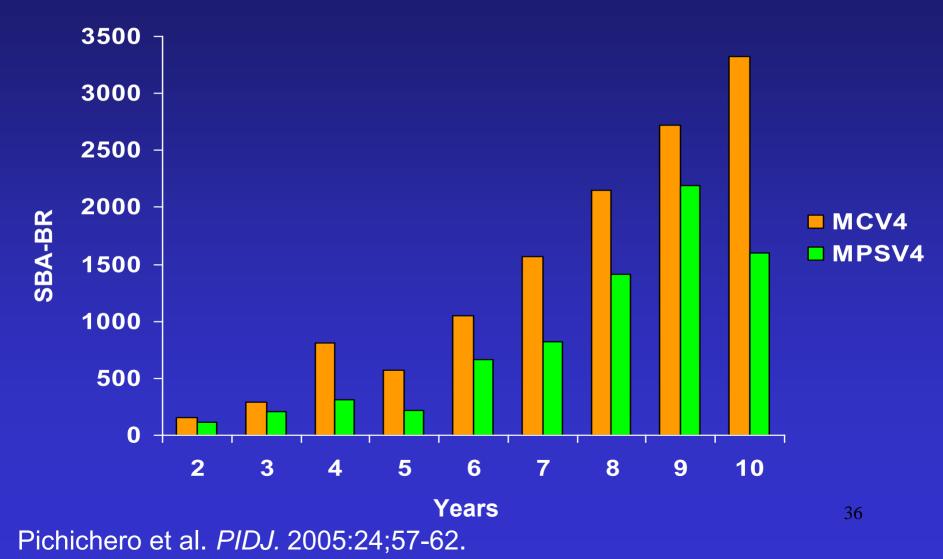

Age-Dependent Serogroup C SBA -MPSV4

Serogroup C-Specific Antibody Levels in British Columbian Children and Adolescents. J Infect Dis1996;173:1009-1013.

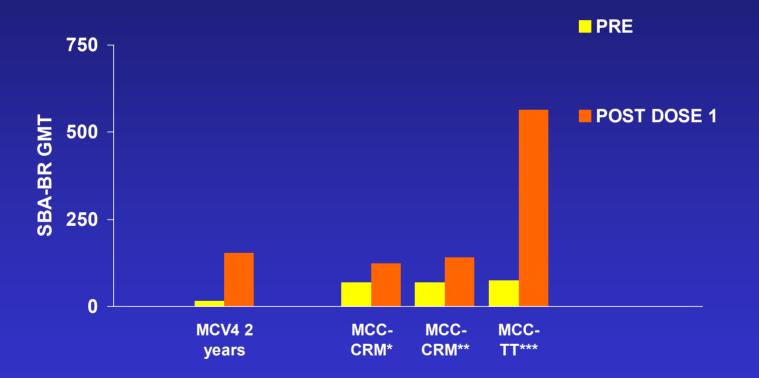
Serum Bactericidal Activity 28 days Post-MCV4: Serogroup C

MCV4 MPSV4

Pichichero et al. *PIDJ.* 2005:24;57-62.


CDC. MMWR. 2005;54(RR 7)

rSBA GMT 23-36 Months After Vaccination with MCV4 (2-3 years old)*


Serogroup	MCV4-primed	MCV4-naive
A	256 (112,587)	141 (58,342)
С	59 (29,118)	17 (8,38)
Y	415 (265,649)	256 (120,547)
W-135	91 (45,181)	17 (9,33)

*Pichichero et al. PIDJ. 2006:25;995-1000.

MCV4 vs. MPSV4 in Children 2–10 Years of Age (GMTs): Serogroup C

Comparison of MCV4 at 2yrs vs Licensed MCC Vaccines (United Kingdom) in Toddlers, Serogroup C*

Pichichero M., et. al. PIDJ 2005; 24:57-62Richmond P., et. al. JID 2001; 183:160-3* Chiron ** Wyeth *** NAVA*Courtesy of Mike Decker, Sanofi

Working Group Considerations Routine Vaccination 2-10 year-olds **Burden of Disease** +/-**Population Impact Economic Analysis** +/-Vaccine Safety + Vaccine- Immune Response +/-**Programmatic Implications**

Programmatic Considerations

 Currently no vaccine recommended at 2 yearold well-child visit

 Potential for meningococcal vaccines for infants/younger toddlers in near future

Hepatitis A Vaccine at 2 years-old

- Recommended in 1999 to be routine in states with a high burden of hepatitis A (11 states)
- 1-dose coverage among 24-35 mo*
 —2004: 54.4% (range: 8.6%--74.4%)
 —2005: 56.5% (range: 12.9%--71.0%)
- Routinely recommended for all children at 12 months in 2006 (licensure age lowered)

*CDC. Hepatitis A Vaccination Coverage Among Children Aged 24- 40 35 Months—United States, 2004-2005. 2007:56(27);678-681

Protecting Young Children by Vaccinating During Infancy

Immunogenicity of a Tetravalent Meningococcal Glycoconjugate Vaccine in Infants A Randomized Controlled Trial

Matthew D. Snape, FRACP Kirsten P. Perrett, MBBS Karen J. Ford, BN Tessa M. John, MA David Pace, MRCPLH Ly-Mee Yu, MSc Joanne M. Langley, MD Shelley McNeil, MD Peter M. Dull, MD Francesca Ceddia, MD Alessandra Anemona, DStat Scott A. Halperin, MD Simon Dobson, MD Andrew J. Pollard, PhD

Context Immunization with a meningococcal tetravalent (serogroup ACWY) glycoconjugate vaccine is recommended for all US adolescents. However, the currently licensed vaccine is poorly immunogenic in infancy, when the highest rates of disease are observed.

