Coastal and Estuarine Hazardous Waste Site Reports

Editors

J. Gardiner, L. Harris, and M. Jacobi NOAA/OR&R/Coastal Protection and Restoration Division

Authors

B. Bergquist, M. Hilgart, J. Starkes, C. Wagener EVS Environment Consultants Ridolfi Engineers Inc.

NOAA National Oceanic and Atmospheric Administration

> NOS NOAA Ocean Service

> > OR&R

Office of Response and Restoration

CPR

Coastal Protection and Restoration Division 7600 Sand Point Way NE Seattle, Washington 98115

October 2002

Coastal and Estuarine Hazardous Waste Site Reports

Reviewers

K. Finkelstein, L. Mill, S. Hahn, T. Dillon, R. Gouguet NOAA/OR&R/Coastal Protection and Restoration Division

Graphics

R. Dailey and K. Galimanis EVS Environment Consultants Ridolfi Engineers Inc.

NOAA National Oceanic and Atmospheric Administration

> NOS NOAA Ocean Service

> > OR&R

Office of Response and Restoration

CPR

Coastal Protection and Restoration Division 7600 Sand Point Way NE Seattle, Washington 98115

October 2002

PLEASE CITE AS:

J. Gardiner, L. Harris, M. Jacobi, editors. 2002. Coastal and Estuarine Hazardous Waste Site Reports, October 2002. Seattle: Coastal Protection and Restoration Division, Office of Response and Restoration, National Oceanic and Atmospheric Administration. 130 pp.

Contents

Intr	oduction	vii
EPA	Region 2	
	Computer Circuits	
	Hauppauge, New York	
	Emmell's Septic Landfill	9
	Galloway Township, NJ	
	Stanton Cleaners Area Ground Water Contamination	
	Great Neck, New York	
	Vega Baja Solid Waste Disposal	
	Rio Abajo Ward, Puerto Rico	
EPA	Region 3	
	Kim-Stan Landfill	
	Selma, Virginia	
	Naval Amphibious Base Little Creek	
	Virginia Beach, Virginia	
EPA	Region 4	
	Solitron Microwave	
	Port Salerno, Florida	
EPA	Region 10	
	Klag Bay Site	
	Sitka, Alaska	
Acro	onyms and abbreviations	
	ssary of terms	
	pendix	
whh		

Introduction

The National Oceanic and Atmospheric Administration (NOAA) regularly evaluates hazardous waste sites that are proposed for addition to the National Priorities List^{1,2} (NPL). This report identifies hazardous waste sites that could impact natural resources for which NOAA acts as a federal trustee under the National Oil and Hazardous Substances Pollution Contingency Plan³ and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).⁴

These waste site reports are often NOAA's first examination of a site. Following a waste site report, some sites may require a more in-depth assessment called a Preliminary Natural Resource Survey (PNRS). NOAA has published 329 coastal and estuarine hazardous waste site reports (WSRs), 143 PNRS', and three Air Force Reports (Appendix Tables 1 and 2).

Not all hazardous waste sites will affect NOAA trust resources; NOAA is concerned about sites located near trustee resources and their habitats in states along the Atlantic and Pacific oceans, the Gulf of Mexico, and the Great Lakes. NOAA works with the U.S. Environmental Protection Agency (EPA) to identify and assess risks to natural resources and to develop strategies to minimize those risks. Trustee responsibilities also include evaluating cleanup alternatives and restoring habitats.

NOAA's regional Coastal Resource Coordinators (CRCs) will follow up on sites that appear to pose ongoing problems. NOAA uses information from this report to establish priorities for further site investigations. The CRC works with other agencies and trustees to communicate any concerns to EPA. CRCs also review sampling and monitoring plans for the site and help to plan and set objectives for site cleanups. This coordinated approach protects all natural resources, not just those for which NOAA is a steward. The EPA can use the waste site reports to help identify the types of information that may be needed to complete an environmental assessment of the site. Other federal and state trustees can use the reports to help evaluate the potential impacts to their resources.

Each report contains an executive summary and three distinct sections. The first section, Site Background, describes the site, previous site operations and disposal practices, and pathways of contaminant transport to natural resources. The second section, NOAA Trust Resources, describes the species, habitats, and commercial and recreational fisheries near the site. The final section, Site-Related Contamination, identifies the contaminants of concern to NOAA and describes contaminant distribution at the site.

This report contains a list of acronyms and abbreviations (p. 63) and a glossary of terms (p. 65) that commonly appear throughout the reports. Table 1 in the appendix lists the WSRs that NOAA has published to date, and Table 2 lists all of the sites at which NOAA has been involved that could potentially affect trust resources, as of September 2002. Table 2 also lists the number and variety of hazardous waste reports that the Coastal Protection and Restoration Division has published since 1984, including PNRS' and Air Force Reports.

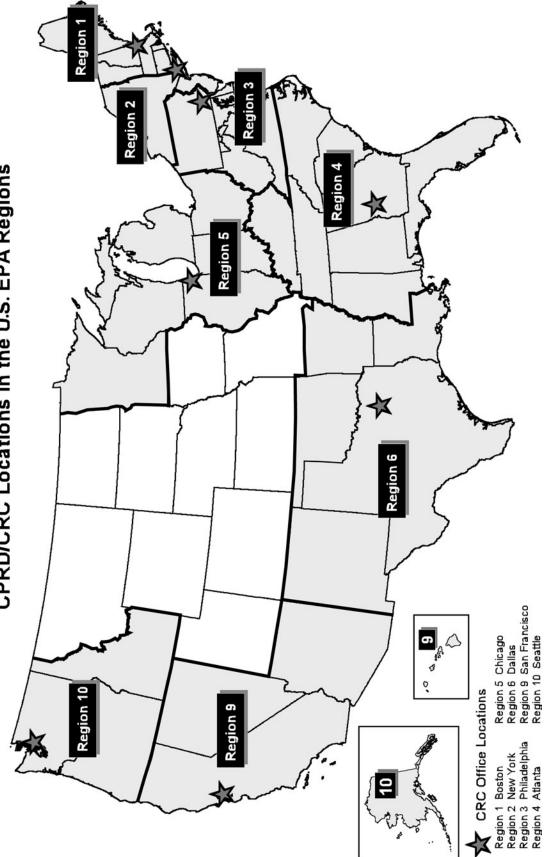
Chemical-Specific Screening Guidelines

Most waste site reports contain a table that focuses on the contaminants in different media that could potentially degrade natural resources. These site-specific tables highlight only a few of the many contaminants often found at hazardous waste sites. We compare the chemical concentrations reported in the tables against published screening guidelines for surface water, sediment, groundwater, and soil. Ambient Water Quality Criteria (AWQC) values⁵ are used for surface water and groundwater, Effects Range Low (ERL) values⁶ and Threshold Effects Level (TEL) values⁷ are used for sediment, and average soil concentrations^{8,9,10} are used for soil.

Because contaminant releases from hazardous waste sites to the environment can span many years, we are concerned about long-term effects to natural resources. This is why we compare site contaminant levels against the screening guidelines for chronic effects rather than with the short-term effects.

There are no national criteria for sediment comparable to the AWQC for water. In the absence of national criteria, we compare sediment concentrations against several published screening guidelines.^{6,7} Studies that associate contaminant concentrations in sediment with biological effects^{11,12,13,14,15,16,17,18} provide guidance for evaluating contaminant concentrations that could harm sediment-dwelling aquatic organisms. However, screening guidelines are often based on effects from individual chemicals. Their application may be difficult when evaluating biological effects that could be attributed to combined effects from multiple chemicals, unrecognized chemicals, or physical parameters that were not measured.

NOAA's National Status and Trends Program has used chemical and toxicological evidence from a number of modeling, field, and laboratory studies to determine the ranges of chemical concentrations associated with toxic biological effects:^{6, 13}


- No Effects Range the range of concentrations over which toxic effects are rarely observed;
- Possible Effects Range the range of concentrations over which toxic effects are occasionally observed
- Probable Effects Range the range of concentrations over which toxic effects are frequently observed

Two slightly different methods^{6,7} were used to determine these chemical ranges. Long and Morgan⁶ compiled chemical data associated with adverse biological effects. The data were ranked to determine where the chemical concentration was associated with an adverse effect (Effects Range-Low or ERL)—the lower 10th percentile. Sediment samples were not expected to be toxic when all chemical concentrations were below the ERL values.

MacDonald⁷ modified the approach used by Long and Morgan, to include both the "effects" and "no effects" data, whereas Long and Morgan used only the "effects" data. Threshold Effects Levels (TELs) were derived by taking the geometric mean of the 15th percentile of the "effects" data and the 50th percentile of the "no effects" data.

Although different percentiles were used for these two methods, their results closely agree.¹³ We advocate neither method over the other and use both screening guidelines to help focus cleanup efforts in areas where natural resources may be at risk from site-related contaminants.

Chemical concentrations in soil that are elevated above background levels can indicate a potential source of contamination. Ideally, screening guidelines for soils would be calculated from a regional data set. In the absence of such data, we compare site soils against the national average values,⁸ except for cadmium and silver, which we compare against average concentrations in the earth's crust.^{9,10} The soil values are based on averages calculated from soil data collected throughout the U.S. and are used as a reference for comparison purposes only.

CPRD/CRC Locations in the U.S. EPA Regions

References

- 1. Comprehensive Environmental Response, Compensation, and Liability Act, 105(a)(8)(B).
- 2. National Oil and Hazardous Substances Pollution Contingency Plan, Appendix B.
- 3. National Oil and Hazardous Substances Pollution Contingency Plan, Part 300.600 and 615.
- 4. Comprehensive Environmental Response, Compensation, and Liability Act, 104(B)(2).
- 5. U.S. EPA. 1999. National Recommended Water Quality Criteria Correction. EPA 822-Z-99-001. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.
- 6. Long, E.R. and L.G. Morgan. 1991. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends program. NOAA Technical Memorandum NOS OMA 52. Seattle: Office of Oceanography and Marine Assessment, National Oceanic and Atmospheric Administration. 175 pp.
- 7. MacDonald, D.D. 1993. Development of an approach to the assessment of sediment quality in Florida coastal waters, January 1993. Tallahassee: Florida Department of Environmental Regulation. 133 pp.
- Shacklette, H.T. and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1270. Washington, D.C.: U.S. Geological Survey.
- 9. U.S. EPA. 1983. Hazardous waste land treatment. EPA SW-874. Cincinnati: Solid and Hazardous Waste Division, Municipal Environmental Research Laboratory, 702 pp.
- 10. Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 pp.
- 11. MacDonald, D.D., L.M. DiPinto, J. Field, C.G. Ingersoll, E.R. Long, and R.C. Swartz. 2000. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls. Environmental Toxicology and Chemistry 19(5):1403-1413.
- 12. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39:20-31.
- 13. Kemble, N.E., D.G. Hardesty, C.G. Ingersoll, B.T. Johnson, F.J. Dwyer, and D.D. MacDonald. 2000. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation. Archives of Environmental Contamination and Toxicology 39:452-461.
- 14. Long, E.R., L.J. Field, and D.D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4): 714-727.
- 15. MacDonald, D.D., R.S. Carr, F.D. Calder, E.R. Long, and C.G. Ingersoll. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5(4):253-278.
- Smith, S.L., D.D. MacDonald, K.A. Keenleyside, C.G. Ingersoll, and L.J. Field. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research 22 (3):624-638.

- 17. Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19 (1):81-97.
- 18. Long, E.R. and D.D. MacDonald. 1992. National Status and Trends Program Approach [in] Sediment Classification Methods Compendium, EPA 823-R-92-006, September 1992. Washington, D.C.: Office of Water, U.S. Environmental Protection Agency.

Computer Circuits

Hauppauge, New York EPA Facility ID: NYD125499673 Basin: Northern Long Island HUC: 02030201

Executive Summary

The Computer Circuits property in Hauppauge, New York was the site of a circuit board manufacturing company from 1969 to 1977. The property is approximately 2.5 km (1.5 mi) southwest of the Nissequogue River, which flows into Smithtown Bay. Wastewater dumped into underground leaching pools; soil, groundwater, and surface water on the property have concentrations of trace elements above screening guidelines. Although trust resources use the Nissequogue River, no sampling has been conducted down-gradient of the site to determine whether contaminants are migrating toward NOAA trust habitats.

Site Background

The Computer Circuits property occupies 0.7 hectares (1.7 acres) approximately 2.5 km (1.5 mi) southwest of the Nissequogue River in Hauppauge, New York (Figure 1). The Nissequogue River is approximately 11 km (6.8 mi) upstream from Smithtown Bay.

The Computer Circuits Corporation manufactured printed circuit boards at this location from 1969 to 1977. Some of the chemicals used in this manufacturing process included copper sulfate, nickel, sulfuric acid, hydrochloric acid, lead fluoroborate, fluorides, copper, trichloroethylene, photography chemicals, gold cyanate, ammonia, lead, nitric acid, and tin (USEPA 1997). Wastewater produced during the manufacturing process was dumped into underground leaching pools. One of these pools was connected to a storm drain east of the property (Roux Associates Inc. 1989). The storm drain and all other runoff near the site empty into a stormwater management system that discharges to infiltration basins (USEPA 1997).

The U.S. Environmental Protection Agency (EPA) completed a Hazard Ranking System Package for the site in November 1997, and the site was placed on the National Priorities List in May 1999 (USEPA 2000).

The primary pathway for transport of contaminants from the Computer Circuits site to NOAA trust resources is via groundwater. Groundwater, which flows northeast towards the Nissequogue River, is encountered approximately 30 m (100 ft) bgs in the underlying glacial aquifer (Foster Wheeler 1999). Aside from the storm drain sampling, the surface water pathway has not been evaluated.

NOAA Trust Resources

The habitats of concern to NOAA are the upper and lower reaches of the Nissequogue River. The river extends north from central Long Island for approximately 10 km (6 mi) to Long Island Sound.

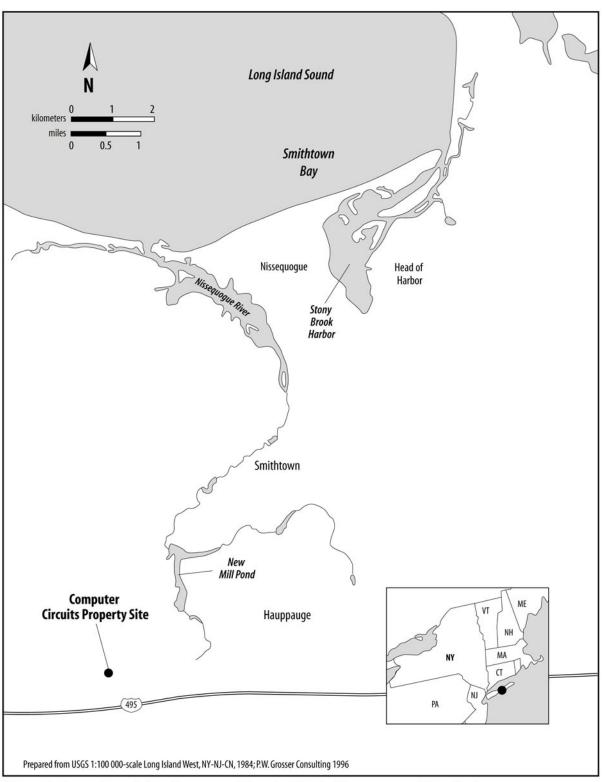


Figure 1. Location of the Computer Circuits Site in Hauppauge, New York.

The upper reaches of the stream, nearest the facility, are dammed to form New Mill Pond. Below New Mill Pond, the stream is low-gradient, meandering for approximately 5 km (3.1 mi) to the lower Nissequogue River. The lower river widens into a shallow, estuarine embayment of Long Island Sound that is predominantly composed of estuarine tidal flats and salt marsh islands (USGS 1967a, 1967b).

NOAA trust resources commonly found in Long Island Sound are presented in Table 1. The upper Nissequogue River contains anadromous runs of alewife and blueback herring that spawn in the stream below the New Mill Pond dam. Both species are spring spawners, migrating upstream between April and June. Juveniles use the stream as a nursery for several months before emigrating to Long Island Sound (Young 2000). The catadromous American eel is present upstream of the dam in New Mill Pond (Guthrie 1984).

The lower Nissequogue River and Long Island Sound contain numerous marine fish and invertebrate species. Small forage species such as silversides, killifish, goby, sheepshead minnow, bay anchovy, oyster toadfish, and pipefish are common, spending their entire lives within estuaries. Atlantic menhaden and Atlantic herring are also common forage species that usually spawn in coastal waters, but larvae are transported to estuaries where they reside through adulthood (Stone et al. 1994).

Larger demersal species such as winter flounder, windowpane flounder, and skates are common, spending all or most of their lives in the estuary. These animals spawn in estuaries and the coastal Sound (Stone et al. 1994).

Several cod species, including tomcod, red hake, and pollock, are present in Long Island Sound. Tomcod may spawn in salt water but apparently prefer to move into estuaries and up rivers to the head of the tide (Scott and Scott 1984). Pollock and hake spawn in coastal waters; their larvae are then transported to estuaries where they reside as juveniles and adults (Stone et al. 1994).

Most of the remaining species spawn in coastal areas; their larvae are then transported into estuaries where they will reside as juveniles. Adults use the estuaries seasonally, usually moving offshore during the winter (Stone et al. 1994).

Shellfish spend their entire lives within the estuary. The northern quahog is the most common species in Long Island Sound, followed by the eastern oyster. Grass shrimp, bay shrimp, and American lobster are common, spending most or all of their lives within the estuary. Blue crab are common; juveniles and adults use the estuary while brooding females generally move offshore (Stone et al. 1994).

There are recreational fisheries in the lower Nissequogue River and extensive commercial fisheries in Long Island Sound (Young 2000).

The New York State Department of Health has issued a health advisory warning against eating crab and lobster hepatopancreas due to contamination from cadmium and PCBs in the marine waters of Long Island Sound. The advisory also limits the consumption of striped bass to no more than one meal per month, and bluefish and American eel to no more than one meal per week (NYSDOH 2001).

Table 1. Fish and invertebrates commonly found in Long Island Sound estuaries (Guthrie 1984, Stone 1994, Young 2000).

Species	Habitat Use			Fisheries		
Common Nomo	Caiontifa Nome	Spawning	Nursery	Adult	Comm.	Recr.
Common Name	Scientific Name	Area	Area	Forage	Fishery	Fishery
ANADROMOUS/CATADR	OMOUS FISH					
Alewife	Alosa pseudoharengus		•	•		
American shad	Alosa sapidissima		•	•		
Blueback herring	Alosa aestivalis		•	•		
Rainbow smelt	Osmerus mordax		•	•		
Striped bass	Morone saxatilis		•	•		•
White perch	Morone americana		•	•		•
MARINE/ESTUARINE FISH	4					
American sand lance	Ammodytes americanus		•	•		
Atlantic herring	Clupea harengus		•	•		
Atlantic mackerel	Scomber scombrus		•	•		
Atlantic menhaden	Brevoortia tyrannus		•	•		
Atlantic tomcod	Microgadus tomcod		•	•		•
Bay anchovy	Anchoa mitchilli		•	•		
Black sea bass	Centropristis striata		•	•		•
Bluefish	Pomatomus saltatrix		•	•		•
Butterfish	Peprilus triacanthus		•	•		
Cunner	Tautogolabrus adspersus		•	•		
Goby	Gobiosama spp.	•	•	•		
Hogchoker	Trinectes maculatus	•	•	•		
Killifish	Fundulus spp.	•	•	•		
Northern pipefish	Syngnathus fuscus	•	•	•		
Northern searobin	Prionotus carolinus	•	•	•		
Pollock	Pollachius virens		•	•		
Red hake	Urophycis chuss		•	•		
Oyster toadfish	Opsanus tau	•	•	•		
Scup	Stenotomus chrysops		•	•		
Sheepshead minnow	Cyprinodon variegatus	•	•	•		
Silversides	Menidia spp.	•	•	•		
Skate	Raja spp.	•	•	•		
Tautog	Tautoga onitis		•	•	•	•
Weakfish	Cynoscion regalis		•	•		
Windowpane flounder	Scophthalmus aquosus	•	•	•		
Winter flounder	Pleuronectes americanus	•	•	•		•
INVERTEBRATES						
American lobster	Homarus americanus	•	•	•	•	•
Bay shrimp	Crangon septemspinosa	•	•	•		
Blue crab	Callinectes sapidus		•	•		•
Blue mussel	Mytilus edulis	•	•	•		
Eastern oyster	Crassostrea virginica	•	•	•		
Grass shrimp	Palaemonetes pugio	•	•	•		
Northern quahog	Mercenaria spp.	•	•	•	•	•
Softshell clam	Mya arenaria	•	•	•		

Site-Related Contamination

Investigations at the Computer Circuits Property have found contaminants at concentrations substantially greater than screening guidelines in soil, groundwater, and surface water. In 1976

and 1977, the Suffolk County Department of Environmental Control collected surface water samples from leaching pools on the Computer Circuits property (Foster Wheeler 1999). In May 1989 the New York State Department of Environmental Conservation (NYSDEC) requested that 10 soil samples and three groundwater samples be collected from the site (Roux Associates Inc. 1989). In November 1995 NYSDEC arranged for five soil borings to be drilled by a consultant for the property owner (P.W. Grosser Consulting 1996). The EPA collected 14 soil samples and sampled five monitoring wells as part of the Hazard Ranking System Report completed in November 1997 (USEPA 1997).

Trace elements are the primary contaminants of concern to NOAA at the Computer Circuits site. High concentrations of volatile organic compounds were also found on the property but due to their relatively low persistence and toxicity, they are of less concern to NOAA. Table 2 summarizes maximum concentrations of contaminants, along with appropriate screening guidelines.

	Soil (mg/kg)			
Contaminant	Soil	Mean U.S.ª	Groundwater	Surface water	AWQC ^b
TRACE ELEMENTS					
Cadmium	2.3	0.06	2.2	ND	2.2°
Chromium	9.3	37	340	ND	11
Copper	2,600	17	710	540,000	9°
Lead	370	16	110	82,000	2.5°
Mercury	0.14	0.058	0.11	ND	0.77
Nickel	180	13	270	57,000	52°
Silver	630	0.05	ND	620	0.12
Zinc	13	48	700	ND	120 ^c

Table 2. Maximum concentrations of contaminants of concern at the Computer Circuits site (Analytical Resources Inc. 1996a, 1996b, 1996c; Foster Wheeler 1999; Roux Associates Inc. 1989).

ND: Not detected; detection limit not available.

a: Shacklette and Boerngen (1984), except for cadmium and silver, which represent average concentrations in the earth's crust from Lindsay (1979).

b: Ambient water quality criteria for the protection of aquatic organisms (USEPA 1999). Freshwater chronic criteria presented.

c: Criterion expressed as a function of total hardness; concentrations shown correspond to hardness of CaCO₃ 100 mg/L.

Concentrations of copper, silver, lead, nickel, cadmium, and mercury exceeded screening guidelines in soil (Table 2) (Foster Wheeler 1999).

Sediment samples collected from the leaching pool area exceeded screening guidelines for copper and silver by two and four orders of magnitude, respectively (Table 2) (Malcolm Pirnie Inc. 1996a).

Groundwater samples collected at the site contained concentrations of copper, chromium, and lead that exceeded the AWQC by at least one order of magnitude (Table 2) (Foster Wheeler 1999). The maximum concentrations of trace elements were found in samples collected from a monitoring well, down-gradient from the on-site leaching pools (Malcolm Pirnie Inc. 1996b).

In surface water, samples collected from the on-site leaching pools had concentrations of copper, lead, nickel, and silver that substantially exceeded the AWQC (Table 2) (Foster Wheeler 1999).

References

- Analytical Resources Inc. 1996a. Quality assured EPA-MMB final contract laboratory data, Computer Circuits, August 8, 1996.
- Analytical Resources Inc. 1996b. Quality assured EPA-MMB final contract laboratory data, Computer Circuits, June 20, 1996.
- Analytical Resources Inc. 1996c. Quality assured EPA-MMB final contract laboratory data, Computer Circuits, June 28, 1996.
- Foster Wheeler. 1999. Draft work plan for remedial investigation/feasibility study, Computer Circuits Superfund site, Town of Hauppauge, Suffolk County, New York. New York: U.S. Environmental Protection Agency, Region 2.
- Guthrie, C.A. 1984. Blydenburgh Lake Fisheries Survey Report. Stony Brook, New York: New York State Department of Environmental Conservation, Division of Fish and Wildlife, Bureau of Fisheries, Region 1.
- Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 pp.
- Malcolm Pirnie Inc. 1996a. Sample trip report: Computer Circuits, Hauppauge, Suffolk County, March 21, 22, and 27, 1996.
- Malcolm Pirnie Inc. 1996b. Sample trip report: Computer Circuits, Hauppauge, Suffolk County, May 9-10, 1996.
- NYSDOH. 2001. Health advisories, chemicals in sportfish and game, 1998–1999. Albany, New York: New York Department of Health.
- P.W. Grosser Consulting. 1996. Soil quality investigation, Computer Circuits Site, Hauppauge, N.Y., February 14, 1996. Farmingdale, New York: Theodore W. Firetog, Esq.
- Roux Associates Inc. 1989. Investigation Report Order on Consent W10061885, Computer Circuits Site, Hauppauge, New York, Inactive Hazardous Waste Disposal Site Number 152034. New York: Shea & Gould.
- Shacklette, H.T. and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1720. Washington, DC: U.S. Geological Survey.

References, cont.

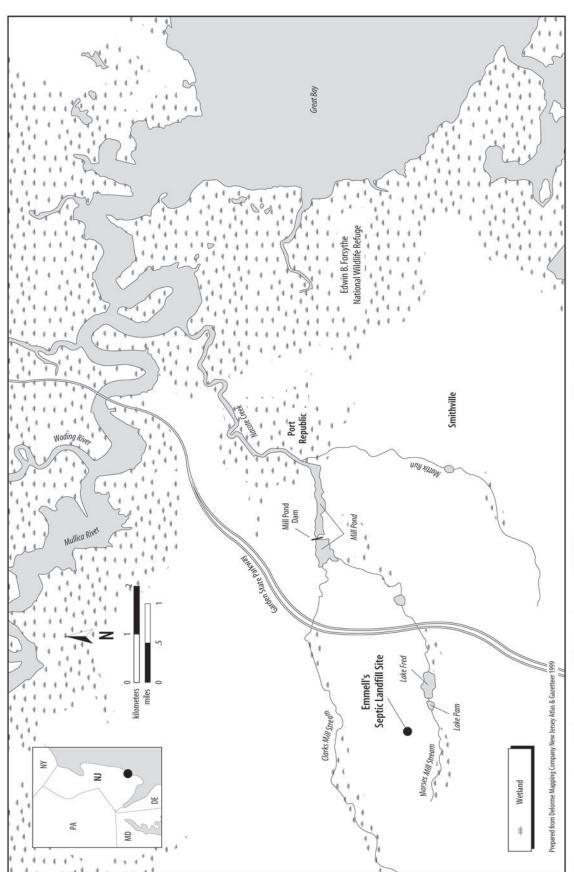
- Scott, W.B. and M.G. Scott 1984. Atlantic fishes of Canada. Canadian Bulletin of Fisheries and Aquatic Science No. 219. 731 pp.
- Stone, S.L., T.A. Lowery, J.D. Field, C.D. Williams, D.M. Nelson, S.H. Jury, M.E. Monaco, and L. Andreasen. 1994. Distribution and abundance of fishes and invertebrates in Mid-Atlantic estuaries. ELMR Rep. No. 12. Silver Spring, Maryland: Strategic Environmental Assessments Division, National Oceanic and Atmospheric Administration.
- USEPA. 1997. Final hazard ranking system report, Computer Circuits, Hauppauge, Suffolk County, New York. New York: U.S. Environmental Protection Agency, Region 2.
- USEPA. 1999. National recommended water quality criteria—correction. EPA 822-Z-99-001. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.
- USEPA. 2000. NPL Site Narrative at Listing, Computer Circuits, Hauppauge, New York [webpage], U.S. Environmental Protection Agency, Superfund NPL Assessment Program Database. Available: http://www.epa.gov/superfund/sites/npl/nar1520.htm
- USGS. 1967a. Central Islip Quadrangle, New York--Suffolk County, 7.5 minute series (topographic) (photorevised 1979), 1:24,000 scale. Denver: U.S. Geological Survey.
- USGS. 1967b. Saint James Quadrangle, New York--Suffolk County, 7.5 minute series (topographic) (photorevised 1979), 1:24,000 scale. Denver: U.S. Geological Survey.
- Young, B., Fisheries Biologist, New York Department of Environmental Conservation, Division of Marine Fisheries, personal communication, June 26, 2000.

Emmell's Septic Landfill

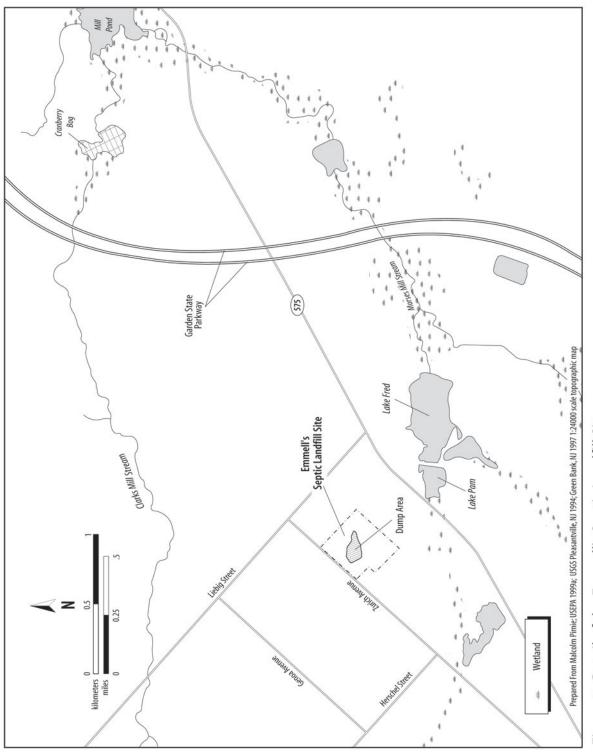
Galloway Township, NJ EPA Facility ID: NJD980772727 Basin: Mullica-Toms HUC: 02040301

Executive Summary

Emmell's Septic Landfill was a land disposal facility permitted for septic and sewage sludge waste, although other types of industrial and miscellaneous wastes were apparently disposed of there. The property is located near Morses Mill Stream within the Mullica River watershed, about 600 m (2,000 ft) from NOAA trust resource habitats.


Groundwater is the primary pathway for migration of contaminants from the landfill. Trace elements have been detected at elevated concentrations in soil and groundwater. Substantial concentrations of PCBs have been measured in soils. Insufficient analyses were conducted in groundwater to verify PCB concentrations there. The presence of volatile organic compounds (VOCs) at the site does not pose a risk to NOAA trust resources, but may increase the potential for PCBs to migrate through groundwater. No surface water or sediment sampling has been conducted down-gradient from the site.

Site Background


Emmell's Septic Landfill is located in Galloway Township, New Jersey. The landfill is located on 15 hectares (38 acres) approximately 0.6 km (2,000 ft) north of Morses Mill Stream, which discharges to Mill Pond and then Nacote Creek approximately 4 km (2.5 mi) downstream. Nacote Creek flows for 7.1 km (4.4 mi) before discharging into the Mullica River. The Mullica River empties into Great Bay an additional 7.4 km (4.6 mi) downstream (Figures 1 and 2).

Emmell's Septic Landfill was an active land disposal facility for septic and sewage sludge waste from 1967 to 1979. A permit was issued for land application of septic and sewage sludge on the property, but other types of wastes, including household garbage, tire piles, drums, paint sludges, gas cylinders, and construction and industrial wastes have been observed on the property. During this period, the New Jersey Department of Environmental Protection (NJDEP) noted repeated violations, including pooled wastes in trenches and lagoons, failure to submit engineering designs and Annual Operations Statements, and failure to maintain a dike on the premises to prevent septic flow into wooded areas adjacent to the site. An inspection report in July 1979 noted crushed drums with paint-like material in a pit. The property has been abandoned since 1979 (NJDEP 1997; USEPA 1999a). During a site investigation by NJDEP in 1984, contaminants including several volatile organic compounds (VOCs) and metals, were identified in soil and groundwater samples. In 1984 the Atlantic County Health Department closed residential wells northeast of the site after VOCs were detected in five residential wells (Weston 1993).

The primary pathway for migration of contaminants from the site to NOAA trust resources is through groundwater. Soils in the area are described as loamy sand and gravel with relatively high

permeability (NJDEP 1997). Groundwater in encountered from 1.3 to 4.6 m (4.4 to 15 ft) bgs, and the direction of flow near the site is southeast towards Morses Mill Stream. The estimated rate of contaminant transport in the groundwater is 0.3 m/day (0.9 ft/day) (NJDEP 1997). There are no surface water pathways from the site to Morses Mill Stream.

The U.S. Environmental Protection Agency (EPA) completed a Site Activity Report in June 1998, and the final Hazard Ranking System Evaluation was completed in April 1999. The EPA placed the site on the National Priorities List in July 1999. The EPA implemented a removal action to address drums, gas cylinders, paint waste, and contaminated soils. Over 400 drums were removed and the removal action was completed in the year 2000. Further actions pending at the site include a groundwater-focused feasibility study, a preliminary human health risk assessment, and a screening level ecological risk assessment (CDM 2001).

NOAA Trust Resources

The NOAA trust habitats of primary concern are the surface water and sediment in Morses Mill Stream, a tributary of the Mullica River (Figure 1). The stream is small with low flows of 3.4 to 5.0 cfs (Weston 1993). Morses Mill Stream meanders through Lake Pam and Lake Fred, two ponds located about 300 m (1,000 ft) downstream of the landfill (Weston 1993). Lake Fred is formed by a small, unnamed dam (Byrne 2002). Morses Mill Stream flows an additional 3.5 km (2.2 mi) to Mill Pond, which is formed by an impassable dam.

Table 1 presents NOAA trust resources found in streams near the landfill. The catadromous American eel is the trust resource documented in Morses Mill Stream (Carberry 2000). American eel can traverse the spillways of lowhead dams and are found throughout the stream from juvenile to adult life stages (Carberry 2000). Warm-water fish including sunfish, minnows, shiners, catfish, and carp use this low-gradient stream (Carberry 2000).

About four km (2.5 mi) downstream of the landfill, anadromous alewife use the area below Mill Pond and Nacote Creek for spawning and as a juvenile nursery. Alewife enter the stream in the spring spawning runs and juveniles reside in the basin until they out-migrate later in the fall. Anadromous striped bass use the Mullica River near the confluence of Nacote Creek, but not the area further upstream (Byrne 2002). There are no plans to put fish passage facilities on the Mill Pond dam (Carberry 2000).

Species	Habitat Use			Fisheries		
Common Name	Scientific Name	Spawning Area	Nursery Area	Adult Habitat	Rec. Fishery	Comm. Fishery
MARINE/ESTUARI	NE FISH					
Alewife	Alosa pseudoharengus	•	•			
American eel	Anguilla rostrata		•	•		
Striped bass	Morone saxatilus		•	•		
INVERTEBRATES						
Blue crab	Callinectes sapidus	•	•	•	•	
Eastern oyster	Crassostrea virginica	•	•	•		•

Table 1. NOAA trust resources present in streams near the Emmell's Septic Landfill site in the Mullica River watershed (Carberry 2000, Byrne 2002, Normant 2002).

There are no known recreational or commercial fisheries in Morses Mill Stream. Recreational fishing for alewife and striped bass occurs further downstream on the Mullica River (Byrne 2002). There is recreational fishing for blue crab on Nacote Creek, particularly the lower tidal reaches near the Mullica River (Carberry 2000). The waters of Nacote Creek are classified as Special Restricted, which means that permits for depuration are required. This restriction has eliminated recreational shellfish harvesting in Nacote Creek. Commercial harvesting of eastern oysters from leased shell-fish beds still takes place in Nacote Creek (Normant 2002).

No health advisories are in effect on Morses Mill Stream, Nacote Creek, or the Mullica River. However, a health advisory is in effect on the Wading River, a tributary to the Mullica River, restricting the consumption of largemouth bass and chain pickerel due to high concentrations of mercury in edible fish tissue (USEPA 2000).

The Edwin B. Forsythe National Wildlife Refuge is located approximately 10 km (6.2 mi) downstream of the site near the mouth of the Mullica River. The U.S. Fish and Wildlife Service actively protects and manages the 16,000 hectares (40,000 acres) of tidal wetlands for migratory birds (USFWS 2000).

Site-Related Contamination

In 1996, the NJDEP collected 20 groundwater samples at the landfill for VOC analyses (NJDEP 1997); the Township of Galloway collected 19 soil samples and seven groundwater samples (Churchill Consulting Engineers 1997). Of the 19 soil samples collected, two were analyzed for PCBs, two for semi-volatile organic compounds (SVOCs), four for VOCs, and 16 for total petroleum hyrocarbons (TPH). The groundwater samples were analyzed for all contaminants. In 1997 and 1998, EPA collected 23 soil samples and 20 groundwater samples for VOC analyses (Weston 1998). Seven of the groundwater samples were also analyzed for trace elements. In addition, 10 test pit samples were collected from areas containing debris and waste material. These samples were analyzed for trace elements, PCBs, VOCs, SVOCs, and pesticides.

Trace elements and PCBs are the primary contaminants of concern at the site. Table 2 presents the maximum concentrations of contaminants detected in soils and groundwater compared to screening guidelines. Trace elements were detected in soils at concentrations that exceeded the screening guidelines; the greatest concentrations were generally found in samples collected from the test pits. Concentrations of chromium, copper, lead, and zinc in groundwater exceeded the AWQC by at least one order of magnitude. Both soil and groundwater samples contained metals at concentrations that exceeded NJDEP Residential Direct Contact Soil Cleanup Criteria and New Jersey Groundwater Quality Standards (NJGQS) (NJDEP 1993, 1999).

In 1996, PCBs were detected in a soil sample at 960 mg/kg, three orders of magnitude greater than the screening guideline (Table 2). In 1998, PCBs were detected in a test pit soil sample at 2 mg/kg. PCBs were not detected in any of the seven groundwater samples that were analyzed for PCBs.

VOCs were detected in soils and groundwater throughout the site; concentrations in groundwater exceeded screening guidelines. Although several VOCs were detected in groundwater at the site, only chlorobenzene exceeded the AWQC (Table 2). Several VOCs were found in groundwater at concentrations that exceeded the NJGQS. Several VOCs were detected in soil at concentrations that exceeded the NJGQS. Several VOCs were detected in soil at concentrations that exceeded NJDEP soil cleanup criteria. Current data suggests that the VOC plume extends horizontally about 1.2 km east of the site and 4.6 to 7.4 m (15.2 to 24.4 ft) bgs, and that contamination has reached the deeper aquifer. The VOCs at the site do not pose a direct threat to NOAA

resources, although their presence increases the potential for PCBs to migrate through groundwater to NOAA trust resources.

	Soils (mg/kg)		Water (µg/L)		
Contaminant	On-site soils/test pits	Mean U.S.ª	Groundwater	AWQC ^b	
Trace Elements					
Cadmium	12	0.06	4.4	2.2°	
Chromium	840	37	180	11	
Copper	200	17	93	9°	
Lead	3,900	16	160	2.5	
Mercury	15	0.058	0.48	0.77	
Nickel	37	13	ND	52°	
Silver	3.3	0.05	ND	0.12	
Zinc	1,700	48	1,200	120 ^c	
Organic Compounds					
PCBs	960	0.371 ^f	ND	0.014	
Volatile Organic Compounds					
1,1,1-trichloroethane	0.014	NA	570	18,000 ^{d,e}	
1,1,2-trichloroethane	ND	NA	46.69	9,400	
1,1-dichloroethane	ND	NA	156.2	NA	
1,1-dichloroethene	ND	NA	96	NA	
Benzene	ND	NA	53	5,300 ^{d,e}	
Carbon tetrachloride	ND	NA	89	35,200 ^{d,e}	
Chlorobenzene	2.8	NA	204	250	
cis 1,2-dichloroethene	1.9	NA	5,100	NA	
Toluene	5.3	NA	5,800	17,500 ^{d,e}	
Trichloroethene	0.22	NA	40	NA	
Vinyl chloride	ND	NA	960	NA	
Methylene chloride	0.0024	NA	78	11,000 ^{d,e}	

Table 2. Maximum concentrations of contaminants of concern detected in soils and groundwater at Emmell's Septic Landfill site compared to screening guidelines (Churchill Consulting Engineers 1997; NJDEP 1997; Weston 1998).

NA: Screening guideline not available.

ND: Not detected; detection limits not available.

- a: Shacklette and Boerngen (1984), except for silver and cadmium which are average concentrations in the earth's crust as reported by Lindsay (1979).
- b: Ambient water quality criteria for the protection of aquatic organisms (USEPA 1999b). Freshwater chronic criteria are presented.
- c: Freshwater criterion expressed as a function of total hardness; concentration shown corresponds to hardness of 100 mg/L.
- d: Chronic criterion not available; acute criterion presented.
- e: Value for summation of isomers.
- f: Final Preliminary Remedial Goal for the protection of wildlife (Efroymson et al. 1997).

References

- Byrne, D., Fisheries Biologist for the New Jersey Department of Environmental Protection, Division of Fish and Wildlife, Bureau of Marine Fisheries, Trenton, personal communication April 10, 2002.
- Camp Dresser and McKee (CDM). 2001. Draft Work Plan, Volume 1, Emmell's Septic Landfill, Remedial Investigation/Feasibility Study, September 26, 2001, Galloway Township, New Jersey. New York: U.S. Environmental Protection Agency, Region 2.
- Carberry, H. Fisheries Biologist, New Jersey Department of Environmental Protection, Division of Freshwater Fisheries, Sickleville, New Jersey, personal communication April 19, 2000.
- Churchill Consulting Engineers. 1997. Remedial investigation activity report, Emmell's septic landfill, Block 650, Lots 7 and 9 Zurich Avenue, Galloway Township, Atlantic County, New Jersey. Galloway, New Jersey: Township of Galloway,.
- Efroymson, R.A., G.W. Suter II, B.E. Sample, and D.S. Jones. 1997. Preliminary remediation goals for ecological endpoints. Available: http://www.esd.ornl.gov/programs/ecorisk/tm162r2.pdf.
- Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 pp.
- New Jersey Department of Environmental Protection (NJDEP). 1993. Ground Water Quality Standards, N.J.A.C. 7:9-6, adopted February 1993, as updated by Interim Specific Ground Water Quality Criteria, April 15, 1996. Trenton: NJDEP.
- New Jersey Department of Environmental Protection (NJDEP). 1997. Expanded Site Investigation, Emmell's Septic Landfill. Trenton: New Jersey Department of Environmental Protection, Division of Publicly Funded Site Remediation, Environmental Measurements and Site Assessment Section.
- New Jersey Department of Environmental Protection: Site Remediation Program (NJDEP). 1999. Soil Cleanup Criteria (last revised 5/12/99). Available: http://www.state.nj.us/dep/srp/regs/scc/ index.html.
- Normant, J., Shellfish Biologist for the New Jersey Department of Environmental Protection, Division of Fish and Wildlife, Bureau of Shellfisheries, Port Republic, New Jersey, personal communication May 2, 2002.
- Roy F. Weston Inc. (Weston). 1993. Final Site Inspection Prioritization Report, Emmell's Septic Landfill, Galloway Township, New Jersey. New York: U.S. Environmental Protection Agency, Region 2.
- Roy F. Weston Inc. (Weston). 1998. Technical Memorandum: Emmell's Septic Landfill Site, Site Activity Report. New York: U.S. Environmental Protection Agency, Region 2, Office of Emergency and Remedial Respose, Environmental Response Team.

References, cont.

- Shacklette, H.T. and J.G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. Washington, D.C.: U.S. Geological Survey.
- U.S. Environmental Protection Agency (USEPA). 1999a. Final hazard ranking system evaluation; Emmell's Septic System, Galloway Township, Atlantic County, New Jersey. New York: Region 2.

References, cont.

- U.S. Environmental Protection Agency (USEPA). 1999b. National Recommended Water Quality Criteria—Correction. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.
- U.S. Environmental Protection Agency (USEPA). 2000. Listing of Fish and Wildlife Consumption Advisories. Available: http://www.epa.gov/ost/fish/epafish.pdf.
- U.S. Fish and Wildlife Service (USFWS). 2000. Edwin B. Forsythe National Wildlife Refuge, National Wildlife Refuge System. Available: http://refuges.fws./gov/index.html.

Stanton Cleaners Area Ground Water Contamination

Great Neck, New York EPA Facility ID: NYD047650197 Basin: Northern Long Island HUC: 02030201

Executive Summary

The Stanton Cleaners site operates as a dry cleaning facility approximately 1.5 km (.9 mi) east of Little Neck Bay, an estuary of Long Island Sound. Elevated concentrations of volatile organic compounds (VOCs) have been detected in soils near discharge areas on the site and concentrations of tetrachloroethene (PCE) in groundwater exceed screening guidelines. A groundwater plume contaminated with VOCs is migrating toward Little Neck Bay, although data show attenuation to below screening guidelines a few hundred meters southeast of the site.

Numerous NOAA trust fish and invertebrate species use Little Neck Bay, as well as commercial and recreational fisheries. A health advisory is in place for several fish and invertebrate species within Long Island Sound.

Site Background

The Stanton Cleaners Property consists of approximately 0.1 hectares (.2 acres) in the town of North Hempstead, Nassau County, New York and is approximately 1.5 km (.9 mi) east of Little Neck Bay, an estuarine embayment of Long Island Sound (Figure 1; USEPA 1999). Stanton Cleaners includes a two-story building and a separate boiler room in which a dry-cleaning business has operated since the 1950s (Figure 2). No details on site operations or disposal practices were available for this site. Groundwater contaminated with PCE was first detected in 1979. In 1983, a site inspection revealed accumulated debris and empty drums in the rear yard of the site and a pipe protruding from the rear side of the two-story building. Connected to a dry-cleaning, fluid-water separator, the pipe discharged dry-cleaning wastes directly to the ground (Dvirka and Bartilucci 1998).

A groundwater pathway via the shallow Upper Glacial aquifer is the primary contaminant pathway from the site to NOAA trust habitats. The depth to the water table within the Upper Glacial aquifer ranges at depths of 3.0 to 28.0 m (3.2 to 31 yards) below ground surface (bgs). Groundwater flows southwest near the site and in a more southerly direction south of the site toward Little Neck Bay. Groundwater flow direction appears to be controlled by two hydraulic boundaries: Little Neck Bay, which acts as a natural groundwater discharge area, and drinking water production wells located about 300 m (328 yds) south of the site, which act as local groundwater discharge points during pumping cycles (USEPA 1999). Surface water runoff from the site collects in a shallow sump on the site. Stormwater runoff collects either in a dry well or flows into the storm water collection system where it eventually discharges to Little Neck Bay (Dvirka and Bartilucci 1998).

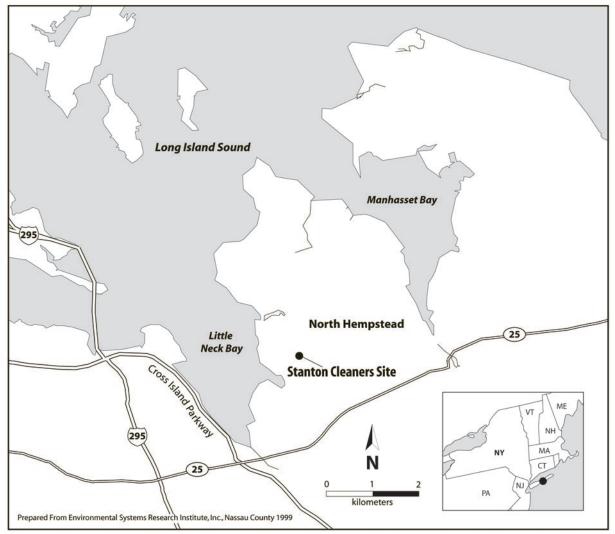


Figure 1. Location of Stanton Cleaners Property Site in the town of North Hempstead, New York.

In April 1985, Stanton Cleaners entered into a consent order with New York State Department of Environmental Conservation (NYSDEC). A groundwater extraction system and air stripper were installed to remove volatile organic compounds (VOCs). However, monitoring of the treated water revealed discharges from the system that exceeded permit limitations. In addition, the system was inoperable much of the time. In 1993, the ineffectiveness of this system to clean up the groundwater contamination and the persistence of soil contamination prompted NYSDEC to add the site to the New York State Registry of Inactive Hazardous Waste Disposal Sites. In April 1997, NYSDEC authorized the preparation of a Remedial Investigation/Feasibility Study, which was completed in November 1999. In January 1999, the U.S. Environmental Protection Agency proposed that the site be listed on the National Priorities List (Dvirka and Bartilucci 1998; USEPA 1999).

NOAA Trust Resources

The NOAA habitat of concern is Little Neck Bay, an estuary within Long Island Sound. Numerous marine and anadromous species use the estuary for spawning, rearing, and adult residence (Table 1).

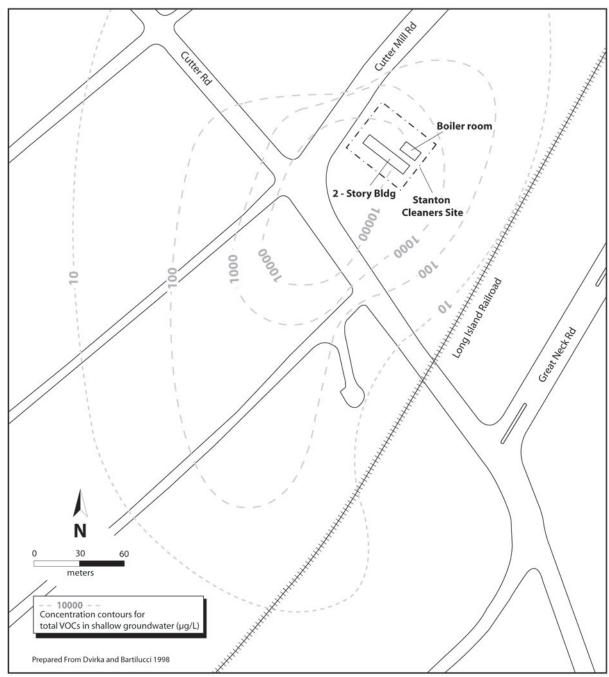


Figure 2. Detailed view of the New York Stanton Cleaners Site with total VOCs concentration contours in groundwater.

Little Neck Bay is a shallow embayment on the southwest shore of Long Island Sound with a maximum depth of 4 m (4.3 yds) MLLW (USGS 1995). Nearshore tidal flats of silty sands can be found at the head of the bay and up much of the eastern shore, nearest the site. Salinities are generally over 20 parts per thousand (ppt). Long Island Sound is a large coastal estuary measuring 170 km (106 mi) long, 34 km (21 mi) wide, with over 800 km (500 mi) of shoreline (USGS 1995; Long Island Sound Foundation 2000).

Table 1. Fish and invertebrate species commonly found in the Long Island Sound estuary (Stone et al. 1994).

Species		Habitat Use			Fisheries	
Common Name	Scientific Name	Spawning Ground	Nursery Ground	Adult Forage	Comm. Fishery	Recr. Fishery
ANADROMOUS/CATAD	PROMOUS FISH					
Alewife	Alosa pseudoharengus		٠	•		
American shad	Alosa sapidissima		٠	٠		
Blueback herring	Alosa aestivalis		٠	•		
Rainbow smelt	Osmerus mordax		٠	•		
Striped bass	Morone saxatilis		•	•		•
White perch	Morone americana		•	•		•
MARINE/ESTUARINE FI	SH					
American sandlance	Ammodytes americanus		٠	٠		
Atlantic herring	Clupea harengus		•	•		
Atlantic mackerel	Scomber scombrus		•	•		
Atlantic menhaden	Brevoortia tyrannus		•	•		
Atlantic tomcod	Microgadus tomcod		•	•		•
Bay anchovy	Anchoa mitchilli		•	•		
Black sea bass	Centropristis striata		•	•		•
Bluefish	, Pomatomus saltatrix		•	•		•
Butterfish	Peprilus triacanthus		٠	٠		
Cunner	Tautogolabrus adspersus		٠	٠		
Gobies	Gobiosama spp.	•	٠	٠		
Hogchoker	Trinectes maculatus	•	٠	•		
Killifish	Fundulus spp.	•	٠	•		
Northern pipefish	Syngnathus fuscus	•	•	•		
Northern searobin	Prionotus carolinus	•	•	•		
Pollock	Pollachius virens		•	•		
Red hake	Urophycis chuss		•	•		
Oyster toadfish	Opsanus tau	•	•	•		
Scup	Stenotomus chrysops		•	•		
Sheepshead minnow	Cyprinodon variegatus	•	•	•		
Silversides	Menidia spp.	•	•	•		
Skates	Raja spp.	•	•	•		
Tautog	Tautoga onitis		•	•	•	•
Weakfish	Cynoscion regalis		•	•		
Windowpane flounder	Scophthalmus aquosus	•	•	•		
Winter flounder	Pleuronectes americanus	•	•	•		•
INVERTEBRATES						
American lobster	Homarus americanus	•	•	•	•	•
Bay shrimp	Crangon septemspinosa	•	•	•		
Blue crab	Callinectes sapidus		•	•		•
Blue mussel	Mytilus edulis	•	•	•		
Eastern oyster	, Crassostrea virginica	•	•	•		
Grass shrimp	Palaemonetes pugio	•	•	•		
Northern quahog	Mercenaria spp.	•	•	•	•	•
Softshell clam	Mya arenaria	•	•	•		

Small forage fish such as silversides, killifishes, gobies, sheepshead minnow, bay anchovy, oyster toadfish, and pipefish are common in Little Neck Bay and Long Island Sound, spending their entire lives within estuaries. Atlantic menhaden and Atlantic herring also are common forage fish that usually spawn in coastal waters, but their larvae are transported to estuaries where they reside through adulthood (Stone et al. 1994).

Larger demersal fish such as winter flounder, windowpane flounder, and skates are common, spending all or most of their lives in the estuary. Fish may spawn in either estuaries or coastal waters of the Sound (Stone et al. 1994).

Several cod species, including tomcod, red hake, and Pollock, use Long Island Sound, but are not as common as in more northern estuaries. Tomcod spawn in nearly fresh water and live in low salinities. Pollock and hake spawn in coastal waters with larval transport to estuaries where they reside as juveniles and adults (Stone et al. 1994).

Most of the remaining fish species exhibit the common marine life cycle of spawning in coastal areas with larval transport to estuaries where juveniles rear. Adults use estuaries seasonally, usually moving offshore during the winter (Stone et al. 1994).

Many of the East Coast anadromous fish species are common to abundant in Long Island Sound. Juvenile white perch, American shad, alewife, blueback herring, and striped bass rear in estuaries through the summer and fall. Adults generally dwell in coastal areas of the Sound (Stone et al. 1994).

The shellfish species spend their entire lives within the estuary. The northern quahog is the most common shellfish species in Long Island Sound, followed by the American oyster. Grass shrimp, bay shrimp, and American lobster are common, spending most or all of their lives within the estuary. Blue crabs are common but not as abundant as in estuaries further south on the East Coast. Both juvenile and adult blue crab use the estuary while brooding females generally move offshore (Stone et al. 1994).

Little Neck Bay supports commercial and recreational fisheries for fish and shellfish. American lobster, tautog, and quahog are the primary commercial fisheries. Recreational species most actively sought include striped bass, winter flounder, tautog, bluefish, American lobster, and hardshell clam (NYSDOH 1999).

The New York State Department of Health issued a general health advisory because of PCB contamination in marine waters of Long Island Sound. This advisory advises against the consumption of crab and lobster hepatopancreas. The advisory also limits the consumption of striped bass to no more than one meal per month and bluefish and American eel to no more than one meal per week (NYSDOH 1999).

Site-Related Contamination

Data collected during field investigations indicate contamination of soils and groundwater at the site. A total of 49 subsurface soil borings and 22 groundwater monitoring wells were sampled during the Remedial Investigation. Samples were analyzed for VOCs, iron, and manganese (Dvirka and Bartilucci 1998; USEPA 1999).

The primary contaminants of concern to NOAA are the VOCs tetrachloroethene (PCE) and trichloroethene (TCE), which were found in soils and groundwater on the facility. The maximum concentrations of PCE and TCE are listed in Table 2, along with appropriate screening guidelines.

Table 2. Maximum concentrations of contaminants of concern found at Stanton Cleaners Area Groundwater Contamination (Dvirka and Bartilucci 1998, USEPA 1999).