Objective To determine the immunogenicity of a novel tetravalent CRM₁₉₇-conjugated meningococcal vaccine (MenACWY) in infants.

Design, Setting, and Participants Randomized, open-label, controlled study of 225 UK and 196 Canadian 2-month-olds from August 2004 to September 2006.

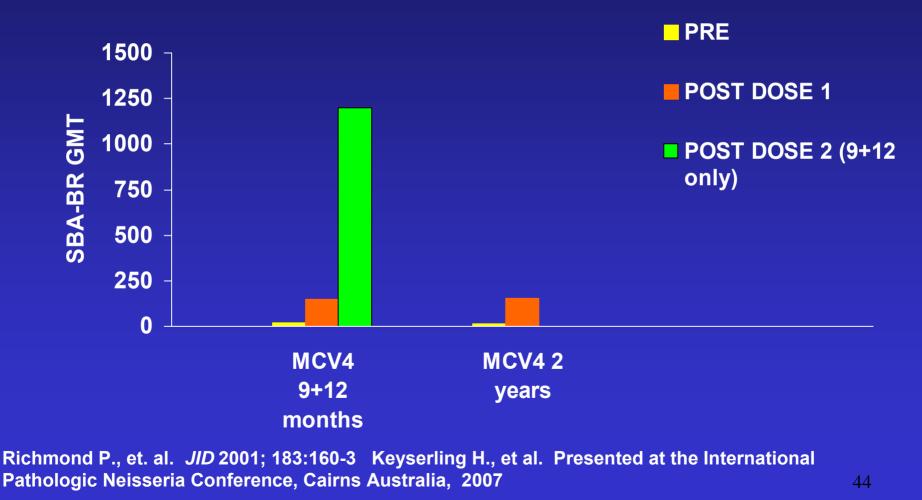
Intervention UK infants received a primary course of MenACWY (at 2, 3, and 4 months or 2 and 4 months) or *Neisseria meningitidis* serogroup C monovalent meningococcal glycoconjugate vaccine (MenC) (at 2 and 4 months). All received MenACWY at 12 months. Canadian infants received MenACWY at 2, 4, and 6 months or 2 and 4 months; at 12 months they received MenACWY, a plain tetravalent polysaccharide vaccine, or no vaccine.

Main Outcome Measure Percentage of infants with a human complement serum bactericidal activity (hSBA) titer \geq 1:4 after a primary course of MenACWY and after a 12-month booster. Safety and reactogenicity of MenACWY were also assessed.

Results According to the prespecified per-protocol analysis, the percentages (95% CIs) of MenACWY 2- 3- and 4-month recipients with hSBA titers ≥1:4 after primary im-

Percent Responders (hSBA titers ≥1:4) after primary 2,4,6 mo immunization with Men ACWY*

Serogroup	MenACWY at 2,4,6 months
A	81% (71-89%)
С	98% (92-100%)
Y	99% (93-100%)
W-135	98% (92-100%)


*Snape et al. JAMA. 2008:299;173-184

Percent Responders (hSBA titers >1:4) after 9, 12 mo immunization with Menactra®

Serogroup	Menactra at 9, 12 months
A	97.2% (86-100)
С	100% (91-100)
Y	94.6% (82-99)
W-135	92% (78-98)

*Courtesy of Michael Decker, Sanofi

Comparison of Menactra at 9+12 mos and 2 yrs, Serogroup C*

*Courtesy of Mike Decker, Sanofi

Working Group Considerations Routine Vaccination 2-10 year-olds **Burden of Disease** +/-**Population Impact Economic Analysis** +/-Vaccine Safety + Vaccine- Immune Response +/-**Programmatic Implications**

Working Group Considerations

Routine Vaccination	2-10 year- olds	Adolescents	
Burden of Disease	+/-	+	
Population Impact	-	+	
Economic Analysis	+/-	+/-	
Vaccine Safety	+	+	
Vaccine- Immune Response	+/-	+	
Programmatic Implications	-	+	46

Working Group Position

- Does not recommend routine vaccination against meningococcal disease in children aged 2-10 years at this time, except for children at increased risk of disease.
- If providers/parents choose to vaccinate against meningococcal disease in this age group, MCV4 is preferred to MPSV4.

Acknowledgements

- ACIP Meningococcal Vaccine Working Group
- Kim Cushing
- Elizabeth Zell
- Paige Lewis
- Nancy Messonnier
- Thomas Clark