	Soils	(mg/kg)	Water (µg/	′L)			
Contaminant	Site Soils	Mean U.S. Soil	Site Groundwater	LOELª			
Tetrachloroethene	6,200	NA	18,000	450 ^b			
Trichloroethene	38	NA	300	2,000 ^c			
NA: Data not available							

a: Lowest Observable Effects Level.

b: Marine chronic value presented.

c: Marine chronic value not available; marine acute value presented.

The greatest concentrations of PCE and TCE in soils were located behind the facility where historical discharges had occurred. Elevated concentrations were observed in nine of 13 borings collected in this area. Although mean U.S. soil concentrations are not available for VOCs in soils, the Remedial Investigation estimated an area of 139 m² where VOC concentrations exceeded the New York soil standards of 1.4 mg/kg TCE and 0.7 mg/kg PCE (Dvirka and Bartilucci 1998). Given the average depth of groundwater at approximately 21 m bgs, the Remedial Investigation estimated that up to 2,900 m³ of soilmay require remediation. Several other VOCs were observed in soils on the site, but at relatively lower concentrations.

The maximum concentrations of PCE in groundwater were two orders of magnitude greater than the AWQC screening value. No other VOCs exceeded screening guidelines. The greatest concentrations of VOCs were observed immediately downgradient of the site and a plume of VOC contamination is migrating in a southwesterly direction toward Little Neck Bay. Total VOCs at a concentration of 10,000 ug/L has been detected approximately 100 m downgradient of the site. Total VOCs of 1,000 ug/L has been detected approximately 150 m downgradient of the site. The total VOC contours of 100 and 10 ug/L are approximately 250 m and 300 m downgradient of the site, respectively (Figure 2).

References

- Dvirka and Bartilucci. 1998. Remedial investigation and feasibility study, Stanton Cleaner's site, Great Neck, Nassau County, New York (Site Registry No. 1-30-072). Albany: New York Department of Environmental Conservation.
- Long Island Sound Foundation. 2000. Long Island Sound Foundation, Inc., Old Saybrook, CT. [Webpage] Available: www.lisfoundation.org/rcfacts.html.
- New York State Department of Health (NYSDOH). 1999. Health advisories, chemicals in sportfish and game, 1998–1999. Albany, New York: NYSDOH.
- Stone, S.L., T.A. Lowery, J.D. Field, C.D. Williams, D.M. Nelson, S.H. Jury, M.E. Monaco, and L. Andreasen. 1994. Distribution and abundance of fishes and invertebrates in Mid-Atlantic estuaries. ELMR Rep. No. 12. Silver Spring, Maryland: Strategic Environmental Assessments Division, National Oceanic and Atmospheric Administration.

References, cont.

- U.S. Environmental Protection Agency (EPA). 1993. Water quality criteria. Washington, DC: Office of Water, Health and Ecological Criteria Division. 294 pp.
- U.S. Environmental Protection Agency (EPA). 1999. Record of decision: Decision summary, Stanton Cleaners area groundwater contamination site, Town of North Hempstead, Nassau County, New York. New York: U.S. Environmental Protection Agency, Region II.
- U.S. Geological Survey (USGS). 1995. Flushing, New York. 1:24,000. Denver: U.S. Geological Survey.

Vega Baja Solid Waste Disposal

Rio Abajo Ward, Puerto Rico EPA Facility ID: PRD980512669 Basin: Cibuco-Guajataca HUC: 21010002

Executive Summary

The Vega Baja Solid Waste Disposal property is a former municipal landfill located in Rio Abajo Ward, Puerto Rico approximately one km (0.6 mi) west of the Rio Indio. Soil and sediment samples at the site had elevated concentrations of several trace elements. NOAA trust resources including several species of amphidromous fish and shrimp and the catadromous American eel use the Rio Indio and the Rio Cibuco. There has not been enough sampling downgradient of the site to determine the extent of contaminant migration towards NOAA trust habitats.

Site Background

The Vega Baja Solid Waste Disposal (VBSWD) site occupies six hectares (15 acres) in Rio Abajo Ward, Puerto Rico, approximately one km (0.6 mi) west of the Rio Indio. About 2.7 km (1.7 mi) down-stream of the site the Rio Indio meets the Rio Cibuco, which flows nearly seven km (4.3 mi) to the Boca del Cibuco (Figure 1).

From 1948 to 1979 the VBSWD property was the site of an unlined, open-burning municipal landfill used for disposal of institutional, commercial, industrial, and domestic waste (Weston 1998). An estimated 850,000 m³ (1.1 million yd³) of solid waste were placed in the landfill over the 31-year period of operation. Roughly14,000 kg (30,000 lb) per year of siliceous dust, was landfilled. This is the only documented chemical disposed at the site (Soto 1995). Solid waste disposal activities were discontinued in 1979 without covering or capping the landfill (Budroe 1999). There are now approximately 206 homes across 11 acres of the former VBSWD.

An Expanded Site Inspection and a Hazard Ranking System Package were prepared for the VBSWD site in June 1997 and February 1999, respectively (Soto 1997; Budroe 1999). The U.S. Environmental Protection Agency placed the VBSWD site on the National Priorities List on July 7, 1999 (USEPA 1999b).

Groundwater and surface water runoff provide the primary pathways for the transport of contaminants off the VBSWD property. The site is located in an area characterized by karst topography formed by limestone bedrock. Karst topography can lead to fast groundwater flow and little dissolution of contaminants over a large distance. Depth to groundwater in the area of the site ranges from 0.3 to 37 m (one to 120 ft) below ground surface (bgs) (Budroe 1999). Groundwater generally flows north from the area around the site toward the Atlantic Ocean. An open drainage ditch, which runs through the middle of the VBSDW site and connects to the Rio Indio, is the sole stormwater collection system for the residences in this area (Soto 1997).

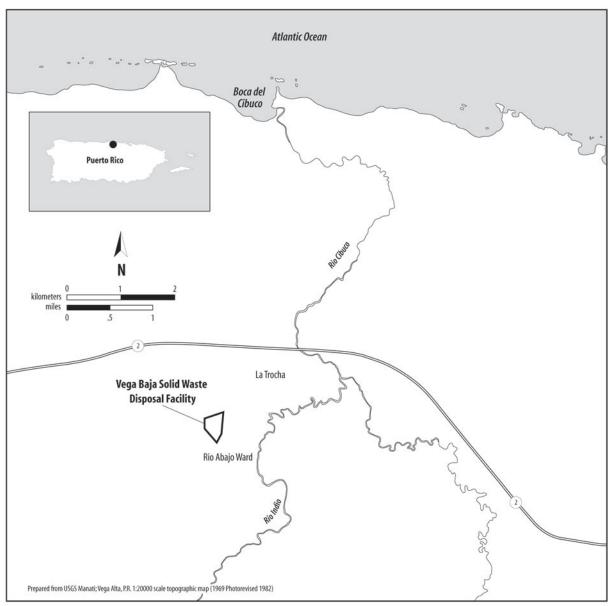


Figure 1. Location of the Vega Baja Solid Waste Disposal facility in Rio Abajo Ward, Puerto Rico.

NOAA Trust Resources

The NOAA trust habitat of concern is Rio Indio, a tributary within the Rio Cibuco basin. The Rio Cibuco watershed is a relatively small river basin covering approximately 257 km² (99 square mi²) above Vega Baja, flowing north from central Puerto Rico to discharge to the Atlantic Ocean (USGS 2000). Most of the fish and invertebrate species within the basin are secondarily derived freshwater species that require a portion of their life cycle in estuarine or marine environments. Both fish and shrimp species exhibit amphidromous life-cycles in which juveniles enter the river, migrating upstream where they reside, mature, and reproduce entirely in fresh water. Eggs or larvae are carried downstream to estuaries where they develop to juvenile stages, whereupon they re-enter

the river. The catadromous American eel also is present in the river. Native amphidromous and catadromous species dominate the freshwater ecosystem of the river, filling many ecological niches from filter- and deposit feeders to top predators. There are no anadromous fish in Rio Indio or Rio Cibuco (Yoshioka 2000). Table 1 lists common amphidromous and catadromous species.

Species			Habitat Us	e	Fisheries
Common Name	Scientific Name	Adult Habitat	Juvenile Nursery	Migratory Corridor	Subsistence/ Recreational Fishery
CATADROMOUS FISH American eel	Anguilla rostrata	٠	٠	•	*
AMPHIDROMOUS FISH Bigmouth sleeper	Gobiomorus dormitor	٠	٠	•	•
Fat sleeper	Guavina guavina	•	•	•	
Mountain mullet	Agonostomous monticola			•	•
River goby	Awaous tajasica	•	•	•	
Sirajo goby	Sicydium plumieri			•	•
AMPHIDROMOUS SHRIMF					
Freshwater prawn	Macrobrachium acanthurus	•	•	•	•
Freshwater prawn	Macrobrachium carcinus			•	•
Freshwater prawn	Macrobrachium crenulatum			•	
Freshwater prawn	Macrobrachium faustinum			•	
Freshwater prawn	Macrobrachium heterochirus			•	•
Guabara chagara	Atya innocous			•	•
Guabara chagara	Atya lanipes			•	•
Guabara chagara	Atya scabra			•	•
Unnamed shrimp	Jonga serrei	•	•	•	
Unnamed shrimp	Micratya poeyi	•	•	•	
Unnamed shrimp	Potimirrim americana	•	•	•	
Unnamed shrimp	Potimirrim mexicana	•	•	•	
Unnamed shrimp	Xiphocaris elongata	•	•	•	

Table 1. NOAA trust resources in the Rio Indio and Rio Cibuco and potential habitat use near the facility (Yoshioka 2000).

Several amphidromous, goby-like fish species are present in Rio Indio and Cibuco. The river goby, big-mouth sleeper, and fat sleeper are found in low to mid-reaches of streams and are likely to inhabit stream reaches near the Vega Baja facility. The Sirajo goby most often occupies the upper reaches of streams and likely would migrate through stream reaches near the facility. Similarly, the mountain mullet is an amphidromous fish species that occupies the higher elevations of stream systems and would migrate through areas near the facility. The catadromous American eel spawns in the ocean; progeny migrate to the basin as juveniles and reside in the rivers as adults. Because it is found in the middle to upper reaches of the river, it also may occupy reaches near the facility (Yoshioka 2000).

Several amphidromous shrimp species are found in Rio Indio and Rio Cibuco, including a number of moderate- to large-sized freshwater prawns in the genus *Macrobrachium*. *Macrobrachium acanthurus* is a lower-reach species that occupies habitats in the region of the facility whereas *M. carcinus* and *M. heterochirus* occupy the upper reaches of the river. The species *M. faustinum* is uncommon in Puerto Rican streams but may occur in the area. Some moderate-sized freshwater shrimp in the genus *Atya* are also common amphidromous residents, but generally occupy the upper reaches of the river. Several small shrimp species, including *Micratya poeyi, Xiphocaris elongata, Potimirrim americana, P. mexicana*, and *Jonga serrei*, occupy the lower reaches of the river and are more likely to be present near the facility (Yoshioka 2000).

Recreational or subsistence fisheries occur in Rio Indio for the larger *Machrobrachium* prawns, *Atya* shrimp, eel, mountain mullet, big-mouth sleeper, and sirajo goby. Much of these fisheries occur in the upper watershed where these species primarily reside, but some collection may occur downstream of the site (Yoshioka 2000).

Site-Related Contamination

Contaminants have been detected at the site in groundwater, sediment, and soil at concentrations greatly exceeding screening guidelines. As part of a Site Inspection completed in January 1995 for the VBSDW property the Puerto Rico Environmental Quality Board (PREQB) collected six soil samples, five sediment samples, and three groundwater samples from various locations on the property and the Rio Indio (Soto 1995). In June 1996 PREQB and the U.S. Environmental Protection Agency conducted an Expanded Site Inspection that included the collection of 132 soil samples and 37 groundwater samples (Soto 1997). The Region II Superfund Technical Assessment and Response Team collected seven groundwater samples from wells located near the site (Weston 1998).

The primary contaminants of concern to NOAA at the VBSWD site are trace elements. Table 2 summarizes maximum concentrations found during site investigations and lists appropriate screening guidelines.

Elevated concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc were all found in soil samples collected at the site. The maximum lead concentration (26,000 mg/kg) in soil exceeds screening guidelines by three orders of magnitude (Soto 1997). Concentrations of copper (3,600 mg/kg), cadmium (21 mg/kg), and silver (20 mg/kg) also exceed screening guidelines by orders of magnitude (Soto 1997).

Contaminants in groundwater samples collected from the site did not exceed AWQC screening guidelines by more than an order of magnitude.

Concentrations of copper (66 mg/kg), chromium (40 mg/kg), and nickel (31 mg/kg) were found to exceed screening guidelines in a Rio Indio sediment sample. The sediment sample containing the maximum lead concentration (72 mg/kg) was collected from the drainage ditch that passes through the middle of the site (Soto 1995).

	Soil (I	mg/kg)	Wate	r (µg/L)	Sedimen	t (mg/kg)
Contaminants	Soils	Mean U.S.ª	Ground- water	AWQC ^b	Sediment	TEL
TRACE ELEMENTS						
Arsenic	28	5.2	2.4	150	5.2	5.9
Cadmium	21	0.06	3.4	2.2 ^d	ND	0.596
Chromium	210	37	ND	11	40	37.3
Copper	3,600	17	34	9 ^d	66	35.7
Lead	26,000	16	ND	2.5 ^d	72	35
Mercury	1.7	0.058	0.11	0.77	0.53	0.174
Nickel	290	13	ND	52 ^d	31	18
Silver	20	0.05	ND	0.12	ND	1.0 ^e
Zinc	3,900	48	ND	120 ^d	51	123.1

Table 2. Maximum concentrations of contaminants of concern at the Vega Baja Solid Waste Disposal Site (Soto 1995, 1997; Weston 1998).

ND Not detected; detection limit not available.

NA Screening guidelines not available.

a Shacklette and Boerngen (1984), except for cadmium and silver which represent mean concentrations in the earth's crust from Lindsay (1979).

b National Recommended Water Quality Criteria (USEPA 1999a). Freshwater chronic criteria presented.

c TEL; Threshold Effects Level; Freshwater sediment value. Concentration below which adverse effects were rarely observed (geometric mean of the 15 percent concentration in the effects data set) as compiled by Smith et al. (1996).

d Criterion expressed as a function of total hardness; concentrations shown correspond to hardness of CaCO³ 100 mg/L.

e TEL not available; marine Effects Range-Low (ERL) presented. ERL represents the 10th percentile for the dataset in which effects were observed or predicted in studies compiled by Long et al. (1995)

References

Budroe, T. 1999. Memorandum: Removal Site Evaluation for the Vega Baja Solid Waste Disposal Site, Rio Abajo Ward, Vega Baja, Puerto Rico. New York: U.S. Environmental Protection Agency Region 2.21 pp.

Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 pp.

Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental. Management 19(1):81-97.

Shacklette, H.T. and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1720. Washington, DC: U.S. Geological Survey.

Smith, S.L., D.D. MacDonald, K.A. Keenleyside, C.G. Ingersoll, and L.J. Field. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research 22(3):624-638.

References, cont.

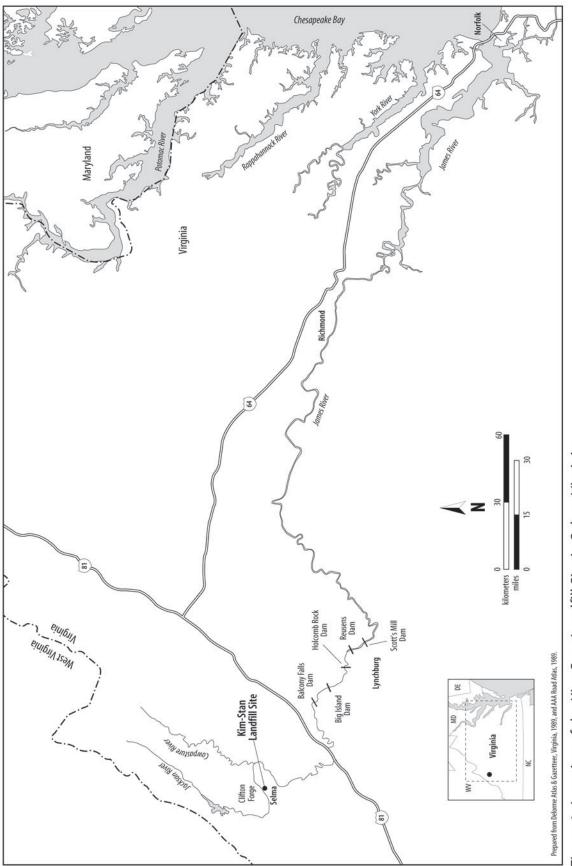
- Soto, D.V. 1995. Site inspection report, Vega Baja solid waste disposal, Road #164 KM.2, Rio Abajo Ward, Vega Baja, Puerto Rico. Vega Baja: Puerto Rico Environmental Quality Board and Emergency Response and Superfund Area, PA/SI Section.
- Soto, D.V. 1997. Expanded site inspection report, Vega Baja solid waste disposal, Trio Vegabajeno Ave, Rio Abajo Ward, Vega Baja, Puerto Rico. Hato Rey: Puerto Rico Environmental Quality Board and Emergency Response and Superfund Program, PA/SI Section. 17 pp.
- USEPA. 1999a. National Recommended Water Quality Criteria—Correction. EPA 822-Z-99-001. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.
- USEPA. 1999b. NPL Site Narrative at Listing, Vega Baja Solid Waste Disposal, Vega Baja, Puerto Rico [webpage], U.S. Environmental Protection Agency, Superfund NPL Assessment Program Database. Available: http://www.epa.gov/superfund/sites/npl/nar1548.htm
- USGS. 2000. Caribbean District real time streamflow data [webpage], Available: http://dprsj35.er.usgs.gov/rt-cgi/gen_tbl_pg
- Weston. 1998. Monitoring well installation and groundwater sampling report, Vega Baja Solid Waste Disposal, Rio Abajo Ward, Vega Baja, Puerto Rico. START-02-F-03077. New York: U.S. Environmental Protection Agency.
- Yoshioka, B., U.S. Fish and Wildlife Service, Boqueron, Puerto Rico, personal communication, July 7, 2000.

Kim-Stan Landfill

Selma, Virginia EPA Facility ID: VAD077923449 Basin: Upper James HUC: 02080201

Executive Summary

The Kim-Stan Landfill is located next to the Jackson River, a tributary of the James River, which supports a run of anadromous American shad. The landfill operated as a municipal and industrial landfill from 1972 to 1990. Waste oils, sludges, and medical wastes were reportedly disposed of in the landfill, with few controls of surface runoff. Over the period of operation, substantial amounts of runoff flowed through fill areas and ultimately discharged to the Jackson River. Landfill soils, groundwater, surface water, and river sediment are contaminated with trace elements and PAHs at concentrations that exceed screening guidelines. American eel have access to the Jackson River near the site. American shad are present in the James River as far as the Scott's Mill Dam, which prevents further movement of shad upstream.


Site Background

The Kim-Stan Landfill occupies approximately 10 hectares (24 acres) in Selma, Virginia, adjacent to the Jackson River (Figure 1). The Jackson River flows for about 11 km (7 mi) to the James River, which flows for over 320 km (200 mi) to Chesapeake Bay.

The Kim-Stan Landfill operated as a municipal and industrial landfill from 1972 until 1990, when it was shut down by a court order. During these years, an estimated 860,000 tons of solid waste was placed in the landfill. Historical records indicate waste oils contaminated with PCBs, aluminum waste sludges, asbestos, and medical wastes were disposed of at the site. In 1992, a Groundwater Assessment Investigation reported large amounts of surface water flow into the landfill from an adjacent mountain with no provisions for a groundwater interceptor system in place. At that time, an estimated 260,000 L (68,300 gal.) of contaminated leachate and groundwater was discharged daily from the site (CH2M Hill 1993). No floor liners were used in waste disposal areas, no erosion control or storm water management facilities were used, no groundwater monitoring wells were drilled, and no facilities were installed to prevent contaminated surface runoff (Weston 1998).

Between 1990 and 1998, the Virginia Department of Waste Management and Department of Transportation conducted several remedial actions including covering exposed portions of the landfill with soil; installing erosion controls such as silt fencing, berms, and drainage ditches; off-site disposing of leachate held in a storage basin; building a new channel to route storm water; building a temporary sedimentation basin; and installing monitoring wells (Weston 1998).

Shallow groundwater is the primary pathway for transport of contaminants to NOAA trust resources. Leachate seeps occur at the base of the landfill; and there is a contaminated groundwater plume in the shallow aquifer. Groundwater is encountered at 1.5 m (5 ft) bgs near the landfill; and there are numerous springs in the area. Shallow groundwater flows to the north, discharging

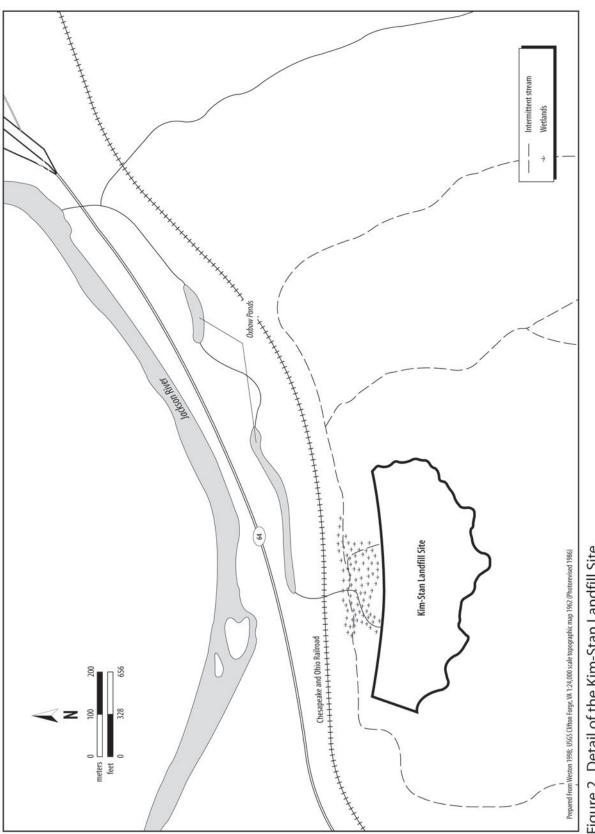
to the Jackson River. A groundwater study conducted at the landfill found that it takes about 90 days for groundwater to reach the Jackson River (Weston 1998).

The U.S. Environmental Protection Agency placed the Kim-Stan Landfill on the National Priorities List of hazardous waste sites in July 1999 (USEPA 2000a). A Site Inspection report was completed in September 1998 (Weston 1998).

NOAA Trust Resources

The NOAA habitat of concern is the Jackson River, which is adjacent to the landfill (Figure 2). The Jackson River is a moderate size and grade, ranging from 60 to 100 m (200 to 330 ft) wide and up to 3 m (10 ft) deep. River substrates range from fine sands to cobble. The Jackson River is a tributary of the James River near the West Virginia border.

The catadromous American eel is the trust resource that can access the Jackson River near the site. Although fish surveys have not documented eel in the river, eel have been documented in much of the James River basin, over 250 km (150 mi) inland of Chesapeake Bay. American eel is found throughout Virginia streams and has been found in several upper watersheds near the West Virginia border. Eel can traverse lowhead dams and low-grade waterfalls as they migrate upstream to establish residence in fresh water. The habitats and water quality in the Jackson River are suitable for eel (Miller 2000).


Anadromous American shad are gradually being restored to the major river basins of Virginia through the construction of fish passage facilities at formerly impassable dams. Shad are present in the James River as far inland as Lynchburg, Virginia where the Scott's Mill Dam prevents further movement upstream. The Scott's Mill Dam is located approximately 100 km (60 mi) downstream of the Kim-Stan Landfill (Martell 2000). There are no known restoration plans for Scott's Mill Dam in the next five years. Upstream of Scott's Mill Dam is a series of four more dams. The first of these, Reusens Dam, is a hydroelectric dam without fish passage facilities. There is little effort being made to add fish passage to this series of dams. This is due to the low number of American shad that have been found to migrate as far upstream as the Scott's Mill Dam. Should the number of shad reaching Scott's Mill Dam significantly increase there will be a greater effort made towards restoring this series of dams (Weaver 2002).

There are recreational fisheries on the Jackson River and in tributary streams near the landfill (Weston 1998). Warm-water species, including small- and large-mouth bass are sought in the Jackson River while the tributary streams support trout fisheries (Martell 2000). No information was available on recreational fishing in the oxbow ponds located on private property next to the site (Weston 1998).

No health advisories are in effect on the Jackson or James rivers near the Kim-Stan Landfill (USEPA 2000b).

Site-Related Contamination

Environmental investigations on and near the Kim-Stan Landfill report contamination of landfill soil, underlying groundwater, surface water, sediments of the Jackson River, oxbow ponds, and leachate migrating from the landfill. The Site Inspection collected four soil samples from the land

fill, two leachate samples from the base of the landfill, groundwater samples from seven wells, and surface water and sediment samples from 14 locations on the landfill, oxbow ponds, and Jackson River (Weston 1998).

The contaminants of concern to NOAA include trace elements and several PAHs, which were observed primarily in landfill soils, pond sediments, and river sediments at concentrations exceeding screening guidelines. The maximum concentrations of contaminants in environmental media on the site are presented in Table 1, along with appropriate screening guidelines.

Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, and zinc in landfill soils exceeded soil screening guidelines. The pesticide DDT and several PAHs were also observed in landfill soil, although there are no screening guidelines for these organic compounds in soil.

Groundwater and surface water samples collected near the landfill were slightly above the AWQC. In the groundwater sample, copper and lead concentrations were an order of magnitude greater than the AWQC. Dieldrin and DDT concentrations exceeded the AWQC in surface water samples collected from an oxbow pond. No contaminants detected in leachate samples exceeded screening guidelines, but the detection limits were above the screening guidelines for several trace elements, pesticides, and the PAH phenanthrene.

Concentrations of eight of the nine trace elements exceeded sediment guidelines in samples collected from the Jackson River next to the landfill or from the oxbow ponds located between the river and landfill. The highest concentrations were measured in the oxbow ponds. Concentrations of eight PAHs also exceeded sediment-screening guidelines; however, the pattern of PAH contamination was different from the pattern of trace elements in sediment. Only one PAH exceeded sediment guidelines in the oxbow ponds while eight PAHs exceeded guidelines in river sediment.

Table 1. Maximum concentrations of contaminants of concern in environmental media at the Kim-Stan Landfill (Weston 1998).

	Soils	(mg/kg)	A	queous Sa	amples (µ	g/L)	Sed	iment (mg	/kg)
Contaminant	Surface Soils	U.S. Average Soilsª	Ground- water	Leachate	Surface water	AWQC ^b	River Sediment	Oxbow Sediment	TEL
TRACE ELEMENTS									
Arsenic	23	5.2	29	<5	<5	150	6.6	24	5.9
Cadmium	0.8		7	<5	6	2.2	0.9	3.1	0.596
Chromium	13	37	84	<10	<10	11	20	24	37.3
Copper	72	17	110	<20	26	9	25	86	35.7
Lead	120	16	26	<2	12	2.5	29	52	35
Mercury	0.1	0.058	0.3	<0.2	<0.2	0.77	<0.1	0.4	0.174
Nickel	33	13	130	<40	280	52	77	60	18
Silver	<1.0		<10	<10	<1.0	0.12	<1.0	<1.0	1.0 ^d
Zinc	250	48	590	<20	490	120	380	380	123.1
PESTICIDES									
Dieldrin	<0.003	NA	<0.1	<0.1	0.11	0.056 ^f	<0.003	< 0.003	2.85
DDT	0.021	NA	<0.1	<0.1	0.2	0.0005	<0.003	0.019	6.98
Heptachlor Epoxide	ND	NA	<0.05	<0.05	<0.05	0.0019	<0.003	< 0.003	0.6
PAHs									
Naphthalene	<0.33	NA	<5	<5	0.079	620 ^e	0.6	0.045	0.16
Acenaphthene	0.1	NA	<10	<10	<10	520°	0.1	<0.33	0.016 ^d
Anthracene	<0.33	NA	<10	<10	<10	300ª	0.36	<0.33	0.0853 ^d
Benzo(a)anthracene	<0.33	NA	<10	<10	<10	300 ^g	0.97	<0.33	0.0317 ^d
Benzo(a)pyrene	0.09	NA	<10	<10	<10	300 ^g	0.67	0.04J	0.0319
Benzo(b)fluoranthene	0.1	NA	<10	<10	<10	300 ^g	0.69	0.06	NA
Benzo(k)fluoranthene	0.07	NA	<10	<10	<10	300 ^g	0.59	0.05	NA
Chrysene	0.2	NA	<10	<10	<10	300ª	1.1	<0.33	0.0571
Fluoranthene	0.2	NA	<10	<10	<10	300 ^g	2.5	0.09	0.111
Phenanthrene	0.3	NA	<10	<10	<10	6.3 ^f	1.2	0.08	0.0419
Pyrene	0.2	NA	<10	<10	<10	300ª	1.9	0.07	0.053

NA Screening guidelines not available.

a: Shacklette and Boerngen (1984), except for silver and cadmium which are average concentrations in the earth's crust as reported by Lindsay (1979).

b: Ambient water quality criteria for the protection of aquatic organisms (USEPA 1999). Freshwater chronic criteria presented. Criterion expressed as a function of total hardness with the exception of arsenic and silver; concentrations shown correspond to hardness of 100 mg/L.

c: TEL; Threshold Effects Level; Freshwater sediment value. Concentration below which adverse effects were rarely observed (geometric mean of the 15 percent concentration in the effects data set) as compiled by Smith et al. (1996).

d: TEL not available; Effects Range-Low (ERL) value presented. The ERL represents the 10th percentile for the dataset in which effects were observed or predicted in studies compiled by Long et al. (1998; 1995).

e: Lowest Observable Effect Level.

f: Proposed criteria.

g: Value for chemical class; marine acute value is presented.

J: Analyte present. Reported value is estimated: concentration is outside the range of accurate quantitation.

< Not detected; value is the detection limit.

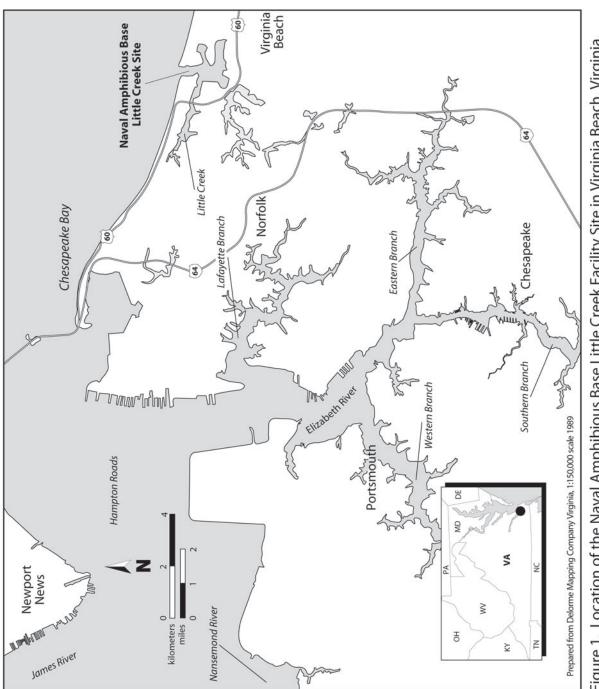
References

- CH2M Hill. 1993. Groundwater Contamination Assessment and Required Final Closure Action. Kim-Stan Sanitary Landfill, Clifton Forge, Virginia.
- Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 pp.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1):81-97.
- Long, E.R., L.J. Field, and D.D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental and Toxicology Chemistry 17(4):714-727.
- Martell, G., Fisheries Biologist, Virginia Department of Game and Inland Fisheries, Richmond, Virginia, personal communication, April 12, 2000.
- Miller, S., Fisheries Biologist, Virginia Department of Game and Inland Fisheries, Richmond, Virginia, personal communication, April 14, 2000.
- Shacklette, H.T. and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1720. Washington, DC: U.S. Geological Survey.
- Smith, S.L., D.D. MacDonald, K.A. Keenleyside, C.G. Ingersoll and L.J. Field. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research 22(3):624-638.
- USEPA. 1999. National Recommended Water Quality Criteria—Correction. EPA 822-Z-99-001. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.
- USEPA. 2000a. CERCLIS hazardous waste sites [webpage], U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. Available: www.epa.gov/superfund/sites/ cursites/index.htm
- USEPA. 2000b. Listing of Fish and Wildlife Consumption Advisories [webpage], U.S. Environmental Protection Agency, Office of Science and Technology. Available: www.epa.gov/ost/fish/ epafish.pdf
- Weaver, A. Fish Passage Coordinator for the Virginia Department of Game and Inland Fisheries, personal communication, April 9, 2002.
- Weston. 1998. Site Inspection Kim-Stan Landfill Selma, Alleghany County, Virginia. Philadelphia: U.S. Environmental Protection Agency.

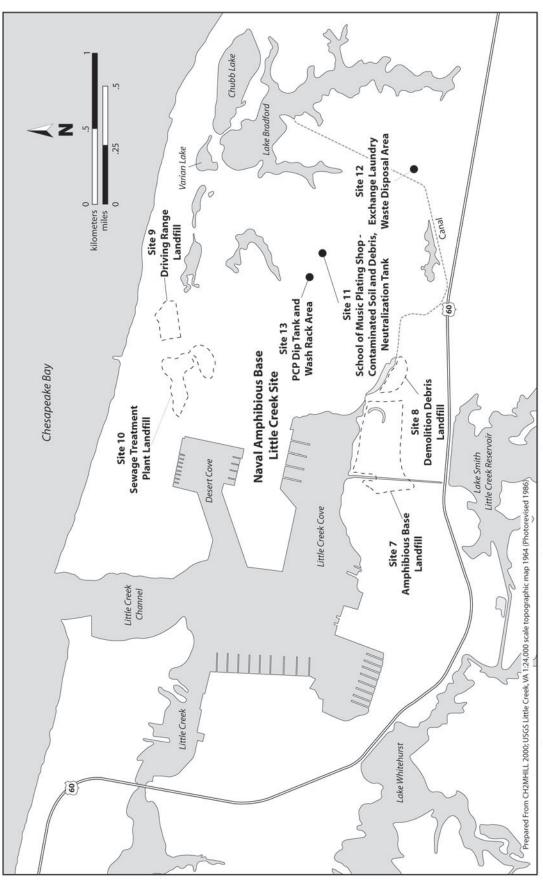
Naval Amphibious Base Little Creek

Virginia Beach, Virginia EPA Facility ID: VA5170022482 Basin: Lynnhaven-Poquoson HUC: 02080108

Executive Summary


Naval Amphibious Base Little Creek is a Federal facility on Chesapeake Bay, commissioned in 1945 to provide operational support to Naval ships. Seven separate sites consisting of four landfills, a plating shop, laundry facility, and a pentachlorophenol-treating area have been identified on the facility. Landfilling of industrial wastes; boat maintenance, sandblasting, painting, and repair; and electroplating are among the activities that took place on the facility. Trace elements and PAHs have been detected in soils, groundwater, and sediments of Little Creek Cove at concentrations that exceed screening guidelines. Sampling has not been expanded to include Chesapeake Bay, which contains numerous NOAA trust fish and invertebrate species. There are also commercial and recreational fisheries in the bay, although shellfishing is restricted along the beaches of the facility.

Site Background


The Naval Amphibious Base (NAB) Little Creek facility occupies approximately 870 ha (2,150 acres) in Virginia Beach, Virginia, on the shore of Chesapeake Bay and Little Creek Cove, a developed inlet of the Bay (Figure 1). The base was commissioned in 1945 and provides operational support services to homeported ships. Specific operations at the Little Creek facility include vehicle and boat maintenance, boat painting and sandblasting, construction and repair of buildings and piers, mixing and application of pesticides, electroplating of musical instruments, laundry and dry cleaning, medical and dental treatment, and generation of steam for heat. Industrial wastes were landfilled on the facility (USEPA 2000).

Seven sites have been identified by the U.S. Environmental Protection Agency (Figure 2):

- · Site 7. Naval Amphibious Base Landfill
- · Site 8. Demolition Debris Landfill
- · Site 9. Driving Range Landfill
- · Site 10. Sewage Treatment Plant Landfill
- Site 11. School of Music Plating Shop Contaminated Soil and Debris/ Neutralization Tank
- · Site 12. Exchange Laundry Waste Disposal Area
- · Site 13. Pentachlorophenol (PCP) Dip Tank and Wash Rack Area

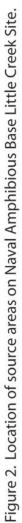


Table 1 describes these sites. Groundwater, surface runoff, and storm sewer discharges provide pathways for the off-site transport of contamination. Groundwater is shallow, ranging from <1 m (3 ft) bgs at the Amphibious Base Landfill to approximately 2.5 m (8 ft) bgs in more central areas of the base. Because much of the base is covered with concrete, most surface runoff enters the storm sewer system and discharges to a canal that traverses the southern portion of the base. Specific pathways for individual sites include groundwater discharges to Little Creek Cove and Chesapeake Bay from the four landfills, and stormwater discharges to the canal from the Exchange Laundry, PCP Dip Tank, and Music Plating Shop (CH2M Hill 2000).

Site Name	Size	Dates Used	Description	Contaminants of Concern
Site 7 Amphibious Base Landfill	15 ha (37 acres)	1962-1979	Solid wastes, waste oils, and metal debris are suspected of disposal. Originally an arm of Little Creek Cove that was filled with dredge spoils.	-Trace elements -PAHs
Site 8 Demolition Debris Landfill	0.8 ha (2 acres)	1971-1979	Landfill accepted construction and demolition debris. Located on the lower portion of the canal before discharging to Little Creek Cove.	-Trace elements -PAHs
Site 9 Driving Range Landfill	2.4 ha (6 acres)	1952-1956	Landfill accepted mostly non-hazardous waste and incinerator ash. Located 150 m (500 ft) south of Chesapeake Bay.	-Trace elements -PAHs
Site 10 Sewage Treatment Plant Landfill	Unknown	1941-1968	Landfill accepted solid wastes, sewage sludge, industrial wastes, and demolition debris. Located 250 m (800 ft) south of Chesapeake Bay.	-Trace elements
Site 11. Music Plating Shop Contaminated Soil and Debris/ Neutralization Tank	Unknown	1964-1974	The plating shop used silver cyanide, copper cyanide, chromic acid, nickel plating baths, and various acids. A neutralization tank received plating wastes that eventually discharged to the storm sewer system, which itself eventually discharged to the canal leading to Little Creek Cove. Located in the east-central portion of the base about 1.2 km (0.7 mi) from the bay and Little Creek Cove.	-Trace elements
Site 12 Exchange Laundry	Unknown	Before 1987	A drycleaning facility that discharged dry- cleaning wastes to a storm sewer that, in turn, discharged to the canal leading to Little Creek Cove. Next to the canal on the southeast portion of the facility.	-Trace elements -VOCs
Site 13 PCP Dip Tank and Wash Rack Area	Unknown	Before 1975	A PCP wood treatment facility operated at this location. PCP-contaminated soils were excavated to a depth of 1.8 to 2.4 m (6 to 8 ft) in 1999. Located near the center of the base about 1 km (0.6 mi) from the bay.	- PCP -Trace elements -VOCs

Table 1. Source areas on the NAB Little Creek facility (CH2M Hill 2000).

The U.S. Environmental Protection Agency listed NAB Little Creek on the National Priorities List in May 1999 (USEPA 2000). Remedial investigations have been completed for all of the sites except Site 8, for which a Site Inspection has been completed (CH2M Hill 2000).

Table 2. Fish and invertebrate species present near the NAB Little Creek facility (Stone et al. 1994).

Species		ł	Habitat Use		Fish	eries
Common Name	Scientific Name	Spawning Ground	Nursery Ground	Adult Forage	Comm. Fishery	Recr. Fishery
MARINE/ESTUARINE FIS	5H					
Atlantic croaker	Micropogonias undulatus		•	•		•
Atlantic herring	Clupea harengus		•	•		
Atlantic menhaden	Brevoortia tyrannus		•	•		
Bay anchovy	Anchoa mitchilli	•	•	•		
Black drum	Pogonias cromis		•	•		
Black sea bass	Centropristis striata		•	•		
Bluefish	Pomatomus saltatrix		•	•		•
Butterfish	Peprilus triacanthus		•	•		
Cownose ray	Rhinoptera bonasus		•	•		
Gobies	Gobiosama spp.	•	•	•		
Hogchoker	Trinectes maculatus	•	•	•		
Killifish	Fundulus spp.	•	•	•		
Mullets	Mugil spp.		•			
Northern pipefish	Syngnathus fuscus	•	•	•		
Northern searobin	Prionotus carolinus		•			
Pinfish	Lagodon rhomboides		•	•		
Red drum	Sciaenops ocellatus		•	•		
Red hake	Urophycis chuss		•			
Oyster toadfish	Opsanus tau	•	•	•		
Scup	Stenotomus chrysops		•			
Spotted seatrout	Cynoscion nebulosus		•	•		•
Sheepshead minnow	Cyprinodon variegatus	•	•	•		
Silversides	Menidia spp	•	•	•		
Skates	Raja spp.		•	•		
Summer flounder	Paralichthys dentatus		•	•		•
Spot	Leiostomus xanthurus		•	•		•
Tautog	Tautoga onitis		•	•		
Weakfish	Cynoscion regalis		•	•		
Windowpane flounder	Scophthalmus aquosus		•	•		
ANADROMOUS/CATADI	ROMOUS FISH					
Alewife	Alosa pseudoharengus		•	•		
American eel	Anguilla rostrata		•			
American shad	Alosa sapidissima		•	•		
Blueback herring	Alosa aestivalis		•	•		
Striped bass	Morone saxatilis		•	•		
White perch	Morone americana		•	•		
INVERTEBRATES						
Bay shrimp	Crangon septemspinosa	•	•	•		
Blue crab	Callinectes sapidus	•	•	•	•	•
Blue mussel	Mytilis edulis	•	•	•		
Eastern oyster	Crassostrea virginica	•	•	•		•
Grass shrimp	Paleomonetes gugio	•	•	•		
Northern quahog	Mercenaria mercenaria	•	•	•		•

NOAA Trust Resources

The NOAA trust habitat of concern is Chesapeake Bay, the largest estuary on the Atlantic coast. Adjacent to the NAB Little Creek facility, the bay is a shallow bank with maximum depths of under 3 m (10 ft) out to about 7 km (4 mi) from shore. Little Creek Cove is a shallow inlet except for a central channel that is maintained by dredging (depth unknown). The cove on the facility is highly developed with seawalls and piers along most of the shoreline. Very little freshwater input discharges to the cove (USGS and NOS/NOAA 1964). Bottom substrates are largely sands. Surface salinities in this portion of Chesapeake Bay range from 15 to 20 ppt with bottom salinities close to normal seawater (Majumdar et al. 1987).

Numerous estuarine and marine species use Chesapeake Bay as a juvenile nursery and adult residence (Table 2). Estuarine residents include bay anchovy, oyster toadfish, sheepshead minnow, killifishes, silversides, pipefish, gobies and hogchoker. All life stages of these species are spent within the estuary and several of the species are highly abundant. Fish such as mullets, bluefish, pinfish, butterfish and the sciaenids (croaker, weakfish, seatrout, spot, drum) are coastal spawners; eggs and larval stages free-drift offshore and juvenile stages migrate to the estuary. Because many of these species are long-lived, juveniles may spend several years in the estuary. Adults of several of the species also can be found within the estuary seasonally. Bluefish, spot, and Atlantic croaker are particularly abundant in the area (Stone et al. 1994).

Several anadromous fish including alewife, blueback herring, American shad, striped bass, and white perch spawn in freshwater portions of the James and Nansemond rivers upstream of the site. Adults are common to abundant in this portion of Chesapeake Bay using the area for adult residence. The catadromous American eel migrate past the site to freshwater residential areas in the rivers (Stone et al. 1994).

Several invertebrates are present in the estuary including blue crab, grass shrimp, Eastern oyster and northern quahog. Juvenile and adult blue crab are abundant; mating and larval stages also are observed in the estuary, although females usually migrate to coastal waters to brood and release eggs. Grass shrimp, oyster, mussel, and quahog spend all life stages in the estuary (Stone et al. 1994).

The Hampton Roads area just west of the facility supports substantial commercial and recreational fisheries. Popular recreational species include bluefish, croaker, spot, weakfish, flounder, blue crab, oyster, and quahog (Majumdar et al. 1987). Commercial fisheries are primarily for blue crab (O'Reilly 2000). The Virginia Department of Health restricts bivalve harvests along the beaches of NAB Little Creek because of potential point and non-point industrial discharges (Wright 2000).

Site-Related Contamination

Environmental investigations on the NAB Little Creek facility have found soil and groundwater contamination at most of the sites at concentrations exceeding screening guidelines. Surface water and sediment contamination above screening guidelines have also been measured in Little Creek Cove and the canal. Remedial investigations have been conducted for Sites 7, 9, 10, 11, 12, and 13, while a Site Inspection has been completed for Site 8. Groundwater and soil investigations were conducted at all of the sites. Surface water and sediment investigations were conducted adjacent to Site 12 in the canal, Site 8 in the lower canal, and Site 7 in Little Creek Cove. No investigations of Chesapeake Bay have been conducted (CH2M Hill 2000). In addition, no sediment samples were analyzed for tributyltin, a contaminant commonly associated with sand blast grit and ship painting facilities.

÷
6
õ
õ
Ñ
reek (CH2M Hill 200
Ξ
T
<
2
2
T
Ū
Ξ
\prec
Ð
Ū
5
U
Ð
Ē
<u>.</u>
0
7
4
Z
<u> </u>
2
3S
2
a
urce areas on N
Ŭ
Ľ
Ž
m concentrations of contaminants of concern at source areas on NA
S
Ĭ
ts of concern at so
5
Ч
č
Z
8
ũ
5
Ϋ́
а
of contamir
e.
Ę
×
8
<u> </u>
đ
S
2
.9
Ľ
<u>n</u>
Ē
, e
2
Ĕ
cone
0
F
Т
7
Ľ
.2
କ
15
2
\sim
đ
ž
P
<u>n</u>
r—

		Soils	Soils (mg/kg)			Gro	Groundwater (ug/L)	(ng/L)		Surfa	Surface Water (ug/L)	(ng/L)		Sedimen	Sediments (mg/kg)	
Contaminant	Site 7	Site 9	Site 10	Mean U.S. Soilsª	Site 7	Site 9	Site 10	Site 12	Site 13	Site 7	Site 12	AWQC ^b	Site 7	Site 12	Site 8	ERL
TRACE ELEMENTS																
Arsenic	3.5	3.1	4	5.2	58	6.9	47	130	40	10	23	36	8.9	7.5	5.4	8.2
Cadmium	1.4	0.53	QN	0.06	DN	1.5	8.6	17	ND	ND	7.5	9.3	3.1	ND	ND	1.2
Chromium	27	14	9.7	37	27	ND	13	150	170	16	150	50	22	21	13	81
Copper	78	24	17	17	15	8.3	8.8	69	49	36	310	3.1	86	36	ND	34
Lead	640	170	20	16	6.4	4.4	8.9	88	43	11.2	310	8.1	140	110	23	46.7
Mercury	0.07	ND	QN	0.058	DN	ND	ND	1.3	ND	0.14	0.79	0.94	0.32	0.28	ND	0.15
Nickel	18	6.5	5.8	13	25	33	120	75	67	ND	140	8.2	25	14	11	20.9
Silver	ND	0.88	DN	0.05	ND	ND	4.7	ND	ND	ND	ND	0.959	1.4	ND	ND	1.0
Zinc	320	85	65	48	380	330	8,900	260	190	260	3,800	81	210	380	88	150
SVOCs																
Anthracene	0.22	ND	QN	NA	ND	ND	ND	ND	ND	ND	NA	300 ^d	0.088	NA	0.25	0.0853
Benzo(a)																
anthracene	0.71	ND	ND	NA	ND	ND	ND	ND	ND	ND	NA	300 ^d	0.088	NA	0.82	0.261
Benzo(a) pyrene	0.45	ND	DN	NA	ND	ND	ND	ND	ND	ND	NA	300 ^d	0.068	NA	0.62	0.43
Benzo(b) fluoranthene	0.51	0.057	0.037	NA	ND	DN	ND	ND	ND	ND	NA	300 ^d	0.91	NA	1.4	NA
Benzo(k)																
fluoranthene	0.38	ND	DN	NA	ΟN	ΟN	ΟN	ND	ND	ND	NA	300 ^d	0.16	NA	ΟN	NA
Chrysene	0.39	0.047	QN	NA	ND	DN	ND	ΟN	ND	ND	NA	300 ^d	0.96	NA	0.76	0.384
Fluoranthene	1.3	0.052	0.041	NA	ND	ND	ND	1.0	ND	ND	NA	16 ^e	2.4	NA	1.8	0.6
Fluorene	0.06	ND	ND	NA	ND	ND	ND	ND	ND	ND	NA	300 ^d	ND	NA	ND	0.019
Phenanthrene	0.83	ND	DN	NA	ND	ND	ND	1.0	ND	ND	NA	4.6	0.4	NA	0.96	0.24
Pyrene	ND	0.075	0.059	NA	ND	ND	ND	1.0	ND	ND	NA	300 ^d	1.9	NA	1.5	0.665
Pentachloro-phenol	ND	DN	DN	NA	ND	ND	ND	ND	63	ND	NA	7.9	ND	NA	ND	NA
VOCs Tetrachloro-ethene	ND	QN	QN	NA	ND	QN	QN	12,000	1,000	QN	15	450€	ND	m	ND	NA
NA Not available.																

Not detected, detection limit not available.

Shacklette and Boerngen (1984), except for silver and cadmium which are mean concentr tions in the earth's crust as reported by Lindsay (1979). Ambient water quality criteria for the protection of aquatic organisms (USEPA 1999). Marine chronic criteria presented. Effects Range-Low (ERL) value presented. The ERL represents the 10th percentile for the dataset in which effects were observed or predicted in studies compiled by Long et al. (1995, 1998). n b a ND

Value for chemical class; marine acute value is presented. LOEL: lowest observed effect level; marine chronic value presented. o fe d

Proposed criteria.

000
II 2(
Ξ
2N
E
ek (CH2M Hill 200
Le Le
NAB Little (
Lit
urce areas on NAB Li
۲
s of
rea
e a
urc
SO
oncern at so
cerr
onc
n concentrations of contaminants of concern at source areas on NA
ts c
nan
Ē
nta
0
sof
ons
rati
centra
ů
0
m
Ś
Ma
3. 1
ole
Tal

		Soils	Soils (mg/kg)			Gro	Groundwater (ug/L)	(ng/L)		Surfa	Surface Water (ug/L)	(ng/L)		Sedimen	Sediments (mg/kg)	_
Contaminant	Site 7	Site 9	Site 10	Mean U.S. Soils ^a	Site 7	Site 9	Site 10	Site 12	Site 13	Site 7	Site 12	AWQC ^b	Site 7	Site 12	Site 8	ERL
TRACE ELEMENTS																
Arsenic	3.5	3.1	4	5.2	58	6.9	47	130	40	10	23	36	8.9	7.5	5.4	8.2
Cadmium	1.4	0.53	ND	0.06	DN	1.5	8.6	17	ND	ND	7.5	9.3	3.1	ND	ND	1.2
Chromium	27	14	9.7	37	27	ND	13	150	170	16	150	50	22	21	13	81
Copper	78	24	17	17	15	8.3	8.8	69	49	36	310	3.1	86	36	ND	34
Lead	640	170	20	16	6.4	4.4	8.9	88	43	11.2	310	8.1	140	110	23	46.7
Mercury	0.07	QN	ND	0.058	DN	ND	ND	1.3	ND	0.14	0.79	0.94	0.32	0.28	ND	0.15
Nickel	18	6.5	5.8	13	25	33	120	75	67	ND	140	8.2	25	14	11	20.9
Silver	DN	0.88	ND	0.05	QN	ND	4.7	ND	ND	ND	QN	0.959	1.4	ND	ND	1.0
Zinc	320	85	65	48	380	330	8,900	260	190	260	3,800	81	210	380	88	150
svocs																
Anthracene	0.22	QN	ND	NA	DN	ND	ND	ND	ND	ND	NA	300 ^d	0.088	NA	0.25	0.0853
Benzo(a)																
anthracene	0.71	ND	ND	NA	QN	ND	ΟN	ΟN	ND	DN	NA	300 ^d	0.088	NA	0.82	0.261
Benzo(a) pyrene	0.45	ND	ND	NA	DN	ND	ND	ND	ND	ND	NA	300 ^d	0.068	NA	0.62	0.43
Benzo(b) fluoranthene	0.51	0.057	0.037	NA	ND	ΟN	ND	ND	ND	ND	NA	300 ^d	0.91	NA	1.4	NA
Benzo(k)																
fluoranthene	0.38	ND	ΟN	NA	ΟN	ND	ND	ND	ND	ND	NA	300₫	0.16	NA	ND	NA
Chrysene	0.39	0.047	ND	NA	QN	ND	ND	DN	ND	ND	NA	300 ^d	0.96	NA	0.76	0.384
Fluoranthene	1.3	0.052	0.041	NA	ND	ND	ND	1.0	ND	ND	NA	16 ^e	2.4	NA	1.8	0.6
Fluorene	0.06	QN	ND	NA	DN	ND	ND	ND	ND	ND	NA	300₫	ND	NA	ND	0.019
Phenanthrene	0.83	QN	ND	NA	ND	ND	ND	1.0	ND	ND	NA	4.6 ^f	0.4	NA	0.96	0.24
Pyrene	ND	0.075	0.059	NA	DN	ND	ND	1.0	ND	ND	NA	300 ^d	1.9	NA	1.5	0.665
Pentachloro-phenol	ND	QN	ND	NA	QN	DN	ΟN	ND	63	ND	NA	7.9	QN	NA	ND	NA
VOCs Tetrachloro-ethene	ND	QN	DN	NA	QN	ND	ND	12,000	1,000	ND	15	450€	QN	m	QN	NA
NA Not available.																

Not detected, detection limit not available. Shacklette and Boerngen (1984), except for silver and cadmium which are mean concentr tions in the earth's crust as reported by Lindsay (1979). Ambient water quality criteria for the protection of aquatic organisms (USEPA 1999). Marine chronic criteria presented. Effects Range-Low (ERL) value presented. The ERL represents the 10th percentile for the dataset in which effects were observed or predicted in studies compiled by Long et al. (1995, ND Parton

1998).

Value for chemical class; marine acute value is presented. LOEL: lowest observed effect level; marine chronic value presented. Proposed criteria. Chronic criteria have not been developed; acute value is presented. م ۴ ه ط

The contaminants of concern to NOAA include the trace elements and PAHs. These substances were detected in soils and groundwater at the identified sites and in surface water and sediments of the canal and Little Creek Cove. Table 3 lists maximum concentrations of contaminants of concern along with appropriate screening guidelines.

Maximum concentrations of cadmium, copper, lead, mercury, nickel, silver, and zinc at three of the landfills exceeded mean U.S. soil concentrations. The greatest concentrations were observed at the Amphibious Base Landfill (Site 7), followed by the Driving Range Landfill (Site 9) and Sewage Treatment Plant Landfill (Site 10). Few exceedances of soil guidelines were observed at the Demolition Debris Landfill (Site 8). Several PAHs also were detected in landfill soils, although soil screening guidelines are not available for these substances.

Screening guidelines were not substantially exceeded in groundwater for most contaminants. Concentrations of nickel and zinc beneath the Sewage Treatment Plant Landfill, copper and lead beneath the Exchange Laundry, and copper beneath the PCP Drip Tank exceeded the AWQC by an order of magnitude or greater. The VOC tetrachloroethene also was observed to exceed groundwater screening concentrations beneath the Exchange Laundry. Elevated concentrations of PCP also were detected beneath the PCP Drip Tank.

Concentrations of eight trace elements and four PAHs in sediment samples collected in Little Creek Cove adjacent to the Amphibious Base Landfill exceeded sediment screening guidelines. In addition, seven PAHs exceeded screening guidelines in sediment samples collected in the lower canal adjacent to the Demolition Debris Landfill just before discharging to Little Creek Cove. Further upstream in the canal, adjacent to the Exchange Laundry, concentrations of five trace elements exceeded sediment screening guidelines. The PAHs or other persistent organic contaminants were not analyzed for in canal sediment adjacent to the Exchange Laundry, so it is not known whether these substances are present at concentrations of concern in the upper canal.

Several trace elements (chromium, copper, lead, nickel, and zinc) exceeded the AWQC by an order of magnitude or greater in surface waters of Little Creek Cove adjacent to the Amphibious Base Landfill and in the canal adjacent to the Exchange Laundry.

References

- CH2M Hill. 2000. Draft ecological risk assessment, IR Sites 5, 7, 8, 9, 10, 11, 12, 13, and 16 and SWMU 3, Naval Amphibious Base Little Creek, Virginia Beach, Virginia. Virginia Beach: Department of the Navy, Atlantic Division, Naval Facilities Engineering Command.
- Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 pp.
- Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental. Management 19(1):81-97.
- Long, E.R., L.J. Field and D.D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4):714-727.
- Majumdar, S.K., L.W. Hall, Jr. and H.M. Austin. 1987. Contaminant Problems and Management of Living Chesapeake Bay Resources. Easton, Pennsylvania: The Pennsylvania Academy of Science.
- O'Reilly, R., Fisheries Biologist, Virginia Marine Resources Commission, Newport News, Virginia, personal communication, April 19, 2000.

References, cont.

- Shacklette, H.T. and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1720. Washington, D.C.: U.S. Geological Survey.
- Stone, S.L., T.A. Lowery, J.D. Field, C.D. Williams, D.M. Nelson, S.H. Jury, M.E. Monaco and L. Andreasen. 1994. Distribution and abundance of fishes and invertebrates in Mid-Atlantic estuaries. ELMR Rep. No. 12. Silver Spring, Maryland: Strategic Environmental Assessments Division, National Oceanic and Atmospheric Administration.
- USEPA. 1999. National Recommended Water Quality Criteria—Correction. EPA 822-Z-99-001. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.
- USEPA. 2000. NPL Site Narrative at Listing, Naval Amphibious Base Little Creek [webpage]. Available: http://www.epa.gov/superfund/sites/npl/nar1521.htm
- USGS and NOS/NOAA. 1964. Little Creek Quadrangle, Virginia, 7.5 minute series (topographicbathymetric). 1:24,000; colored. Photo inspected 1989. Denver: U.S. Geological Survey.
- Wright, M., Virginia Department of Health, Division of Shellfish Sanitation, Newport News, Virginia, personal communication, April 18, 2000.

Solitron Microwave

Port Salerno, Florida EPA Facility ID: FLD045459526 Basin: Everglades HUC: 03090202

Executive Summary

The Solitron Microwave site conducted plating operations and manufactured microwave components, solid state resistors, and cable from 1963 to 1987. Soils, groundwater, surface water, and sediments on the site are contaminated with several trace elements at concentrations exceeding screening guidelines, but neither surface pathways nor groundwater off the site have been investigated. Surface runoff from the site flows to a ditch that in turn flows to a tributary of the Manatee Pocket, an estuarine embayment of the Indian River estuary. Groundwater also flows toward the Manatee Pocket. NOAA trust fish and invertebrate species use the Manatee Pocket and the Indian River estuary. Commercial and recreational fisheries are active in the estuary. The estuary also provides habitat for the federally endangered Florida manatee.

Site Background

The Solitron Microwave site consists of nearly 8 ha (20 acres) in Port Salerno, Martin County, Florida. The site is about 400 m (437 yd) from an unnamed tributary, which flows for an additional 800 m (875 yd) before discharging to the Manatee Pocket, an estuarine embayment of the St. Lucie River. The St. Lucie River flows northward for an additional 2 km (1.2 mi) before discharging to the Indian River estuary (Figures 1 and 2).

The Solitron Microwave site conducted plating operations and manufactured microwave components, solid state resistors, and cable from 1963 to 1987 under two different owners (Solitron and General R.F. Fittings; Weston 1999b). Hazardous wastes generated by the site included cadmium, cyanide, chromic acid, acetone, mixed solvents, mineral spirits, toluene, and caustic waste. Until 1965 all acid and plating room wastes were discharged to a drainage ditch leading to the Manatee Pocket. From 1968 to 1970, wastes were diverted to a 4,500 L (1,190 gal) tank for cyanide treatment followed by acid treatment and sand filtering, before discharging to the drainage ditch. After 1970, treated wastes were discharged to an unlined percolation pond (Figure 2). In 1989, approximately 200 m³ (260 yd³) of sediment were removed from the pond (Weston 1999b).

In July 1998, the Solitron Microwave site was placed on the EPA's National Priorities List (Weston 1999b). In December 1999, a Remedial Investigation and Screening Ecological Risk Assessment were completed on the site (Weston 1999b, Weston 1999a).

There are both surface and groundwater contaminant transport pathways off the site. The surface pathway is via site discharges to a drainage ditch along Cove Road that flows to an unnamed tributary of the Manatee Pocket. The shallow water table aquifer beneath the site is 0.6 m (0.6 yd) below ground surface and flows north-northeast towards the unnamed tributary and Manatee Pocket (Weston 1999b).

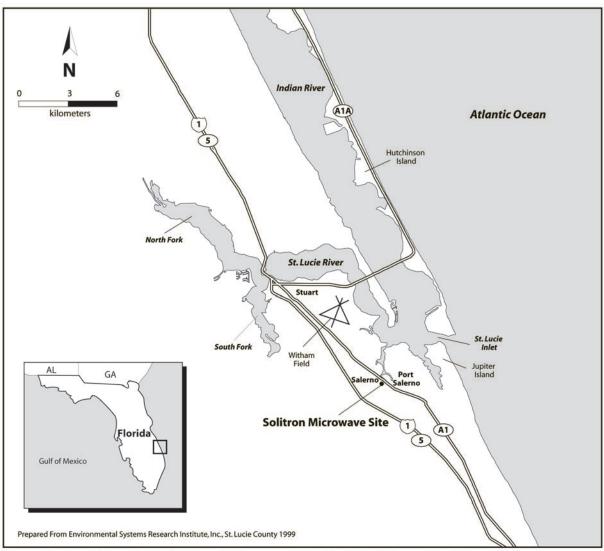


Figure 1. Location of the Solitron Microwave Site in Port Salerno, Florida.

NOAA Trust Resources

The NOAA habitats of concern are the unnamed tributary stream, Manatee Pocket, St. Lucie River, and Indian River, all of which are tidal estuarine habitats of the Atlantic Ocean. Estuarine areas are generally less than 5 m (5.4 yd) deep (NOAA 1997), while sediments range from silty sands to fine grain sands. Salinities range from under 10 parts per thousand (ppt) in the unnamed tributary to 32 ppt in the Indian River. The unnamed tributary is tidally influenced at Cove Road. In tidally influenced areas of the stream, the riparian zone is composed of estuarine wetlands dominated by scrub-shrub and broadleaf vegetation (Weston 1999a). Shore habitats in the Manatee Pocket are composed primarily of sheltered rocky shores and seawalls with some exposed estuarine wetlands and sand beaches. Sand beaches dominate the St. Lucie and Indian rivers near the site, with some areas of exposed tidal flats and estuarine wetlands. For its entire length, the Indian River is a long shallow estuary that parallels the coast, separated from the Atlantic Ocean by a series of barrier islands (RPI 1996).

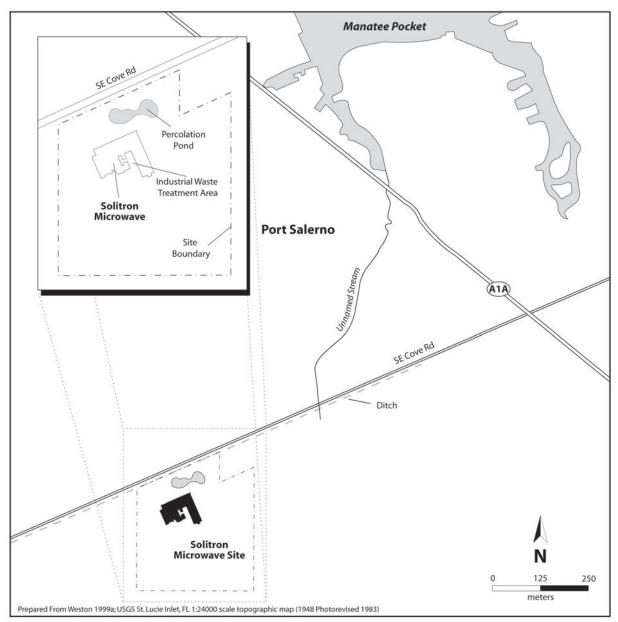


Figure 2. Detail of the Solitron Microwave Site.

Estuarine fish and invertebrate species use the Manatee Pocket, St. Lucie River, and Indian River (Table 1). Small foraging fish such as sheepshead minnow, bay anchovy, hardhead catfish, pinfish, and silversides generally spend their entire lives in estuaries. They also are common to small tidal streams and likely use the lower reaches of the unnamed tributary to Manatee Pocket (Nelson et al. 1991).

Many of the larger fish use the estuaries of the Manatee Pocket and St Lucie River as a juvenile nursery and seasonal adult habitat with spawning and larval stages generally occurring in coastal or offshore waters. The Scianids (seatrout, drums, croaker, spot, and kingfish), mullets, and groupers usually spawn in coastal waters where eggs hatch and larvae develop. The juvenile stages are transported to estuaries where they develop and the adults spend varying times within the estuary. Adult seatrout, drums, and mullet can occupy estuaries nearly year-round while croaker, spot, and kingfish usually make seasonal migrations (Nelson et al. 1991).

Table 1. Fish and invertebrate species in estuarine waters of the Manatee Pocket, St. Lucie River, and Indian River (Krum 2000 and Nelson 1991).

Species			Habitat U	se	Fishe	eries
Common Name	Scientific Name	Spawning Ground	Nursery Area	Adult Forage	Comm. Fishery	Recr. Fishery
ESTUARINE FISH						
Atlantic menhaden	Brevootia tyrannus	•	•	•		
Atlantic croaker	Micropogonias undulatus		•	•		•
Bay anchovy	Anchoa mitchilli	•	•	•		
Black drum	Pogonias cromis		•	•		•
Bluefish	Pomatomus saltatrix		•			
Crevalle jack	Caranx hippos		•			
Florida pompano	Trachinotus carolinus		•			
Gag	Mycteroperca microlepis		•			•
Gray snapper	Lutjanus griseus		•	•		•
Hardhead catfish	Arius felis	•	•	•		•
Jewfish	Epinephelus itajara		•	•		•
Ladyfish	Elops saurus		•	•		•
Lane snapper	Lutjanus synagris		•	•		
Permit	Trachinotus falcatus		•			•
Pigfish	Orthopristis chrysoptera		•	•		•
Pinfish	Lagodon rhomboides	•	•			
Red grouper	Epinephelus morio		•			•
Red drum	Sciaenops ocellatus		•	•		•
Sand seatrout	Cynoscion arenarius		•	•		•
Sheepshead	Archosargus probatocephalus		•	•		•
Sheepshead minnow	Cyprinodon variegatus	•	•	•		
Silversides	Menidia spp.	•	•	•		
Snook	Centropomus undecimalis		•	•		•
Southern kingfish	Menticirrhus americanus		•	•		•
Spanish mackerel	Scomberomorus maculatus		•			
Spot	Leiostomus xanthurus		•	•		•
Spotted seatrout	Cynoscion nebulosus		•	•		•
Striped mullet	Mugil cephalus		•	•		•
White grunt	Haemulon plumieri		•	•		•
White mullet	Mugil curema		•	•		•
INVERTEBRATES						
American oyster	Crassostrea virginica	•	•	•	•	•
Blue crab	Callinectes sapidus		•	•	•	•
Grass shrimp	Paleomonetes pugio	•	•	•		
Pink shrimp	Penaeus duorarum		•			
Spiny lobster	Panulirus argus		•	•		•
Stone crab	Menippe mercenaria	•	•	•	•	•

Other fish such as snook, tarpon, ladyfish, and snappers (including the grunts and gag) have juvenile stages that are often associated with tidal stream, canal, and mangrove habitats and likely are present within the upper tidal reaches of the Manatee Pocket or lower portions of the unnamed stream. Adults are present seasonally in the St. Lucie and Indian rivers. Species such as bluefish, permit, crevalle jack, pompano, and Spanish mackerel are coastal species, but juveniles are known to inhabit the St. Lucie and Indian rivers (Nelson et al. 1991).

Several invertebrate species are found commonly in the Manatee Pocket, St. Lucie River, and Indian River estuary (Table 1). All life stages of oyster and grass shrimp are found in the estuary. Blue crabs spend juvenile and adult stages in the estuary although spawning females usually migrate offshore. Stone crabs spend all life stages in the estuary. Post-larvae and juvenile pink shrimp use the estuary. Adult shrimp generally move to coastal areas where larval development, foraging and spawning occur. Adult spiny lobsters are found in the estuary seasonally, but the species is highly migratory and little is known of their migratory habits (Nelson et al. 1991).

Recreational fisheries are present in the Indian and St Lucie rivers for most of the larger species, concentrating on the Scianids, snappers, and groupers, with shellfisheries for blue crab, stone crab, and oyster. There are commercial fisheries for crab and oyster near the confluence of the St. Lucie and Indian rivers (RPI 1996). There are no consumption advisories for the estuary (Krum 2000).

The federally endangered manatee uses the Indian River year-round and resides in the estuary. The federally endangered green, leatherback, and loggerhead sea turtles are found in coastal waters of the Atlantic Ocean on the eastern side of the barrier island that forms the Indian River. The sea turtles spawn on the sandy beaches of the barrier island, but would not likely be affected by site-related contaminants because they generally do not enter estuaries (RPI 1996).

Site Related Contamination

Data collected during field investigations detected contamination in soils, surface water, and sediments at the site. Nineteen soil borings were collected in source areas during the Remedial Investigation. Groundwater samples were collected from 62 monitoring and Direct Push Technology wells on and immediately off the site. Six surface water samples were collected in concrete tanks and the percolation pond on the site. Three sediment samples were collected in the percolation pond. No surface water or sediment samples were collected in the Manatee Pocket, unnamed tributary, or the drainages leading to the tributary (Weston 1999b).

The primary contaminants of concern to NOAA are trace elements and, possibly, the chlorinated pesticides, which were both measured at concentrations exceeding screening guidelines on the site. Several volatile organic compounds (VOCs) also were detected in environmental media on the site, but at concentrations below screening guidelines. Table 2 summarizes maximum contaminant concentrations in environmental media and lists the appropriate screening guidelines.

The maximum concentrations of cadmium, copper, nickel, silver, and zinc in soils exceeded soil guidelines; cadmium, copper, and silver exceeded the guidelines by one to three orders of magnitude. The greatest concentrations of trace elements were observed near the building in the industrial waste treatment area. Much lower concentrations, generally below soil screening guidelines, were measured in soil samples collected away from the main building nearer the percolation pond.

Table 2. Maximum contaminant concentrations of concern in soil, groundwater, and sediment at the Solitron Microwave site (Weston 1999a, 1999b).

	Soils (mg/kg) Water (µg/L) Ground- Surface		ıg/L)	Sediment (mg/kg)			
Contaminant	Soils	Mean Soils ^a	water	Water	AWQC ^b	Sediment	ERL ^a
TRACE ELEMENTS							
Arsenic	ND	5.2	280	ND	36	ND	8.2
Cadmium	5.3	0.06	11	1	9.3	5.2	1.2
Chromium	39	37	3,300	27	50	23	81
Copper	1,300	17	2,200	100	2.4	240	34
Lead	4.4	16	32	7	8.1	2.6	46.7
Mercury	ND	0.058	1.7	ND	0.025°	ND	0.15
Nickel	120	13	1,600	120	8.2	340	20.9
Silver	110	0.05	48	ND	1.9 ^d	14	1.0
Zinc	69	48	790	380	81	86	150
PESTICIDES							
Toxaphene	170	NA	ND	ND	ND	ND	NA
DDT	ND	NA	ND	ND	0.001	4.2	0.001
DDE	ND	NA	ND	ND	14ª	2.4	0.002
VOCs							
1,1,1-Trichloroethane	15	NA	6.0	ND	31,200°	ND	NA
Trichloroethene	9.6	NA	4,100	ND	2,000°	ND	NA
Tetrachloroethene	35	NA	360	ND	9,320 ^f	ND	NA
1,2-Dichloroethene	6.0	NA	5,000	ND	224,000°	ND	NA

NA: Data not available

ND: Not detected; detection limits not available

a: Shacklette and Boerngen (1984), except for silver and cadmium which are mean concentrations in the earth's crust as reported by Lindsay (1979).

- b: Quality Criteria for Water (USEPA 1993). Marine chronic criteria presented unless otherwise noted.
- c: Criterion expressed as total recoverable metal.
- d: Chronic criterion not available; acute criterion presented.
- e: Marine acute Lowest Observable Effects Level.
- f: Freshwater acute Lowest Observable Effects Level.

g: Effects range-low; the concentration representing the lowest 10th percentile for the data in which effects were predicted in studies compiled by Long et al. (1995).

The pesticide toxaphene was detected in one soil sample in the main waste treatment area. In addition, several VOCs were measured in soils. The greatest VOC concentrations were in the industrial waste treatment area with very low concentrations away from the main building. Soil screening guidelines are not available for VOCs or pesticides.

The maximum concentrations of chromium, copper, nickel, and silver in groundwater samples exceeded AWQC screening guidelines by an order of magnitude or greater. Trace element contamination in the groundwater appears to be distributed downgradient of the site. One contaminated well is adjacent to the Solitron building, two more are near the percolation pond, and an additional two wells are to the northeast, adjacent to Cove Road. This is consistent with the northeasterly

flow of groundwater beneath the site. However, two wells located about 100 m (109 yards) southwest of the site, in an upgradient direction, also contained concentrations of several trace elements that exceeded screening guidelines. Several VOCs also were detected in the groundwater at concentrations below screening guidelines.

Surface water concentrations of copper and nickel in the Percolation Pond and copper, nickel, and zinc in tanks within the main waste treatment area exceeded screening guidelines. Organic compounds were not detected in surface water samples.

Sediment concentrations of cadmium, copper, nickel, and silver exceeded Screening guidelines in two of three sediment samples collected in the Percolation Pond (Long et al. 1995). In addition, sediment concentrations of the pesticide DDT and its metabolite DDE were found at concentrations exceeding screening guidelines in one of three sediment samples in the Percolation Pond.

References

- Krum, K., Fisheries Biologist, Florida Department of Environmental Protection, Tequesta, personal communication, March 1, 2000.
- Lindsay, W.L. 1979. Chemical Equilibria in Soils. New York: John Wiley & Sons. 449 p
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19:81-97.
- Nelson, D.M., E.A. Irlandi, L.R. Settle, M.E. Monaco, and L.C. Coston-Clements. 1991. Distribution and abundance of fishes and invertebrates in southeast estuaries., Rockville, Maryland: Strategic Environmental Assessments Division, National Oceanic and Atmospheric Administration. 177 pp.
- NOAA. 1997. Intracoastal waterway: Palm Shores to West Palm Beach, Florida. Chart 11472. Washington, D.C.: Coast Survey, National Oceanic and Atmospheric Administration.
- RPI. 1996. Sensitivity of coastal environments and wildlife to spilled oil. South Florida Atlas. [CD-ROM]. Tequesta: Florida Department of Environmental Protection and National Oceanic and Atmospheric Administration.
- Shacklette, H.T. and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGS Professional Paper 1720. Washington, D.C.: U.S. Geological Survey.
- USEPA. 1993. Water quality criteria. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water, Health and Ecological Criteria Division. 294 pp.
- Weston. 1999a. Draft screening level ecological risk assessment: Solitron microwave site, Port Salerno, Martin County, Florida. Atlanta: U.S. Environmental Protection Agency, Region 4.
- Weston. 1999b. Remedial investigation report (Volume I, Sections 1-7): Solitron microwave site, Port Salerno, Martin County, Florida. Atlanta: U.S. Environmental Protection Agency, Region 4.

Klag Bay Site

Sitka, Alaska EPA Facility ID: AK0002364768 Basin: Baranof-Chichagof Islands

HUC: 19010203

Executive Summary

Klag Bay, on Chichagof Island, Southeast Alaska, is the location of the Chichagof Mine, a former gold and silver mine which operated from 1906 to 1942. The mine produced an estimated 600,000 tons of gold and silver, with about 500,000 tons of waste rock deposited directly to the nearshore of Klag Bay. Tailing and sediment samples collected in the bay contain trace elements at concentrations exceeding sediment-screening guidelines. Klag Bay contains NOAA trust marine species as well as two anadromous salmon streams that have runs of sockeye, coho, chum, and pink salmon. There are both subsistence and recreational fisheries in the bay.

Site Background

The Chichagof Mine is adjacent to Klag Bay, a small estuary on Chichagof Island, Southeast Alaska, about 80 km (50 mi) northwest of Sitka (Figure 1). The mine operated as a silver and gold mine from 1906 to 1942. Although there has been no actual mining since 1942, people have explored the property, particularly since the early 1980s. Now, old ruins are the only remnants of historical mining operations (Ecology and Environment 1999).

Ore was originally processed using mercury amalgamation. This process consisted of passing crushed ore in a water slurry over amalgamation tables coated with mercury. The larger particles of gold would adhere to the tables while the remaining slurry was drained onto drying pans. The remaining waste rock, called tailings, were placed in waste piles. A process method using cyanide, in which ores are finely crushed and treated with a cyanide compound to dissolve the gold, may or may not have been used at the mine. A cyanide plant was constructed between 1923 and 1931 but there are conflicting reports regarding whether it was used. The floatation process was used after 1932 in which about 0.5 kg (1 lb) of oil combined with four tons of water and one ton of superfine ore were agitated to form an oily froth that picked up the gold particles (Ecology and Environment 1999).

The total production for the mine was on the order of 600,000 tons. No metals other than silver and gold were recovered from the ore. Therefore, the tailings likely contain metals and metalloids from the ore host rock and may be concentrated by the milling and gold recovery process. Arsenic, lead, and zinc are trace elements commonly associated with sulfide ore gold deposits. In addition, the tailings may contain mercury from the amalgamation process (Ecology and Environment 1999).

The direct disposal of mine tailings to Klag Bay has provided the primary pathway for the transport of contaminants to NOAA trust resources. The bulk of tailings were discharged directly into the intertidal and subtidal zones of the bay (Figure 1). An estimated 500,000 tons were deposited on reportedly a substantial portion of the present beach. A smaller amount of tailings was disposed

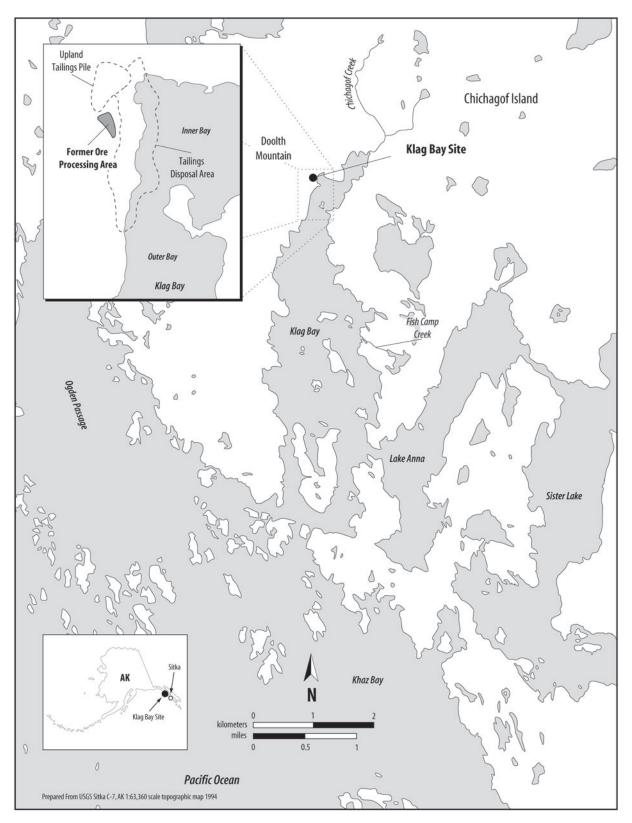


Figure 1. Location of the Klag Bay Site, Sitka, Alaska.

of in an upland tailings pile above the beach. Information on other potential surface or groundwater pathways was not reported (Ecology and Environment 1999).

A combined Preliminary Assessment/Site Inspection Report was prepared for the U.S. EPA in March 1999, which continues to evaluate the site. The site has not yet been proposed for listing on the National Priorities List (Ecology and Environment 1999).

NOAA Trust Resources

The NOAA trust habitat of concern is Klag Bay, a small estuarine embayment in Southeast Alaska. Very little information on the physical characteristics of this relatively remote bay was available. Previous studies sampled depths of up to 20.1 m (66 ft) and sediments ranged from gravelly sands to clayey silts (Ecology and Environment 1999). Two anadromous salmon streams, Chichagof Creek and Fish Camp Creek, empty into Klag Bay (Ecology and Environment 1999). Chichagof Creek flows to the bay approximately 0.8 km (0.5 mi) northwest of the mine and Fish Camp Creek flows to the bay approximately 3 km (1.9 mi) southeast of the mine (Figure 1). Although there is no evidence yet that the two natal streams were impacted by the mine, their presence makes the bay a valuable nursery and migratory corridor for anadromous salmon. NOAA trust species use Klag Bay and selected important species are presented in Table 1.

Chichagof Creek has spawning runs of pink, chum, and coho salmon, while Fish Camp Creek has spawning runs of sockeye and coho salmon. Adults migrate past the former mine during the spring and summer each year to reach Chichagof Creek. Juvenile salmon use nearshore areas of the bay as a juvenile nursery for up to several months before outmigrating to the Pacific Ocean (Ecology and Environment 1999). The anadromous Dolly Varden char has also been observed in Klag Bay, but it is not known whether the species uses Chichagof or Fish Camp creeks for spawning (Powell 2000).

Although comprehensive fish surveys have not been conducted in Klag Bay, species commonly observed in the marine waters of Southeast Alaska would likely reside in the bay (Davidson 2000). All of the marine fish in Table 1 are commonly found in Southeast Alaska and most are coastal-shelf species that occupy bays, estuaries, and coastal waters for all of their life stages. Most of these fish do not make large migratory movements, although seasonal movements in relation to food availability, temperature, and spawning may occur (ADFG 2000a).

Several invertebrate species are common in Southeast Alaska and likely inhabit Klag Bay, including Dungeness crab, red king, tanner, and snow crabs, and pinto abalone (ADFG 2000b). Blue mussels have been observed in the intertidal and nearshore subtidal areas of the bay (Davidson 2000).

Native Alaskans have established, substantial subsistence fisheries on Fish Camp Creek for sockeye salmon from late July through early August. There are also subsistence fisheries on Chichagof Creek, although not to the same degree as the sockeye fishery on Fish Camp Creek. There is recreational fishing on both streams and in Klag Bay. Klag Bay is closed to commercial fishing, largely to protect the sockeye run at Fish Camp Creek, although commercial harvests take place outside of the bay (Ecology and Environment 1999).

Two marine mammals common to the area are listed under the Endangered Species Act of 1972. The threatened Steller sea lion and endangered humpback whale are commonly observed, and range freely throughout Southeast Alaska. The nearest documented haulout area for Steller sea lions is about 10 km (6 mi) west of Klag Bay. It is not known whether humpback whales enter Klag Bay (Ecology and Environment 1999). Table 1. NOAA trust resources common to Southeast Alaska and Klag Bay (ADFG 2000a; ADFG 2000b; Davidson 2000).

-	
Sp	ecies

Species		Habitat Use		Fisheries		
Common Name	Scientific Name	Spawning Area	Nursery Ground	Adult Forage	Subsistence	Recreational
ANADROMOUS FIS	iH					
Chum salmon	Oncorhynchus keta	∳a	•	•	•	
Coho salmon	Oncorhynchus kisutch	∳a	•	•	•	•
Dolly Varden char	Salvelinus malma		•	•		
Pink salmon	Oncorhynchus gorbuscha	∳a	•	•	•	•
Sockeye salmon	Oncorhynchus nerka	∳a	•	•	•	•
MARINE FISH						
Black rockfish	Sebastes melanops		•	•		•
C-O sole	Pleuronichthys coenosus		•	•		
Copper rockfish	Sebastes caurinus		•	•		•
Dusky rockfish	Sebastes ciliatus		•	•		•
Flathead sole	Hippoglossoides elassodon		•	•		
Great sculpin	Myoxocephalus polyacanthocephalus		•	•		
Kelp greenling	Hexagrammos decagrammus	•	•	•		
Lingcod	Ophiodon elongatus		•	•		
Pacific halibut	Hippoglossus stenolepis		•	•		•
Pacific herring	Clupea pallasi		•	•		
Pacific cod	Gadus macrocephalus		٠	•		•
Pacific tomcod	Microgadus proximus	•	٠	•		
Quillback rockfish	Sebastes maliger		•	•		•
Red Irish lord	Hemilepidotus hemilepidotus	•	•	•		
Sablefish	Anoplopoma fimbria		•	•		
Sand sole	Psettichthys melanostictus		•	•		
Silvergray rockfish	Sebastes brevispinis		•	•		•
Speckled sanddab	Citharichthys stigmaeus		•	•		
Starry flounder	Platichthys stellatus	•	•	•		
Walleye pollock	Theragra chalcogramma		•	•		
Yelloweye rockfish	Sebastes ruberrimus		•	•		•
Yellowfin sole	Pleuronectes asper	•	•	•		
Yellowtail rockfish	Sebastes flavidus		•	•		•
INVERTEBRATES						
Blue mussel	Mytilus edulis	•	•	٠		
Dungeness crab	Cancer magister	•	•	٠		
Pinto abalone	Haliotis kamtschatkana	•	•	•		
Red king crab	Paralithodes camtschaticus			•		
Snow crab	Chionoecetes opilio			٠		
Tanner crab	Chionoecetes bairdi			٠		

spawning areas for Pacific salmon are in Fish Camp or Chichagof creeks. а

Site-Related Contamination

Environmental investigations adjacent to the former mine and within Klag Bay have found source and sediment contamination at concentrations that exceed screening guidelines. The Preliminary Assessment/Site Inspection collected seven tailing samples and 12 sediment samples in Klag Bay. Tailing samples were collected in the intertidal zone along the western shore of the bay while sediment samples were collected in both the intertidal and nearshore subtidal zones. All samples were analyzed for trace elements (Ecology and Environment 1999).

Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, silver, and zinc in both tailing and sediment samples exceed sediment-screening guidelines in Klag Bay (Table 2). Elevated concentrations were widespread in both media; concentrations of at least one trace element exceeded sediment-screening guidelines in every sample collected.

In general, the greatest concentrations were observed in tailing samples where arsenic concentrations exceeded sediment screening guidelines by at least an order of magnitude. Concentrations ranged from 140 to 840 mg/kg in the seven tailing samples collected. Concentrations of lead, mercury, and silver in tailing samples approached an order of magnitude above guidelines (Table 2).

Elevated concentrations of trace elements were also widespread in sediment samples collected in the bay. Concentrations of mercury exceeded guidelines by an order of magnitude (Table 2). Mercury concentrations ranged from 0.5 to 4.5 mg/kg in sediment samples collected in the bay. Although generally not as elevated as in tailing samples, concentrations of arsenic, cadmium, lead, nickel, and silver also exceeded screening guidelines in most samples collected in the bay (Table 2). Elevated concentrations appear to be distributed throughout the inner bay and into the outer bay. Fewer trace elements exceeded screening guidelines in samples collected in the outer bay, but the extent of contamination in the outer bay is not known.

	Sediment (mg/kg)		
Contaminant	Tailings Samples	Sediment Samples	ERLª
Arsenic	840	250	8.2
Cadmium	0.83	2.7	1.2
Chromium	35	32	81
Copper	98	50	34
Lead	350	80	46.7
Mercury	1.1	4.5	0.15
Nickel	53	37	20.9
Silver	7.4	2.5	1.0
Zinc	360	140	150

Table 2. Maximum concentrations of contaminants of concern to NOAA in tailings and sediment samples collected in Klag Bay (Ecology and Environment 1999).

a Effects Range-Low (ERL) represents the tenth percentile for the dataset in which effects were observed or predicted in studies compiled by Long et al. (1995; 1998).

62 EPA Region 10

References

- ADFG 2000a. Alaska Department of Fish and Game, Region 1, Southeast Alaska. Available: www.cf.adfg.state.ak.us/region1/rgn/home.htm
- ADFG 2000b. Alaska Department of Fish and Game, Commercial Fisheries, Region 1, Southeast Alaska. Available: www.cf.adfg.state.ak.us/region1/shellfish/shelhoml.htm
- Davidson, B. Fisheries Biologist, Alaska Department of Fish and Game, Sitka, Alaska, personal communication, May 22, 2000.
- Ecology and Environment 1999. Combined Preliminary Assessment/Site Inspection Report, Klag Bay, Chichagof Island, Alaska. Seattle: U.S. Environmental Protection Agency. Region 10.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1):81-97.
- Long, E.R., L.J. Field, and D.D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4):714-727.
- Powell, D. Hydrogeologist, National Oceanic Atmospheric Administration, Seattle, personal communication, May 23, 2000.

Acronyms and abbreviations

abbi	eviations
AST	Above-ground Storage Tank
AWQC	Ambient water quality criteria for the protection of aquatic life
bgs	below ground surface
BHC	benzene hexachloride
BNA	base, neutral, and acid-extractable organic compounds
BOD	biological oxygen demand
BSL	brine sludge lagoon
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information System
cfs	cubic feet per second
cm	centimeter
COC	contaminant of concern
COD	chemical oxygen demand
COE	U.S. Army Corps of Engineers
CRC	Coastal Resource Coordinator
DDD	dichlorodiphenyldichloroethane
DDE	dichlorodiphenyldichloroethylene
DDT	dichlorodiphenyltrichloroethane
DNAPL	dense non-aqueous phase liquid
DNT	dinitrotoluene
DOD	U.S. Department of Defense
DOI	U.S. Department of the Interior
EPA	U.S. Environmental Protection Agency
ERL	Effects Range - Low
ERM	Effects Range - Median
ft	foot
ha	hectare
НМХ	cyclotetramethylene tetranitramine
HRS	Hazard Ranking System
HUC	Hydrologic Unit Code
kg	kilogram

km	kilometer		
L	liter		
LNAPL	light, non-aqueous phase liquid		
LOEL	lowest observed effects level		
m	meter		
mi	mile		
m³/seco	nd cubic meter per second		
µg/g	micrograms per gram (ppm)		
µg/kg	micrograms per kilogram (ppb)		
μg/L	micrograms per liter (ppb)		
µR/hr	microroentgens per hour		
mg	milligram		
mg/kg	milligrams per kilogram (ppm)		
mg/L	milligrams per liter (ppm)		
mR/hr	milliroentgens per hour		
NAPL	non-aqueous phase liquid		
NFA	no further action		
NOAA	National Oceanic and Atmospheric Administration		
NPDES	National Pollutant Discharge Elimination System		
NPL	National Priorities List		
OU	operable unit		
PAH	polycyclic (or polynuclear) aromatic hydrocarbon		
PA/SI	Preliminary Assessment/Site Investigation		
РСВ	polychlorinated biphenyl		
PCE	perchloroethylene (aka tetrachloro- ethylene)		
pCi/g	picocuries per gram		
РСР	pentachlorophenol		
PNRS	Preliminary Natural Resource Survey		
ppb	parts per billion		
ppm	parts per million		
ppt	parts per thousand or parts per trillion		
PRP	Potentially Responsible Party		
PVC	polyvinyl chloride		
RCRA	Resource Conservation and Recovery Act		

64 Acronyms and abbreviations

- **RD/RA** Remedial Design/Remedial Action
- **RDX** cyclonite
- **RI/FS** Remedial Investigation/Feasibility Study
- **UST** Underground Storage Tank

Glossary of terms

Anadromous Migrating from marine waters to breed in freshwater. Examples of anadromous fish include salmon, river herring (alewife), and striped bass.

Bioavailable The fraction of the total chemical in the surrounding environment that is available for uptake by organisms. The environment may include water, sediment, suspended particles, and food items.

Biotransformation Chemical alteration of a substance within the body.

Body burden The amount of a chemical stored in the body at a given time, especially a potential toxin in the body as the result of exposure.

Borehole A hole made with drilling equipment.

Brood To hatch eggs.

Capacitor An electric circuit element used to store charge temporarily.

Catadromous Living in fresh water but migrating to marine waters to breed. An example is the American eel.

Chemical affinity An attraction or force between particles that causes them to combine.

Contaminant partitioning In general, it is the tendency of a contaminant to be in the air, water, soil, or sediment based on the relative chemical affinities of that contaminant.

Demersal Dwelling at or near, sinking to, or deposited near the bottom of a body of water.

Depurate Elimination of a chemical from an organism by desorption, diffusion, excretion, egestion, biotransformation, or another route.

Desorption To remove an absorbed substance from.

Egestion To discharge or excrete from the body.

Emergent wetland, subclass: nonpersistent No obvious signs of emergent vegetation at

certain seasons.

Emergent wetland, subclass: persistent Erect, rooted, herbaceous aquatic plants. Species that normally remain standing until the beginning of the next growing season.

Environmental medium An environmental category that surrounds or contacts humans, animals, plants, and other organisms (e.g., surface water, groundwater, soil, or air) and through which chemicals or pollutants move.

Estuary A region of interaction between rivers and nearshore marine waters, where tidal action and river flow mix fresh and salt water. Such areas include bays, mouths of rivers, salt marshes, and lagoons. These brackish water ecosystems shelter and feed marine life, birds, and wildlife (see: wetlands).

Forage To search for food.

Hectare 2.471 acres or 10,000 square meters (m²).

Hydrologic Unit Code (HUC) The U.S. is divided into hydrologic units for waterresources planning and data management. Hydrologic units represent natural and humanimposed stream-drainage areas. Each HUC is a unique eight-digit number.

The first two digits indicate the major geographic area or region, the second two digits indicate the sub-region, the third two digits indicate the accounting units, and the fourth two digits indicate the cataloging units. Cataloging units are also called "watersheds."

Ingot A mass of metal that is cast in a standard shape for convenient storage or transportation.

Isomers Different substances that have the same formula.

Lowhead dam Dams that range from a sixinch drop off to a 25- foot drop off.

Marsh A type of wetland that does not accumulate appreciable peat deposits and is dominated by herbaceous vegetation. Marshes may be fresh- or saltwater, tidal or non-tidal (see: wetlands).

Materiel (or matériel) The equipment, apparatus, and supplies of a military force.

Monitoring well (1) A well used to obtain water quality samples or measure groundwater levels. (2) A well drilled at a hazardous waste management facility or Superfund site to collect groundwater samples for the purpose of physical, chemical, or biological analysis to determine the amounts, types, and distribution of contaminants in the groundwater near the site.

National Priorities List (NPL) A list of hazardous waste sites, compiled by EPA, where hazardous wastes have been found and the initial evaluation shows a significant risk to human health or the environment. NPL sites are often called "Superfund sites" because Superfund money can be used by the EPA to investigate and clean up these sites.

Neutralization Decreasing the acidity or alkalinity of a substance by adding alkaline or acidic materials, respectively.

Ordnance Military materiel, such as weapons, ammunition, artillery, combat vehicles, and equipment.

Pelagic Of, relating to, or living in open seas rather than waters adjacent to land or inland waters.

Pentachlorophenol A manufactured chemical that is not found naturally in the environment. It was used as a biocide and wood preservative, and was one of the most heavily used pesticides in the United States. Now, only certified applicators can purchase and use this chemical. It is still used in industry as a wood preservative for power line poles, railroad ties, cross arms, and fence posts.

Polychlorinated biphenyls (PCBs) Are mixtures of up to 209 individual chlorinated compounds (known as congeners). There are no known natural sources of PCBs. PCBs are either oily liquids or solids that are colorless to light yellow. Some PCBs can exist as a vapor in air. PCBs have no known smell or taste. Many commercial PCB mixtures are known in the U.S. by the trade name Aroclor. PCBs have been used as coolants and lubricants in transformers, capacitors, and other electrical equipment because they don't burn easily and are good insulators. The manufacture of PCBs was stopped in the U.S. in 1977 because of evidence they build up in the environment and can cause harmful health effects. Products made before 1977 that may contain PCBs include old fluorescent lighting fixtures and electrical devices containing PCB capacitors, and old microscope and hydraulic oils.

Run-Off That part of precipitation, snowmelt, or irrigation water that runs off the land into streams or other surface-water. It can carry pollutants from the air and land into receiving waters.

Salinity The percentage of salt in water.

Sump A low-lying place, such as a pit, that receives drainage.

Superfund Money collected from a special tax on chemicals and raw petroleum that is appropriated by Congress. These funds are used to investigate, evaluate, and clean up the worst hazardous waste sites in the U.S. These sites are listed on the NPL.

Trustee Responsible for maintaining the original characteristics of our land, water, and the plants and animals that live there. NOAA is a federal trustee for natural resources that spend any portion of their life cycle in a marine or estuarine environment; and their habitats.

Uptake The transfer of a chemical into or onto an aquatic organism.

Wastewater The spent or used water from a home, community, farm, or industry that contains dissolved or suspended matter.

Water Quality Criteria Levels of water quality expected to render a body of water suitable for its designated use. Criteria are based on specific levels of pollutants that would make the

water harmful if used for drinking, swimming, farming, fish production, or industrial processes.

Water Table The level of groundwater.

Watershed The region draining into a river, river system, or other body of water.

Wetland An area that is saturated by surface or groundwater with vegetation adapted for life under those soil conditions including marshes, estuaries, swamps, bogs, and fens.

Table 1. List of the 329 hazardous Waste Site Reports published by NOAA to date. Sites in bolditalics are included in this volume.

Region 1

Connecticut	Date	EPA Facility ID
Barkhamsted-New Hartford Landfill	1989	CTD980732333
Beacon Heights Landfill	1984	CTD072122062
Gallup's Quarry	1989	CTD108960972
Kellogg-Deering Well Field	1987	CTD980670814
New London Submarine Base	1990	CTD980906515
O'Sullivans Island	1984	CTD980667992
Raymark Industries, Inc.	1996	CTD001186618
Yaworski Waste Lagoon	1985	CTD009774969
Massachusetts		
Atlas Tack Corp.	1989	MAD001026319
Blackburn and Union Privileges	1993	MAD982191363
Charles-George Reclamation Landfill	1987	MAD003809266
GE - Housatonic River	1999	MAD002084093
Groveland Wells	1987	MAD980732317
Hanscom Field/Hanscom Air Force Base	1995	MA8570024424
Haverhill Municipal Landfill	1985	MAD980523336
Industri-Plex	1987	MAD076580950
Materials Technology Laboratory (USArmy)	1995	MA0213820939
Natick Laboratory Army Research, D&E Center	1995	MA1210020631
New Bedford Site (Acushnet Estuary)	1984	MAD980731335
Nyanza Chemical Waste Dump	1987	MAD990685422
Plymouth Harbor/Cannon Engineering Corp.	1984	MAD980525232
South Weymouth Naval Air Station	1995	MA2170022022
Sullivan's Ledge	1987	MAD980731343

Maine	Date	EPA Facility ID
Brunswick Naval Air Station	1987	ME8170022018
Eastland Woolen Mill	2002	MED980915474
McKin Company	1984	MED980524078
O'Connor Company	1984	MED980731475
Portsmouth Naval Shipyard	1995	ME7170022019
Saco Municipal Landfill	1989	MED980504393
New Hampshire		
Beede Waste Oil	1997	NHD018958140
Coakley Landfill	1985	NHD064424153
Dover Municipal Landfill	1987	NHD980520191
Fletcher's Paint Works & Storage	1989	NHD001079649
Grugnale Waste Disposal Site	1985	NHD069911030
New Hampshire Plating Co.	1992	NHD001091453
Pease Air Force Base	1990	NH7570024847
Savage Municipal Water Supply	1985	NHD980671002
Sylvester	1985	NHD099363541
Rhode Island		
Davis Liquid Waste	1987	RID980523070
Davisville Naval Construction Battalion Center	1990	RI6170022036
Newport Naval Education & Training Center	1990	RI6170085470
Peterson/Puritan, Inc.	1987	RID055176283
Picillo Farm	1987	RID980579056
Rose Hill Regional Landfill	1989	RID980521025
Stamina Mills, Inc.	1987	RID980731442
West Kingston Town Dump/URI Disposal	1992	RID981063993
Western Sand & Gravel	1987	RID009764929
Vermont		

BFI Sanitary Landfill (Rockingham)	1989	VTD980520092
Old Springfield Landfill	1987	VTD000860239

Region 2

New Jersey	Date	EPA Facility ID
Albert Steel Drum	1984	NJD000525154
American Cyanamid Co.	1985	NJD002173276
Atlantic Development 11	1984	NJD980528731
Bog Creek Farm	1984	NJD063157150
Brick Township Landfill	1984	NJD980505176
Brook Industrial Park	1989	NJD078251675
Chemical Control	1984	NJD000607481
Chemical Insecticide Corp.	1990	NJD980484653
Chipman Chemical Co.	1985	NJD980528897
Ciba-Geigy Corp.	1984	NJD001502517
Cornell Dubilier Electronics, Inc.	1999	NJD981557879
Cosden Chemical Coatings Corp.	1987	NJD000565531
Curcio Scrap Metal, Inc.	1987	NJD011717584
De Rewal Chemical Co.	1985	NJD980761373
Denzer & Schafer X-Ray Co.	1984	NJD046644407
Diamond Alkali Co.	1984	NJD980528996
Emmell's Septic Landfill	2002	NJD980772727
Federal Aviation Admin. Tech. Center	1990	NJ9690510020
Garden State Cleaners Co.	1989	NJD053280160
Global Sanitary Landfill	1989	NJD063160667
Hercules, Inc. (Gibbstown Plant)	1984	NJD002349058
Higgins Disposal	1989	NJD053102232
Higgins Farm	1989	NJD981490261
Horseshoe Road	1984,1995	NJD980663678
Ideal Cooperage Inc.	1984	NJD980532907
Industrial Latex Corp.	1989	NJD981178411
Jackson Township Landfill	1984	NJD980505283
Kauffman & Minteer, Inc.	1989	NJD002493054
Kin-Buc Landfill	1984	NJD049860836
Koppers Co Inc/Seaboard Plant	1984	NJD002445112
Krysowaty Farm	1985	NJD980529838
LCP Chemicals, Inc.	1999	NJD079303020

New Jersey cont.	Date	EPA Facility ID
Middlesex Sampling Plant (DOE)	2002	NJ0890090012
Mobil Chemical Co.	1984	NJD000606756
NL Industries	1984	NJD061843249
Perth Amboy PCB's	1984	NJD980653901
PJP Landfill	1984	NJD980505648
Price Landfill	1984	NJD070281175
Puchack Well Field	1999	NJD981084767
PVSC Sanitary Landfill	1984	NJD980529671
Roebling Steel Co.	1984	NJD073732257
Roosevelt Drive-In	1984	NJD030250484
Route 561 Dump	2002	NJ0000453514
Sayreville Landfill	1984	NJD980505754
Scientific Chemical Processing	1984	NJD070565403
South Jersey Clothing Co.	1989	NJD980766828
Syncon Resins	1984	NJD064263817
United States Avenue Burn	2002	NJ0001120799
Universal Oil Products (Chemical Division)	1984	NJD002005106
Ventron/Velsicol	1984	NJD980529879
White Chemical Corp.	1984	NJD001239185
Williams Property	1984	NJD980529945
Zschiegner Refining Company	1999	NJD986643153
New York		
Action Anodizing, Plating, & Polishing Corp.	1989	NYD072366453

Action Anouizing, Plating, & Polishing Corp.	1909	NTD072500455
Applied Environmental Services	1985	NYD980535652
Brookhaven National Laboratory (USDOE)	1990	NY7890008975
C & J Disposal Leasing Co. Dump	1989	NYD981561954
Carroll & Dubies Sewage Disposal	1989	NYD010968014
Computer Circuits	2002	NYD125499673
Jones Sanitation	1987	NYD980534556
Li Tungsten Corp.	1992	NYD986882660
Liberty Industrial Finishing	1985	NYD000337295
Marathon Battery Corp.	1984	NYD010959757

New York cont.	Date	EPA Facility ID
Mattiace Petrochemical Co., Inc.	1989	NYD000512459
North Sea Municipal Landfill	1985	NYD980762520
Peter Cooper	1999	NYD980530265
Port Washington Landfill	1984	NYD980654206
Rowe Industries Groundwater Contamination	1987	NYD981486954
Sidney Landfill	1989	NYD980507677
Stanton Cleaners Area Groundwater Contamination	2002	NYD047650197
Puerto Rico		
Clear Ambient Services Co.	1984	PRD090416132
Frontera Creek	1984	PRD980640965
Naval Security Group Activity	1989	PR4170027383
V&M/Albaladejo Farms	1997	PRD987366101
Vega Baja Solid Waste Disposal	2002	PRD980512669
Virgin Islands		
Island Chemical Corp./V.I. Chemical Corp.	1996	VID980651095
Tutu Wellfield	1993	VID982272569
Region 3		
Washington, D.C.	Date	EPA Facility ID
Washington Navy Yard	1999	DC9170024310

Delaware		
Army Creek Landfill	1984	DED980494496
Coker's Sanitation Service Landfills	1986	DED980704860
Delaware City PVC Plant	1984	DE0001912757
Delaware Sand & Gravel	1984	DED000605972
Dover Air Force Base	1987	DE8570024010
Dover Gas Light Co.	1987	DED980693550
E.I. Du Pont Newport Landfill	1987	DED980555122
Halby Chemical	1986	DED980830954
Kent County Landfill	1989	DED980705727

Region 3 cont.

Delaware cont.	Date	EPA Facility ID
Koppers Co. Facilities Site	1990	DED980552244
NCR Corp., Millsboro	1986	DED043958388
New Castle Spill Site	1984	DED058980442
New Castle Steel	1984	DED980705255
Old Brine Sludge Landfill	1984	DED980704894
Pigeon Point Landfill	1987	DED980494603
Sealand Limited	1989	DED981035520
Standard Chlorine Co.	1986	DED041212473
Sussex Co. Landfill #5	1989	DED980494637
Tybouts Corner Landfill	1984	DED000606079
Wildcat Landfill	1984	DED980704951
Maryland		
68th Street Dump/Industrial Enterprises	2002	MDD980918387
Anne Arundel County Landfill	1989	MDD980705057
Bush Valley Landfill	1989	MDD980504195
Central Chemical Corporation	1999	MDD003061447
Indian Head Naval Surface Warfare Center	1984	MD7170024684
low Declamation Co	1004	MDD020221170

	1909	10000000100
Central Chemical Corporation	1999	MDD003061447
Indian Head Naval Surface Warfare Center	1984	MD7170024684
Joy Reclamation Co.	1984	MDD030321178
Ordnance Products, Inc.	1995	MDD982364341
Sand, Gravel & Stone Site	1984	MDD980705164
Southern Maryland Wood Treating	1987	MDD980704852
U.S. Agricultural Center Beltsville (2 Tenants)	1995	MD0120508940
USA Aberdeen - Edgewood	1986	MD2210020036
USA Aberdeen - Michaelsville	1986	MD3210021355
USA Fort George Meade	1997	MD9210020567
USN Patuxent Naval Air Station	1996	MD7170024536
Woodlawn Co. Landfill	1987	MDD980504344

Pennsylvania

Austin Avenue Radiation Site	1993	PAD987341716
Boarhead Farms	1989	PAD047726161
Bridesburg Dump	1984	PAD980508402

Pennsylvania cont.	Date	EPA Facility ID
Butler Mine Tunnel	1987	PAD980508451
Crater Resources, Inc./Keystone Coke Co./Alan Wood	1993	PAD980419097
Croydon TCE Spill	1986	PAD981035009
Douglassville Disposal	1987	PAD002384865
Elizabethtown Landfill	1989	PAD980539712
Enterprise Avenue	1984	PAD980552913
FMC Marcus Hook	1996	PAD987323458
Foote Mineral Co.	1993	PAD077087989
Hellertown Manufacturing Co.	1987	PAD002390748
Jack's Creek/Sitkin Smelting & Refining, Inc.	1989	PAD980829493
Keyser Ave. Borehole	1989	PAD981036049
Metal Bank of America	1984	PAD046557096
Occidental Chemical Corp./Firestone Tire and Rubber Co.	1989	PAD980229298
Paoli Rail Yard	1987	PAD980692594
Publicker/Cuyahoga Wrecking Plant	1990	PAD981939200
Raymark	1996	PAD039017694
Recticon/Allied Steel	1989	PAD002353969
Revere Chemical Co.	1986	PAD051395499
Rohm and Haas Landfill	1986	PAD091637975
Salford Quarry	1997	PAD980693204
Tinicum National Environmental Center	1986	PA6143515447
Tysons Dump #1	1985	PAD980692024
UGI Corp. Gas Manufacturing Plant	1995	PAD980539126
USN Ships Parts Control Center	1996	PA3170022104
Wade (ABM)	1984	PAD980539407
Virginia		

virginia		
Abex Corp.	1989	VAD980551683
Arrowhead Associates Inc./Scovill Corp.	1989	VAD042916361
Atlantic Wood Industries, Inc.	1987	VAD990710410
C & R Battery Co., Inc.	1987	VAD049957913
Chisman Creek	1984	VAD980712913
Former Nansemond Ordnance Depot	2002	VAD123933426

Region 3 cont.

Virginia cont.	Date	EPA Facility ID
Kim-Stan Landfill	2002	VAD077923449
Marine Corps Combat and Development Command	1995	VA1170024722
Langley Air Force Base/NASA-Langley Research Center	1995	VA2800005033
Naval Amphibious Base Little Creek	2002	VA5170022482
Naval Surface Warfare Center - Dahlgren	1993	VA7170024684
Naval Weapons Station - Yorktown	1993	VA8170024170
Saunders Supply Co.	1987	VAD003117389
USA Fort Eustis	1996	VA6210020321
USN Naval Shipyard Norfolk	1999	VA1170024813
USN Norfolk Naval Base	1997	VA6170061463

Region 4

Alabama	Date	EPA Facility ID
American Brass, Inc.	2002	ALD981868466
Ciba-Geigy Corp. (McIntosh Plant)	1990	ALD001221902
Olin Corp. (McIntosh Plant)	1990	ALD008188708
Redwing Carriers, Inc. (Saraland)	1989	ALD980844385

Florida

Agrico Chemical Co.	1989	FLD980221857
American Creosote Works (Pensacola Plant)	1984	FLD008161994
Broward County-21st Manor Dump	1992	FLD981930506
Chemform, Inc.	1990	FLD080174402
Harris Corp. (Palm Bay Plant)	1986	FLD000602334
Helena Chemical Co. (Tampa Plant)	1993	FLD053502696
MRI Corporation	1997	FLD088787585
Munisport Landfill	1984	FLD084535442
Pensacola Naval Air Station	1990	FL9170024567
Pickettville Road Landfill	1984	FLD980556351
Sixty-Second Street Dump	1984	FLD980728877
Solitron Microwave	2002	FLD045459526
Standard Auto Bumper Corp.	1989	FLD004126520

Florida cont.	Date	EPA Facility ID
Stauffer Chemical Co. (Tampa Plant)	1993	FLD004092532
Stauffer Chemical Co. (Tarpon Springs)	1993	FLD010596013
USAF Tyndall Air Force Base	1997	FL1570024124
USN Air Station Cecil Field	1990	FL5170022474
USN NAS Jacksonville	1990	FL6170024412
USN Naval Air Station Whiting Field Site 5	1996	FL2170023244
Woodbury Chemical Co. (Princeton Plant)	1989	FLD004146346
Georgia		
Brunswick Wood Preserving	1997	GAD981024466
Camilla Wood Preserving Company	1999	GAD008212409
Terry Creek Dredge Spoil Areas/Hercules Outfall	1997	GAD982112658
Mississippi		
Chemfax, Inc.	1995	MSD008154486
Gautier Oil Co., Inc.	1989	MSD098596489
North Carolina		
ABC One Hour Cleaners	1989	NCD024644494
Camp Lejeune Military Res. (USNavy)	1989	NC6170022580
FCX, Inc. (Washington Plant)	1989	NCD981475932
New Hanover County Airport Burn Pit	1989	NCD981021157
Potter's Septic Tank Service Pits	1989	NCD981023260
South Carolina		
Geiger (C&M Oil)	1984	SCD980711279
Helena Chemical Co. Landfill	1989	SCD058753971
Koppers Co., Inc. (Charleston Plant)	1993	SCD980310239
Savannah River Site (USDOE)	1990	SC1890008989
Wamchem, Inc.	1984	SCD037405362

Region 6

Louisiana	Date	EPA Facility ID
Bayou Sorrel Site	1984	LAD980745541
Delatte Metals	2002	LAD052510344
Madisonville Creosote Works	1997	LAD981522998

Texas

ALCOA (Point Comfort)/Lavaca Bay	1995	TXD008123168
Bailey Waste Disposal	1985	TXD980864649
Brio Refining, Inc.	1989	TXD980625453
Crystal Chemical Co.	1989	TXD990707010
Dixie Oil Processors, Inc.	1989	TXD089793046
French, Ltd.	1989	TXD980514814
Highlands Acid Pit	1989	TXD980514996
Motco, Inc.	1984	TXD980629851
Sikes Disposal Pits	1989	TXD980513956
State Marine	1999	TXD099801102
Tex-Tin Corp.	1989	TXD062113329

Region 9

American Somoa		
Taputimu Farm	1984	ASD980637656
California		
Alameda Naval Air Station	1989	CA2170023236
Camp Pendleton Marine Corps Base	1990	CA2170023533
Coast Wood Preserving	1984	CAD063015887
Concord Naval Weapons Station	1989,1993	CA7170024528
Cooper Drum Co.	1993	CAD055753370
CTS Printex, Inc.	1989	CAD009212838
Del Amo Facility	1992	CAD029544731
Del Norte Pesticide Storage	1984	CAD000626176
El Toro Marine Corps Air Station	1989	CA6170023208
Fort Ord	1990	CA7210020676

California cont.	Date	EPA Facility ID
GBF, Inc., Dump	1989,1993	CAD980498562
Hewlett-Packard (620-640 Page Mill Road)	1989	CAD980884209
Intersil Inc./Siemens Components	1989	CAD041472341
Iron Mountain Mine	1989	CAD980498612
Jasco Chemical Corp.	1989	CAD009103318
Liquid Gold Oil Corp.	1984	CAT000646208
McCormick & Baxter Creosoting Co.	1993	CAD009106527
MGM Brakes	1984	CAD000074120
Moffett Naval Air Station	1986	CA2170090078
Montrose Chemical Corp.	1985	CAD008242711
Pacific Coast Pipe Lines	1989	CAD980636781
Rhone-Poulenc, Inc./Zoecon Corp.	1985	CAT000611350
Riverbank Army Ammunition Plant	1989	CA7210020759
Sola Optical USA, Inc.	1989	CAD981171523
South Bay Asbestos Area	1985	CAD980894885
Travis Air Force Base	1990	CA5570024575
Treasure Island Naval Station - Hunters Pt. Annex	1989	CA1170090087
Guam		
Andersen Air Force Base	1993	GU6571999519
Hawaii		
Del Monte Corporation (Oahu Plantation)	1995	HID980637631
Pearl City Landfill	1984	HID980585178
Pearl Harbor Naval Station	1992	HI2170024341

Region 10

Alaska		
Adak Naval Air Station	1993	AK4170024323
Elmendorf Air Force Base	1990	AK8570028649
Fort Richardson (US Army)	1995	AK6214522157
Klag Bay Site	2002	AK0002364768

Region 10 cont.

Alaska cont.	Date	EPA Facility ID
Standard Steel & Metals Salvage Yard (USDOT)	1990	AKD980978787
Idaho		
Blackbird Mine	1995	IDD980725832
Oregon		
Allied Plating, Inc.	1987	ORD009051442
Gould, Inc.	1984	ORD095003687
Martin-Marietta Aluminum Co.	1987	ORD052221025
McCormick & Baxter Creosoting Co. (Portland Plant)	1995	ORD009020603
Northwest Pipe & Casing Co.	1993	ORD980988307
Reynolds Metals Co.	1996	ORD009412677
Rhone Poulenc Inc.	1984	ORD990659492
Teledyne Wah Chang	1985	ORD050955848
Union Pacific Railroad Co. Tie-Treating Plant	1990	ORD009049412
Washington ALCOA (Vancouver Smelter)	1989	WAD009045279
American Crossarm & Conduit Co.	1989	WAD057311094
Bangor Naval Submarine Base	1990	WA5170027291
Bonneville Power Administration Ross Complex (USDOE)	1990	WA1891406349
Centralia Municipal Landfill	1989	WAD980836662
Commencement Bay, Near Shore/Tide Flats	1984	WAD980726368
Commencement Bay, South Tacoma Channel	1984	WAD980726301
Hamilton Island Landfill (USA/COE)	1992	WA5210890096
Hanford 100-Area (USDOE)	1989	WA3890090076
Harbor Island (Lead)	1984	WAD980722839
Jackson Park Housing Complex (USNavy)	1995	WA3170090044
Naval Air Station, Whidbey Island (Ault Field)	1986	WA5170090059
Naval Air Station, Whidbey Island (Seaplane Base)	1986	WA6170090058
Northwest Transformer (South Harkness Street)	1989	WAD027315621
Oeser Company	1997	WAD008957243
Old Navy Dump/Manchester Lab (USEPA/NOAA)	1996	WA8680030931
Pacific Sound Resources (Wyckoff West Seattle)	1995	WAD009248287

Region 10 cont.

Washington cont.	Date	EPA Facility ID
Puget Sound Naval Shipyard Complex	1995	WA2170023418
Quendall Terminals	1985	WAD980639215
Seattle Municipal Landfill (Kent Highlands)	1989	WAD980639462
Tulalip Landfill	1992	WAD980639256
Western Processing Co., Inc.	1984	WAD009487513
Wyckoff Co./Eagle Harbor (2 areas)	1986	WAD009248295

Table 2. List of published reports (927), which include Hazardous Waste Site Reports (WSR), Preliminary Natural Resource Surveys (PNRS'), U.S. Air Force reports (USAF), and hazardous waste sites that have been evaluated at the time of publication. Sites in bold italic are included in this volume.

Region 1

Connecticut	WSR	PNRS	USAF EPA FACILITY ID
29 Pomperaug Road			CTD983884412
Army Engine Plant/Stratford			CT3213822924
Barkhamsted-New Hartford Landfill	1989		CTD980732333
Beacon Heights Landfill	1984		CTD072122062
Black Rock Shipyard			CT0001407865
Broad Brook Mill			CT0002055887
Dexter Corp.			CTD001155761
Gallup's Quarry	1989		CTD108960972
Hamilton Standard			CTD001145341
Kellogg-Deering Well Field	1987		CTD980670814
Laurel Park, Inc.		1988	CTD980521165
Linemaster Switch Corp.			CTD001153923
New London Submarine Base	1990		CTD980906515
Nutmeg Valley Road			CTD980669261
Old Southington Landfill			CTD980670806
O'Sullivans Island	1984		CTD980667992
Pharmacia & Upjohn Company			CTD001168533
Precision Plating Corp.			CTD051316313
Raymark Industries, Inc.	1996		CTD001186618
Remington Arms Company Incorporated			CTD001453216
Revere Textile Prints Corp.			CTD004532610
Sikorsky Aircraft Division UTC			CTD001449784
Solvents Recovery Service of New England			CTD009717604
Yaworski Waste Lagoon	1985	1989	CTD009774969
Massachusetts			

Atlas Tack Corp.	1989	MAD001026319
Baird & McGuire		MAD001041987
Blackburn and Union Privileges	1993	MAD982191363

Region 1 cont

Massachusetts cont.	WSR	PNRS	USAF EPA FACILITY ID
Boston Gas Co. Lng. Plt.			MAD087137329
Cannon Engineering Corp. (CEC)		1988	MAD079510780
Charles-George Reclamation Landfill	1987	1988	MAD003809266
Eastern Gas & Fuel			MAD981063142
Fort Devens			MA7210025154
Fort Devens-Sudbury Training Annex			MAD980520670
GE - Housatonic River	1999		MAD002084093
Groveland Wells	1987	1988	MAD980732317
Hanscom Field/Hanscom Air Force Base	1995		MA8570024424
Haverhill Municipal Landfill	1985		MAD980523336
Hocomonco Pond			MAD980732341
Holyoke Gas Works (Former)			MAD985298108
Industri-Plex	1987	1988	MAD076580950
Iron Horse Park			MAD051787323
Materials Technology Laboratory (USArmy)	1995		MA0213820939
Natick Laboratory Army Research, D&E Center	1995		MA1210020631
Naval Weapons Industrial Reserve Plant			MA6170023570
New Bedford Harbor			MA2690390024
New Bedford Site (Acushnet Estuary)	1984		MAD980731335
Norwood PCB's			MAD980670566
Nuclear Metals			MAD062166335
Nyanza Chemical Waste Dump	1987	1993	MAD990685422
Otis Air National Guard Base/Camp Edwards			MA2570024487
Plymouth Harbor/Cannon Engineering Corp.	1984	1990	MAD980525232
PSC Resources			MAD980731483
Re-Solve, Inc.			MAD980520621
Rose Disposal Pit			MAD980524169
Salem Acres		1991	MAD980525240
Shpack Landfill			MAD980503973
Silresim Chemical Corp.			MAD000192393
South Weymouth Naval Air Station	1995		MA2170022022
Sullivan's Ledge	1987	1989	MAD980731343
Sutton Brook Disposal Area			MAD980520696

Massachusetts cont.	WSR	PNRS	USAF	EPA FACILITY ID
W. R. Grace and Co., Inc. (Acton Plant)				MAD001002252
Wells G&H		199	90	MAD980732168
Zeneca Specialties				MAD051505477
Maine				
Brunswick Naval Air Station	1987	199)1	ME8170022018
Eastern Surplus Co.				MED981073711
Eastland Woolen Mill	2002			MED980915474
Holtrachem				MED000242701
Loring Air Force Base				ME9570024522
Maine Yankee Atomic Power Company				MED071749329
McKin Company	1984			MED980524078
O'Connor Company	1984			MED980731475
O'Connor Company Main Office				MED018980227
Pinette's Salvage Yard				MED980732291
Portsmouth Naval Shipyard	1995			ME7170022019
Saco Municipal Landfill	1989			MED980504393
Saco Tannery Waste Pits				MED980520241
Union Chemical Co., Inc.				MED042143883
Winthrop Landfill				MED980504435
New Hampshire				
Auburn Road Landfill		198	39	NHD980524086
Beede Waste Oil	1997			NHD018958140
Coakley Landfill	1985	198	39	NHD064424153
Dover Municipal Landfill	1987	199	90	NHD980520191
Fletcher's Paint Works & Storage	1989			NHD001079649
Gilson Road Tar Pit				NHD980503304
Grugnale Waste Disposal Site	1985			NHD069911030
Kearsarge Metallurgical Corp				NHD062002001
Keefe Environmental Services				NHD092059112
Mohawk Tannery				NHD981889629
Mottolo Pig Farm				NHD980503361

Region 1 cont.

New Hampshire cont.	WSR	PNRS	USAF EPA FACILITY ID
_ New Hampshire Plating Co.	1992		NHD001091453
Ottati & Goss/Kingston Steel Drum			NHD990717647
Pease Air Force Base	1990	1991	NH7570024847
Savage Municipal Water Supply	1985		NHD980671002
Somersworth Sanitary Landfill			NHD980520225
South Municipal Water Supply Well			NHD980671069
Sylvester	1985		NHD099363541
Tibbetts Road			NHD989090469
Tinkham Garage			NHD062004569
Town Garage/Radio Beacon			NHD981063860
Rhode Island			

Central Landfill			RID980520183
Centredale Manor Restoration Project			RID981203755
Davis (GSR) Landfill			RID980731459
Davis Liquid Waste	1987		RID980523070
Davisville Naval Construction Battalion Center	1990	1994	RI6170022036
Landfill & Resource Recovery, Inc. (L&RR)			RID093212439
Newport Naval Education & Training Center	1990	1994	RI6170085470
Peterson/Puritan, Inc.	1987	1990	RID055176283
Picillo Farm	1987	1988	RID980579056
Rose Hill Regional Landfill	1989	1994	RID980521025
Stamina Mills, Inc.	1987	1990	RID980731442
West Kingston Town Dump/URI Disposal	1992		RID981063993
Western Sand & Gravel	1987		RID009764929

Vermont

Bennington Municipal Sanitary Landfill		VTD981064223
BFI Sanitary Landfill (Rockingham)	1989	VTD980520092
Burgess Brothers Landfill		VTD003965415
Darling Hill Dump		VTD980520118
Elizabeth Mine		VTD988366621
Ely Copper Mine		VTD988366571

Vermont cont.	WSR	PNRS	USAF EPA FACILITY ID
Old Springfield Landfill	1987	1988	VTD000860239
Parker Sanitary Landfill			VTD981062441
Pine Street Canal			VTD980523062
Tansitor Electronics, Inc.			VTD000509174

Region 2

New Jersey			
A.O. Polymer			NJD030253355
Albert Steel Drum	1984		NJD000525154
Allied Corp.			NJD980530604
American Cyanamid Co.	1985		NJD002173276
Asbestos Dump			NJD980654149
Atlantic Aviation Corp.			NJD011308988
Atlantic Development 11	1984		NJD980528731
Bog Creek Farm	1984	1992	NJD063157150
Brick Township Landfill	1984		NJD980505176
Bridgeport Rental & Oil Services		1990	NJD053292652
Brook Industrial Park	1989		NJD078251675
Burnt Fly Bog		1992	NJD980504997
Chemical Control	1984		NJD000607481
Chemical Insecticide Corp.	1990	1992	NJD980484653
Chemical Leaman Tank Lines, Inc.		1989	NJD047321443
Chemsol, Inc.			NJD980528889
Chipman Chemical Co.	1985		NJD980528897
Ciba-Geigy Corp.	1984	1989	NJD001502517
Cinnaminson Ground Water Contamination			NJD980785638
Combe Landfill South			NJD094966611
Cornell Dubilier Electronics, Inc.	1999		NJD981557879
Cosden Chemical Coatings Corp.	1987		NJD000565531
CPS/Madison Industries		1990	NJD002141190
Curcio Scrap Metal, Inc.	1987		NJD011717584
De Rewal Chemical Co.	1985		NJD980761373

New Jersey cont.	WSR	PNRS	USAF	EPA FACILITY ID
Delilah Road				NJD980529002
Denzer & Schafer X-Ray Co.	1984	1992		NJD046644407
Diamond Alkali Co.	1984			NJD980528996
Diamond Head Oil Refinery Div.				NJD092226000
Diamond Shamrock Corp.				NJD002442408
D'Imperio Property				NJD980529416
E.I. Du Pont de Nemours				NJD002385730
Ellis Property				NJD980529085
Emmell's Septic Landfill	2002			NJD980772727
Evor Phillips Leasing		1992		NJD980654222
Ewan Property				NJD980761365
Federal Aviation Admin. Tech. Center	1990			NJ9690510020
Federal Creosote				NJD0001900281
Fort Dix (Landfill Site)				NJ2210020275
Franklin Burn Site				NJD986570992
Fried Industries				NJD041828906
GAF Corp.				NJD980771638
GAF Corp Gloucester City				NJD043292606
Garden State Cleaners Co.	1989			NJD053280160
Global Sanitary Landfill	1989	1991		NJD063160667
Goose Farm				NJD980530109
Grand Street Mercury				NJ0001327733
Helen Kramer Landfill		1990		NJD980505366
Hercules, Inc. (Gibbstown Plant)	1984	1993		NJD002349058
Higgins Disposal	1989			NJD053102232
Higgins Farm	1989			NJD981490261
Hopkins Farm				NJD980532840
Horseshoe Road	1984,1995			NJD980663678
Iceland Coin Laundry and Dry Cleaning				NJ0001360882
Ideal Cooperage Inc.	1984			NJD980532907
Imperial Oil Co., Inc./Champion Chemical				NJD980654099
Industrial Latex Corp.	1989			NJD981178411
ISP Environmental Services, Inc.				NJD002185973

New Jersey cont.	WSR	PNRS	USAF I	EPA FACILITY ID
Jackson Township Landfill	1984			NJD980505283
JIS Landfill				NJD097400998
Kauffman & Minteer, Inc.	1989			NJD002493054
Kin-Buc Landfill	1984	1990		NJD049860836
King of Prussia				NJD980505341
Koppers Co. Inc./Seaboard Plant	1984			NJD002445112
Krysowaty Farm	1985			NJD980529838
LCP Chemicals, Inc.	1999			NJD079303020
Lightman Drum Company				NJD014743678
Lipari Landfill				NJD980505416
Lone Pine Landfill		1992		NJD980505424
Lustrelon Inc.				NJD008388951
M&T Delisa Landfill				NJD085632164
Mannheim Avenue Dump				NJD980654180
Martin Aaron, Inc.				NJD014623854
Matteo Brothers				NJD011770013
Maywood Chemical Co.				NJD980529762
McGuire Air Force Base				NJ0570024018
Metaltec/Aerosystems				NJD002517472
Middlesex Sampling Plant (DOE)	2002			NJ0890090012
Military Ocean Terminal (Landfill)				NJ0210022752
Mobil Chemical Co.	1984			NJD000606756
Monroe Township Landfill				NJD980505671
Myers Property				NJD980654198
Nascolite Corp.				NJD002362705
Naval Air Engineering Center				NJ7170023744
Naval Weapons Station Earle (Site A)				NJ0170022172
NL Industries	1984	1992		NJD061843249
Pepe Field				NJD980529598
Perth Amboy PCB's	1984			NJD980653901
PJP Landfill	1984	1990		NJD980505648
Pohatcong Valley Groundwater Contamination				NJD981179047

New Jersey cont.	WSR	PNRS	USAF EPA FACILITY ID
Pomona Oaks Residential Wells			NJD980769350
Price Landfill	1984	1993	NJD070281175
Puchack Well Field	1999		NJD981084767
Pulverizing Services			NJD980582142
PVSC Sanitary Landfill	1984		NJD980529671
Quanta Resources			NJD000606442
Raritan Arsenal			NJD986589190
Reich Farms			NJD980529713
Renora, Inc.			NJD070415005
Rhone-Poulenc Chemical Co.			NJD099293326
Ringwood Mines/Landfill			NJD980529739
Roebling Steel Co.	1984	1990	NJD073732257
Roosevelt Drive-In	1984		NJD030250484
Route 561 Dump	2002		NJ0000453514
Safety-Kleen (Rollins Environmental)			NJD053288239
Sayreville Landfill	1984	1990	NJD980505754
Scientific Chemical Processing	1984	1989	NJD070565403
Sharkey Landfill		1990	NJD980505762
Shield Alloy Corp.			NJD002365930
South Jersey Clothing Co.	1989		NJD980766828
Swope Oil & Chemical Co.			NJD041743220
Syncon Resins	1984	1992	NJD064263817
Tabernacle Drum Dump			NJD980761357
Troy Chemical			NJD002144517
United States Avenue Burn	2002		NJ0001120799
Universal Oil Products (Chemical Division)	1984		NJD002005106
Upper Deerfield Township Sanitary Landfill			NJD980761399
Ventron/Velsicol	1984		NJD980529879
Vineland Chemical Co., Inc.		1990	NJD002385664
W.R. Grace/Wayne Interim Storage (USDOE)			NJ1891837980
Waldick Aerospace Devices, Inc.		1990	NJD054981337
Welsbach & General Gas Mantle (Camden Radiation)			NJD986620995

New Jersey cont.	WSR	PNRS	USAF	EPA FACILITY ID
White Chemical Corp.	1984			NJD001239185
White Chemical Corp.				NJD980755623
Williams Property	1984	1992		NJD980529945
Wilson Farm				NJD980532824
Witco Chemical Corp. (Oakland Plant)				NJD045653854
Woodland Route 532 Dump				NJD980505887
Woodland Route 72 Dump				NJD980505879
Zschiegner Refining Company	1999			NJD986643153
New York				
93rd Street School				NYD980780829
Action Anodizing, Plating, & Polishing Corp.	1989			NYD072366453
ALCOA Aggregation Site				NYD980506232
American Thermostat Co. Superfund Site				NYD002066330
Anchor Chemicals				NYD001485226
Applied Environmental Services	1985	1991		NYD980535652
BEC Trucking		1990		NYD980768675
Bioclinical Laboratories, Inc.				NYD980768683
Brewster Well Field				NYD980652275
Brookhaven National Laboratory (USDOE)	1990			NY7890008975
Byron Barrel & Drum				NYD980780670
C & J Disposal Leasing Co. Dump	1989			NYD981561954
Carroll & Dubies Sewage Disposal	1989			NYD010968014
Circuitron Corp.				NYD981184229
Claremont Polychemical				NYD002044584
Clothier Disposal				NYD000511576
Colesville Municipal Landfill				NYD980768691
Computer Circuits	2002			NYD125499673
Consolidated Iron and Metal				NY0002455756
Cornwall Lf.				NYD982276933
Croton Point Sanitary Landfill				NYD980508048
Dupont/Necco Park				NYD980532162
Endicott Village Well Field				NYD980780746

New York cont.	WSR	PNRS	USAF EPA FACILITY ID
FMC Corp.			NYD000511857
Forest Glen Mobile Home Subdivision			NYD981560923
Fort Totten			NY2213720897
Fulton Terminals			NYD980593099
G.E. Moreau			NYD980528335
General Motors (Central Foundry Division)		1989	NYD091972554
Genzale Plating Co.			NYD002050110
Goldisc Recordings, Inc.			NYD980768717
Griffiss Air Force Base (Former)-AFBCA/OL-X			NY4571924451
Harbor at Hastings Associates			NY0001817097
Haviland Complex			NYD980785661
Hertel Landfill			NYD980780779
Hooker (102nd Street)			NYD980506810
Hooker Chemical/Ruco Polymer Corp.			NYD002920312
Hooker Hyde Park			NYD000831644
Hooker S Area			NYD980651087
Hudson Coal Tar			NYD987039104
Hudson River PCB's		1989	NYD980763841
Jackson Steel			NYD001344456
Johnstown City Landfill			NYD980506927
Jones Chemicals, Inc.			NYD000813428
Jones Sanitation	1987		NYD980534556
Lawrence Aviation Industries Inc			NYD002041531
Li Tungsten Corp.	1992	1993	NYD986882660
Liberty Heat Treating Co. Inc.			NYD053169694
Liberty Industrial Finishing	1985	1993	NYD000337295
Love Canal			NYD000606947
Ludlow Sand & Gravel			NYD013468939
Malta Rocket Fuel Area			NYD980535124
Marathon Battery Corp.	1984	1989	NYD010959757
		1000	
Mattiace Petrochemical Co., Inc.	1989	1990	NYD000512459
Mattiace Petrochemical Co., Inc. Mercury Refining Inc.	1989	1990	NYD000512459 NYD048148175

New York cont.	WSR	PNRS	USAF EPA FACILITY ID
Newstead Site			NYD986883387
Niagara County Refuse			NYD000514257
Niagara Mohawk Power Co. (Saratoga Springs)			NYD980664361
North Sea Municipal Landfill	1985	1989	NYD980762520
Old Roosevelt Field Contaminated GW Area			NYSFN0204234
Pasley Solvents & Chemicals, Inc.			NYD991292004
Pennsylvania Ave. Municipal Landfill			NY6141790018
Peter Cooper	1999		NYD980530265
Pfohl Brothers Landfill			NYD986875979
Pollution Abatement Services			NYD000511659
Port Washington Landfill	1984	1989	NYD980654206
Preferred Plating Corp.			NYD980768774
Reynolds Metals Co.		1996	NYD002245967
Richardson Hill Road Landfill/Pond			NYD980507735
Rowe Industries Groundwater Contamination	1987	1991	NYD981486954
Sidney Landfill	1989		NYD980507677
Sinclair Refinery			NYD980535215
Smithtown Groundwater Contamination			NY0002318889
Solvent Savers			NYD980421176
Stanton Cleaners Area Groundwater			
Contamination	2002		NYD047650197
Suffern Village Well Field			NYD980780878
Syosset Landfill			NYD000511360
Tri-Cities Barrel Co., Inc.			NYD980509285
Tronic Plating Co., Inc.			NYD002059517
Volney Municipal Landfill			NYD980509376
Wallkill Landfill			NYD980535496
Warwick Landfill			NYD980506679
Wide Beach Development			NYD980652259
York Oil Co.			NYD000511733

Region 2 cont.

Puerto Rico	WSR	PNRS	USAF EPA FACILITY ID
Clear Ambient Services Co.	1984		PRD090416132
Frontera Creek	1984	1991	PRD980640965
GE Wiring Devices			PRD090282757
Juncos Landfill			PRD980512362
Naval Security Group Activity	1989	1991	PR4170027383
Upjohn Facility			PRD980301154
V&M/Albaladejo Farms	1997		PRD987366101
Vega Alta Public Supply Wells			PRD980763775
Vega Baja Solid Waste Disposal	2002		PRD980512669
Virgin Islands			

Island Chemical Corp./V.I. Chemical Corp.	1996	VID980651095
Tutu Wellfield	1993	VID982272569

Region 3

Washington, D.C.			
Poplar Point Nursery			DCN000305662
Washington Gas Light Co.			DCD077797793
Washington Navy Yard	1999		DC9170024310
Delaware			
12th Street Landfill			DESFN0305510
Army Creek Landfill	1984		DED980494496
Chem-Solv, Inc.			DED980714141
Coker's Sanitation Service Landfills	1986	1990	DED980704860
Delaware City PVC Plant	1984		DE0001912757
Delaware Sand & Gravel	1984		DED000605972
Dover Air Force Base	1987	1989	DE8570024010
Dover Gas Light Co.	1987		DED980693550
E.I. Du Pont Newport Landfill	1987	1991,1992	DED980555122
Halby Chemical	1986	1990	DED980830954
Harvey & Knott Drum, Inc.			DED980713093

Delaware cont.	WSR	PNRS	USAF EPA FACILITY ID
Kent County Landfill	1989		DED980705727
Koppers Co. Facilities Site	1990		DED980552244
NCR Corp., Millsboro	1986		DED043958388
New Castle Spill Site	1984	1989	DED058980442
New Castle Steel	1984		DED980705255
NVF (Yorklyn)			DE0002014975
Old Brine Sludge Landfill	1984		DED980704894
Pigeon Point Landfill	1987		DED980494603
Sealand Limited	1989		DED981035520
Standard Chlorine Co.	1986		DED041212473
Sussex Co. Landfill #5	1989		DED980494637
Tybouts Corner Landfill	1984		DED000606079
Tyler Refrigeration Pit			DED980705545
Wildcat Landfill	1984		DED980704951

Maryland

68th Street Dump/Industrial Enterprises	2002		MDD980918387
Allied Chemical			MDD069396711
Anne Arundel County Landfill	1989		MDD980705057
Bethlehem Steel Sparrows Point Plant			MDD053945432
Brandywine DRMO			MD9570024803
Bush Valley Landfill	1989	1993	MDD980504195
Central Chemical Corporation	1999		MDD003061447
Chemical Metals Industries, Inc.			MDD980555478
Hawkins Pt / MD. Port Admin.			MDD000731356
Indian Head Naval Surface Warfare Center	1984	1997	MD7170024684
Joy Reclamation Co.	1984		MDD030321178
Kane & Lombard Street Drums			MDD980923783
Maryland Port Admin.			MDD030324073
Mid-Atlantic Wood Preservers, Inc.			MDD064882889
Naval Surface Warfare Center - White Oak			MD0170023444
Naval Training Center Bainbridge			MDD985397256
Ordnance Products, Inc.	1995		MDD982364341

Region 3 cont.

Maryland cont.	WSR	PNRS	USAF	EPA FACILITY ID
Sand, Gravel & Stone Site	1984	1990		MDD980705164
Southern Maryland Wood Treating	1987			MDD980704852
Spectron, Inc.		1997		MDD000218008
U.S. Agricultural Center Beltsville (2 Tenants)	1995			MD0120508940
USA Aberdeen - Edgewood	1986			MD2210020036
USA Aberdeen - Edgewood: Bush River Watershed		1994		MD2210020036
USA Aberdeen - Edgewood: Gun Powder River Watershed		1994		MD2210020036
USA Aberdeen - Michaelsville	1986			MD3210021355
USA Aberdeen - Michaelsville: Romney Creek Watershed		1994		MD3210021355
USA Fort George Meade	1997			MD9210020567
USAF Andrews Air Force Base			1994	MD0570024000
USN Patuxent Naval Air Station	1996			MD7170024536
Woodlawn Co. Landfill	1987			MDD980504344

Pennsylvania

A.I.W. Frank/Mid-County Mustang			PAD004351003
Allied Signal Aerospace Co. Guidance and Control Systems			PAD003047974
Ambler Asbestos Piles			PAD000436436
American Electronic Lab, Inc.			PAD009224981
AMP Inc., Global Envir Services			PAD980693048
Austin Avenue Radiation Site	1993		PAD987341716
Bally Engineered Structure Incorporated			PAD061105128
Bell Landfill			PAD980705107
Berkley Products			PAD980538649
Berks Landfill Corp.			PAD000651810
Berks Sand Pit			PAD980691794
Boarhead Farms	1989		PAD047726161
Bridesburg Dump	1984		PAD980508402
Brodhead Creek			PAD980691760
Brown's Battery Breaking		1991	PAD980831812
Butler Mine Tunnel	1987		PAD980508451

Pennsylvania cont.	WSR	PNRS	USAF	EPA FACILITY ID
Butz Landfill				PAD981034705
Crater Resources, Inc./Keystone Coke Co./				
Alan Wood	1993			PAD980419097
Croydon TCE Spill	1986			PAD981035009
Delta Quarries & Disposal Inc./Stotler Landfill				PAD981038052
Douglassville Disposal	1987			PAD002384865
Drake Chemical				PAD003058047
Dublin TCE Site				PAD981740004
Eastern Diversified Metals				PAD980830533
Elizabethtown Landfill	1989			PAD980539712
Enterprise Avenue	1984			PAD980552913
FMC Marcus Hook	1996			PAD987323458
Foote Mineral Co.	1993			PAD077087989
GMT Microelectronics				PAD093730174
Hamburg Lead Site				PAD987332541
Havertown PCP Site				PAD002338010
Hebelka Auto Salvage Yard				PAD980829329
Hellertown Manufacturing Co.	1987			PAD002390748
Henderson Road		1989		PAD009862939
Industrial Lane				PAD980508493
Jack's Creek/Sitkin Smelting & Refining, Inc.	1989			PAD980829493
Keyser Ave. Borehole	1989			PAD981036049
Kimberton				PAD980691703
Lackawanna Refuse				PAD980508667
Lansdowne Radiation Site				PAD980830921
Letterkenny Army Depot (PDO Area)				PA2210090054
Letterkenny Army Depot (SE Area)				PA6213820503
Lord-Shope Landfill				PAD980508931
Lower Darby Creek Area				PASFN0305521
Malvern TCE				PAD014353445
Marjol Operation				PAD003041910
Metal Bank of America	1984	1990		PAD046557096
Metropolitan Mirror and Glass				PAD982366957

Pennsylvania cont.	WSR	PNRS	USAF EPA FACILITY ID
Middletown Air Field			PAD980538763
Mill Creek Dump			PAD980231690
Modern Sanitation Landfill			PAD980539068
Moyers Landfill			PAD980508766
MW Manufacturing			PAD980691372
National Vulcanized Fiber			PAD107214116
Naval Air Development Center (8 Areas)			PA6170024545
North Penn - Area 1			PAD096834494
North Penn - Area 12			PAD057152365
North Penn - Area 2			PAD002342475
North Penn - Area 5			PAD980692693
North Penn - Area 6			PAD980926976
North Penn - Area 7			PAD002498632
Novak Sanitary Landfill			PAD079160842
Occidental Chemical Corp./Firestone Tire and Rubber Co.	1989		PAD980229298
Old Wilmington Road GW Contamination			PAD981938939
Palmerton Zinc Pile			PAD002395887
Paoli Rail Yard	1987	1991	PAD980692594
Publicker/Cuyahoga Wrecking Plant	1990		PAD981939200
Raymark	1996		PAD039017694
Recticon/Allied Steel	1989		PAD002353969
Reeser's Landfill			PAD980829261
Revere Chemical Co.	1986		PAD051395499
Rohm and Haas Landfill	1986		PAD091637975
Sable Diamonds/US Metal & Coins			PAD982364234
Saegertown Industrial Area			PAD980692487
Salford Quarry	1997		PAD980693204
Shriver's Corner			PAD980830889
Stanley Kessler			PAD014269971
Strasburg Landfill			PAD000441337
Textron Lycoming			PAD003053709
Tinicum National Environmental Center	1986		PA6143515447

Pennsylvania cont.	WSR	PNRS	USAF	EPA FACILITY ID
Tonolli Corp.				PAD073613663
Tysons Dump #1	1985			PAD980692024
UGI Corp. Gas Manufacturing Plant	1995			PAD980539126
USN Philadelphia Naval Shipyard				PA4170022418
USN Ships Parts Control Center	1996			PA3170022104
Wade (ABM)	1984			PAD980539407
Walsh Landfill				PAD980829527
Whitmoyer Laboratories				PAD003005014
Willow Grove Naval Air and Air Reserve Station				PAD987277837
Virginia				
Abex Corp.	1989			VAD980551683
Arrowhead Associates Inc./Scovill Corp.	1989			VAD042916361
Atlantic Wood Industries, Inc.	1987	1990		VAD990710410
C & R Battery Co., Inc.	1987			VAD049957913
Chisman Creek	1984			VAD980712913
Clarke L.A. & Son				VAD007972482
Former Nansemond Ordnance Depot	2002			VAD123933426
H & H Inc., Burn Pit				VAD980539878
Hampton Roads Welders Site				VAD988197133
Kim-Stan Landfill	2002			VAD077923449
Marine Corps Combat and Development Command	1995			VA1170024722
NASA Wallops Island				VA8800010763
Langley Air Force Base/ NASA Langley Research Center	1995	1997		VA2800005033
Naval Amphibious Base Little Creek	2002			VA5170022482
Naval Surface Warfare Center - Dahlgren	1993			VA7170024684
Naval Weapons Station - Yorktown	1993	1997		VA8170024170
NWS Yorktown - Cheatham Annex				VA3170024605
Rentokil, Inc. (Virginia Wood Preserving Division)				VAD071040752
Richmond, Fredericksburg & Potomac Railroad		1994		VAD020312013
Saunders Supply Co.	1987			VAD003117389

Region 3 cont.

Virginia cont.	WSR	PNRS	USAF EPA FACILITY ID
St Juliens Creek Annex (U.S. Navy)			VA5170000181
Suffolk City Landfill			VAD980917983
U.S. Defense General Supply Center			VA3971520751
USA Fort Eustis	1996		VA6210020321
USA Woodbridge Research Facility			VA7210020981
USN Naval Shipyard Norfolk	1999		VA1170024813
USN Norfolk Naval Base	1997		VA6170061463
USN Radio Transmitting Facility			VA9170022488

Region 4

Alabama

Alabama Wood Treating Corp Inc			ALD058221326
American Brass, Inc.	2002		ALD981868466
Ciba-Geigy Corp. (McIntosh Plant)	1990		ALD001221902
Gulf Oil Co.			ALD000604249
Interstate Lead Co. (ILCO)			ALD041906173
Olin Corp. (McIntosh Plant)	1990		ALD008188708
Redwing Carriers, Inc. (Saraland)	1989		ALD980844385
Stauffer Chemical Co. (Cold Creek Plant)		1990	ALD095688875
Stauffer Chemical Co. (Lemoyne Plant)			ALD008161176
T.H. Agriculture & Nutrition (Montgomery)			ALD007454085
US Naval Outlying Barin Field			AL2170024630
USAF Maxwell Air Force Base			AL0570024182

Florida

1989		FLD980221857
		FLD004145140
		FLD012978862
1984	1989	FLD008161994
		FLD020536538
		FLD981014368

Florida cont.	WSR	PNRS	USAF EPA FACILITY	ID
B&B Chemical Co., Inc.			FLD00457419	90
Bay Drum			FLD08878386	65
Beulah Landfill			FLD98049466	50
BMI-Textron			FLD0521729	54
Broward County-21st Manor Dump	1992		FLD98193050	06
Cabot/Koppers			FLD9807093	56
Cascade Park Gasification Plant			FLD9819319	59
Chemform, Inc.	1990		FLD0801744	02
Chevron Chemical Co. (Ortho Division)			FLD00406424	42
Coleman-Evans Wood Preserving Co.			FLD99127989	94
Cypress Garden Skis			FLD02950516	51
Davie Landfill			FLD98060228	88
Dubose Oil Products Co.			FLD00083336	58
Florida Petroleum Processors			FLD98418412	27
Florida Steel Corp.			FLD0504322	51
Gardinier Inc./ Ft Meade Mine			FLD00082742	28
Harris Corp. (Palm Bay Plant)	1986	1990	FLD00060233	34
Helena Chemical Co. (Tampa Plant)	1993		FLD05350269	96
Hipps Road Landfill			FLD98070980	02
Hollingsworth Solderless Terminal			FLD00411968	81
Kassauf-Kimerling Battery Disposal		1989	FLD98072782	20
Madison County Sanitary Landfill			FLD98101923	35
MRI Corporation	1997		FLD08878758	85
Munisport Landfill	1984		FLD08453544	42
Normandy Park Apartments			FLD9842297	73
Peak Oil Co./Bay Drum Co.			FLD00409180	07
Peele-Dixie Wellfield Site			FLD98425932	74
Pensacola Naval Air Station	1990		FL917002450	67
Pepper Steel & Alloys, Inc.			FLD03254458	87
Pickettville Road Landfill	1984	1990	FLD9805563	51
Piper Aircraft/Vero Beach Water & Sewer			FLD00405428	84
Pleasant Grove Landfill			FLD98416976	63
Reeves SE Corp Southeastern Wire Div.			FLD00082488	88

Region 4 cont.

Florida cont.	WSR	PNRS	USAF EPA FACILITY ID
Reeves Southeastern Galvanizing Corp.			FLD000824896
Sapp Battery Salvage		1989	FLD980602882
Schuylkill Metals Corp.			FLD062794003
Sherwood Medical Industries			FLD043861392
Sixty-Second Street Dump	1984	1989	FLD980728877
Solitron Devices, Inc.			FLD032845778
Solitron Microwave	2002		FLD045459526
Southern Solvents, Inc			FL0001209840
St. Augustine Gas Company			FLD101835528
Standard Auto Bumper Corp.	1989		FLD004126520
Stauffer Chemical Co. (Tampa Plant)	1993		FLD004092532
Stauffer Chemical Co. (Tarpon Springs)	1993		FLD010596013
Sydney Mine Sludge Ponds		1989	FLD000648055
Taylor Road Landfill			FLD980494959
Trans Circuits, Inc.			FLD091471904
US NASA Kennedy Space Center			FL6800014585
USAF Cape Canaveral AFB			FL2800016121
USAF Eglin AFB Armament Division			FL8570024366
USAF Homestead AFB			FL7570024037
USAF MacDill AFB			FL2971590003
USAF NAS Key West (Boca Chica)			FL6170022952
USAF Patrick AFB			FL2570024404
USAF Tyndall Air Force Base	1997		FL1570024124
USCG Station Key West			FL1690331300
USN Air Station Cecil Field	1990		FL5170022474
USN NAS Jacksonville	1990		FL6170024412
USN Naval Air Station Mayport			FL9170024260
USN Naval Air Station Whiting Field Site 5	1996		FL2170023244
USN Naval Coastal Systems Ctr.			FL8170023792
Whitehouse Oil Pits			FLD980602767
Wilson Concepts of Florida, Inc.			FLD041184383
Wingate Road Municipal Incinerator Dump			FLD981021470
Woodbury Chemical Co. (Princeton Plant)	1989		FLD004146346

Florida cont.	WSR	PNRS	USAF EPA FACILITY ID
Zellwood Ground Water Contamination			FLD049985302
Georgia			
Brunswick Wood Preserving	1997		GAD981024466
Cedartown Industries, Inc.			GAD095840674
Cedartown Municipal Landfill			GAD980495402
Diamond Shamrock Corp. Landfill			GAD990741092
Camilla Wood Preserving Company	1999		GAD008212409
Firestone Tire & Rubber Co. (Albany Plant)			GAD990855074
Hercules 009 Landfill			GAD980556906
Hercules Inc.			GAD004065520
International Paper Co.			GAD000827444
LCP Chemicals Georgia Inc		1995	GAD099303182
Marine Corps Logistics Base			GA7170023694
Mathis Brothers Landfill			GAD980838619
Monsanto Corp. (Augusta Plant)			GAD001700699
New Sterling Landfill			GAD980495451
Robins Air Force Base			GA1570024330
T.H. Agriculture & Nutrition (Albany)			GAD042101261
Terry Creek Dredge Spoil Areas/ Hercules Outfall	1997		GAD982112658
Woolfolk Chemical Works, Inc.			GAD003269578
Mississippi			
Chemfax, Inc.	1995		MSD008154486
Davis Timber Company			MSD046497012
Gautier Oil Co., Inc.	1989		MSD098596489
Naval Construction Battalion Center			MS2170022626
Southeast Mississippi Industrial Council			MSD980403240
USAF Keesler AFB			MS2570024164
North Carolina			
ABC One Hour Cleaners	1989		NCD024644494

ABC One Hour Cleaners	1989	NCD024644494
Camp Lejeune Military Res. (U.S. Navy)	1989	NC6170022580
Charles Macon Lagoon & Drum Storage		NCD980840409

Region 4 cont.

North Carolina cont.	WSR	PNRS	USAF EPA FACILITY ID
Cherry Point Marine Corps Air Station			NC1170027261
Dockery Property			NCD980840342
FCX, Inc. (Washington Plant)	1989		NCD981475932
Geigy Chemical Corp. (Aberdeen Plant)			NCD981927502
General Electric Co./Shepherd Farm			NCD079044426
Georgia-Pacific Corporation Hardwood Sawmill			NCD000813592
Koppers Co. Inc. (Morrisville Plant)			NCD003200383
National Starch & Chemical Corp.			NCD991278953
New Hanover County Airport Burn Pit	1989		NCD981021157
Old ATC Refinery			NCD986186518
Potter's Septic Tank Service Pits	1989		NCD981023260
Reasor Chemical Company			NCD986187094
Triangle Pacific Corp. IXL Division			NDC087336335
Weyerhaeuser Co. Plymouth Wood Treating Plan	t		NCD980601587

South Carolina

Allied Terminals		SC0000861054
Beaufort County Landfill		SCD980844260
Calhoun Park Area	1993	SCD987581337
Carolawn, Inc.		SCD980558316
Charleston Landfill		SCD980846034
Columbia Nitrogen		SC0001040393
Geiger (C&M Oil)	1984	SCD980711279
Helena Chemical Co. Landfill	1989	SCD058753971
International Paper Co.		SCD055915086
Kalama Specialty Chemicals		SCD094995503
Koppers Co., Inc. (Charleston Plant)	1993	SCD980310239
Leonard Chemical Co., Inc		SCD991279324
Lexington County Landfill Area		SCD980558043
Macalloy Corporation		SCD003360476
Naval Shipyard - Charleston		SC0170022560
Naval Weapons Station - Charleston		SC8170022620
Palmetto Recycling, Inc.		SCD037398120

South Carolina cont.	WSR	PNRS	USAF EPA FACILITY ID
Para-Chem Southern, Inc.			SCD002601656
Parris Island Marine Corps Recruit Depot		1995	SC6170022762
Savannah River Site (USDOE)	1990		SC1890008989
USDOI Charleston Harbor Site		1993	SCD987572674
Wamchem, Inc.	1984		SCD037405362
Tennessee			

Tennessee Chemical Co.	TND003337839
------------------------	--------------

Region 5

Illinois	
Fort Sheridan	IL8214020838
Great Lakes Naval Training Center	NA
Outboard Marine Corp.	ILD000802827
Yeoman Creek Landfill	ILD980500102

Indiana

Grand Calumet/IHC Area of Concern	IND980500573

Michigan

Allied Paper/Portage Creek/Kalamazoo River	MID006007306
Cannelton Industries	MID980678627
Deer Lake	MID980679799
Ford Motor Co.	MID005057005
Hooker Montague Plant	MID006014906
Manistique River/Harbor, Area of Concern	MID981192628
Muskegon Chem Co.	MID072569510
Packaging Corp. of America	MID980794747
Shiawassee River	MID980794473
Thunder Bay	MID985640630
Torch Lake	MID980901946

Region 5 cont.

Minnesota cont.	WSR	PNRS	USAF EPA FACILITY ID
St Louis River/Interlake			MND039045430
Ohio			
Ashtabula River			NA
Fields Brook			OHD980614572
Wisconsin			
Ashland/NSP Lakefront Site			WISFN0507952
Boerke Site			WID981189632
Fort Howard Paper Co. Lagoons			WID006136659
Fort Howard Steel Incorporated			WID006141402
Fox River NRDA/PCB Releases			WI0001954841
Kohler Co. Landfill			WID006073225
Moss-American (Kerr-McGee Oil Co.)			WID039052626
Sheboygan Harbor & River			WID980996367

Region 6

LAD000239814 LAD980745632 LAD981916570 LAD980745541
LAD981916570 LAD980745541
LAD980745541
LAD985195346
LA0002368173
LAD980501423
LAD052510344
LAD985202464
LAD985169317
LAD981522998
LA0000187518
LA6170022788
LAD057482713
-

Louisiana cont.	WSR	PNRS	USAF EPA FACILITY ID
- Ponchatoula Battery Company			LAD062644232
PPG Industries Inc.			LAD008086506
Shell Oil Co. (Norco Mfg. Complex)			LAD008186579
Southern Shipbuilding Corp.			LAD008149015
Texas			
ALCOA (Point Comfort)/Lavaca Bay	1995		TXD008123168
Bailey Waste Disposal	1985	1989	TXD980864649
Brio Refining, Inc.	1989	1989	TXD980625453
Chevron Products Co.	1909	1909	TXD008090409
Corpus Christi Naval Air Station			TX7170022787
Crystal Chemical Co.	1989	1989	TXD990707010
Dixie Oil Processors, Inc.	1989	1989	TXD089793046
French, Ltd.	1989	1989	TXD980514814
Geneva Industries/Fuhrmann Energy			TXD980748453
Harris (Farley Street)			TXD980745582
Highlands Acid Pit	1989		TXD980514996
International Creosoting			TXD980625636
Malone Service Co Swan Lake Plant			TXD980864789
Motco, Inc.	1984		TXD980629851
North Cavalcade Street			TXD980873343
Palmer Barge Line			TXD068104561
Patrick Bayou			TX0000605329
Petro-Chemical Systems (Turtle Bayou)			TXD980873350
Sheridan Disposal Services			TXD062132147
Sikes Disposal Pits	1989		TXD980513956
South Cavalcade Street			TXD980810386
Sprague Road Groundwater			TX0001407444
Star Lake Canal Site - Port Neches			TX0001414341
State Marine	1999		TXD099801102
Tex-Tin Corp.	1989		TXD062113329
Triangle Chemical Co.			TXD055143705

Region 9

American Somoa	WSR	PNRS	USAF EPA FACILITY ID
Taputimu Farm	1984		ASD980637656
California			
Aerojet General Corp.			CAD980358832
Alameda Naval Air Station	1989		CA2170023236
Bolsa Chica Lowlands			NA
Brown & Bryant, Inc. (Arvin Plant)			CAD052384021
Camp Pendleton Marine Corps Base	1990	1992	CA2170023533
Caretaker Site Office Treasure Island			CA7170023330
Casmalia Resources			CAD020748125
Chevron USA Richmond Ref.			CAD009114919
Coast Wood Preserving	1984		CAD063015887
Concord Naval Weapons Station	1989,1993	1990	CA7170024528
Cooper Drum Co.	1993		CAD055753370
Crazy Horse Sanitary Landfill			CAD980498455
CTS Printex, Inc.	1989		CAD009212838
Del Amo Facility	1992		CAD029544731
Del Norte Pesticide Storage	1984		CAD000626176
El Toro Marine Corps Air Station	1989		CA6170023208
Fairchild Semiconductor Corp. (Mt View)			CAD095989778
Farallon Islands		1990	CAD981159585
Fleet Industrial Supply Center Oakland			CA4170090027
Fort Ord	1990	1992	CA7210020676
Fresno Municipal Sanitary Landfill			CAD980636914
GBF, Inc., Dump	1989,1993		CAD980498562
Gray Eagle Mine			CAD000629923
Hamilton Army Airfield			CA3570024288
Hewlett-Packard (620-640 Page Mill Road)	1989		CAD980884209
Hexcel Corporation			CAD058783952
Intersil Inc./Siemens Components	1989		CAD041472341
Iron Mountain Mine	1989	1989	CAD980498612
J.H. Baxter & Co.			CAD000625731
Jasco Chemical Corp.	1989		CAD009103318

California cont.	WSR	PNRS	USAF	EPA FACILITY ID
Jet Propulsion Laboratory (NASA)				CA9800013030
Kaiser Steel Corp. (Fontana Plant)				CAD008274938
Kearney-KPF				CAD981429715
Liquid Gold Oil Corp.	1984			CAT000646208
Long Beach Naval Station				CA2170023194
Louisiana-Pacific Corp.				CAD065021594
Mare Island Naval Shipyard				CA7170024775
McCormick & Baxter Creosoting Co.	1993			CAD009106527
McNamara & Peepe Sawmill				CA0001097088
M-E-W Study Area				CAD982463812
MGM Brakes	1984			CAD000074120
Modesto Ground Water Contamination				CAD981997752
Moffett Naval Air Station	1986			CA2170090078
Montrose Chemical Corp.	1985			CAD008242711
Naval Air Station Lemore				CA3170024381
Naval Shipyard Long Beach				CA1170090483
Naval Supply Center Pt Molate Site				CA0170090021
Newmark Ground Water Contamination				CAD981434517
North Island Naval Air Station				CA7170090016
Oakland Naval Supply Ctr./Alameda Fac				CA1170090012
Pacific Coast Pipe Lines	1989			CAD980636781
Pacific Missile Test Center				CA9170027271
Point Loma Naval Complex				CA1170090236
Port Hueneme Naval Constr. Battalion Ctr.				CA6170023323
Presidio of San Francisco				CA7210020791
Ralph Gray Trucking Co.				CAD981995947
Redwood Shore Landfill				CAD982462343
Rhone-Poulenc, Inc./Zoecon Corp.	1985			CAT000611350
Riverbank Army Ammunition Plant	1989			CA7210020759
Romic Chem Corp.				CAD009452657
Sacramento Army Depot				CA0210020780
San Diego Naval Training Center				CA7170090057
Seal Beach Naval Weapons Sta.				CA0170024491

Region 9 cont.

Kailua-Kona Landfill

California cont.	WSR	PNRS	USAF	EPA FACILITY ID
Shell Oil Co. Martinez				CAD009164021
Simpson-Shasta Ranch				CAD980637482
Sola Optical USA, Inc.	1989			CAD981171523
Solvent Service, Inc.				CAD059494310
South Bay Asbestos Area	1985			CAD980894885
Spectra-Physics, Inc.				CAD009138488
Sulphur Bank Mercury Mine				CAD980893275
Synertek, Inc. (Building 1)				CAD990832735
Tosco Corp Avon Ref.				CAD000072751
Travis Air Force Base	1990			CA5570024575
Treasure Island Naval Station - Hunters Pt. Annex	(1989	1989		CA1170090087
TRW Microwave, Inc (Building 825)				CAD009159088
United Heckathorn Co.				CAD981436363
Vandenberg AFB				CA9570025149
Guam				
Andersen Air Force Base	1993		1994	GU6571999519
Apra Harbor Naval Complex				GU7170090008
Naval Air Station Agana				GU0170027320
Naval Sta. Guam				GU7170027323
Hawaii				
ABC Chem Corp.				HID033233305
Barbers Point Naval Station				HI1170024326
Bellows Air Force Station				HI3570028719
Bellows Air Force Station Chemwood Treatment Co., Inc.				HI3570028719 HID981424138
	1995			
Chemwood Treatment Co., Inc.	1995			HID981424138
Chemwood Treatment Co., Inc. Del Monte Corporation (Oahu Plantation)	1995			HID981424138 HID980637631
Chemwood Treatment Co., Inc. Del Monte Corporation (Oahu Plantation) Hawaiian Western Steel Limited	1995			HID981424138 HID980637631 HID981581788

HID980497184

Hawaii cont.	WSR	PNRS	USAF EPA FACILITY ID
Kapaa Ldfl			HID980497176
Kewalo Incin Ash Dump			HID980497226
Kure Atoll, U.S. Coast Guard			HID984470039
Marine Corps Base Hawaii			HI6170022762
Naval Submarine Base			HI3170024340
Pearl City Landfill	1984		HID980585178
Pearl Harbor Naval Complex			HI4170090076
Pearl Harbor Naval Station	1992	1993	HI2170024341
Tern Island			NA
USCG Base Honolulu			HID984469890
Waiakea Pond/Hawaiian Cane Prdts Plant		1990	HID982400475
Trust Territories			
PCB Wastes			TTD980637987
U.S. Minor Outlying Islands			
Johnston Atoll			UM4210090003
Midway Island Naval Air Station			UM6170027332
Wake Island			
Wake Island Air Field			WQ0570090001

Region 10

Alaska				
Adak Naval Air Station	1993			AK4170024323
Alaska Pulp Corp.		1995		AKD009252487
Dutch Harbor Sediment Site				AKSFN1002080
Elmendorf Air Force Base	1990	1990		AK8570028649
Fort Richardson (US Army)	1995		1994	AK6214522157
Fort Wainwright				AK6210022426
Kennicott Copper Mining Co.				AKD983073123
Ketchikan Pulp Co.				AKD009252230
Klag Bay Site	2002			AK0002364768

Region 10 cont.

Alaska cont.	WSR	PNRS	USAF EPA FACILITY ID
Metlakatla Indian Community (Brownfield Site)			NA
Standard Steel & Metals Salvage Yard (USDOT)	1990	1990	AKD980978787
USAF Eareckson AFS			AK9570028705
USAF King Salmon Airport			AK3570028669
USDOC NOAA Nat Marine Fisheries Svc			AK0131490021
USNAVY Barrow Naval Arctic Research Lab			AK2170027245
Idaho			
Blackbird Mine	1995	1994	IDD980725832
Grouse Creek Mine			IDD000643254
St Maries Creosote			IDSFN1002095
Stibnite/Yellow Pine Mining Area			IDD980665459
Oregon			
Allied Plating, Inc.	1987	1988	ORD009051442
Coos Bay			OR0001389972
East Multnomah County Ground Water Contamination			ORD987185030
Gould, Inc.	1984	1988	ORD095003687
Hoy's Marine LLC			ORD987190840
Joseph Forest Products			ORD068782820
Martin-Marietta Aluminum Co.	1987	1988	ORD052221025
McCormick & Baxter Creosoting Co.			
(Portland Plant)	1995	1995	ORD009020603
Northwest Pipe & Casing Co.	1993		ORD980988307
Portland Harbor (Lower Willamette River)		1999	ORSFN1002155
Reynolds Metals Co.	1996		ORD009412677
Rhone Poulenc Inc.	1984		ORD990659492
Taylor Lumber and Treating, Inc.		1991	ORD009042532
Teledyne Wah Chang	1985	1988	ORD050955848
Union Pacific Railroad Co. Tie-Treating Plant	1990	1990	ORD009049412
Washington			
ALCOA (Vancouver Smelter)	1989	1989	WAD009045279
American Crossarm & Conduit Co.	1989	1988	WAD057311094

Region 10 cont.

Washington cont.	WSR	PNRS	USAF EPA FACILITY ID
Asarco Inc.			WAD010187896
Bangor Naval Submarine Base	1990	1991	WA5170027291
Bangor Ordnance Disposal (USNavy)		1991	WA7170027265
Boeing Company Plant 2			WAD009256819
Bonneville Power Administration Ross Complex (USDOE)	1990	1990	WA1891406349
Boomsnub/Airco			WAD009624453
Centralia Municipal Landfill	1989	1989	WAD980836662
Commencement Bay, Near Shore/Tide Flats	1984	1988	WAD980726368
Commencement Bay, South Tacoma Channel	1984		WAD980726301
Hamilton /Labree Roads GW Contamination			WASFN1002174
Hamilton Island Landfill (USA/COE)	1992	1991	WA5210890096
Hanford 100-Area (USDOE)	1989	1988	WA3890090076
Hansville Landfill			WAD000711804
Harbor Island (Lead)	1984	1989	WAD980722839
Jackson Park Housing Complex (USNavy)	1995		WA3170090044
Lower Duwamish Waterway			WA0002329285
Naval Air Station, Whidbey Island (Ault Field)	1986	1989	WA5170090059
Naval Air Station, Whidbey Island (Seaplane Base)	1986	1989	WA6170090058
Naval Undersea Warfare Engineering Station (4 Waste Areas)		1989	WA1170023419
Northwest Transformer (South Harkness Street)	1989	1988	WAD027315621
Oeser Company	1997		WAD008957243
Old Navy Dump/Manchester Lab (USEPA/NOAA)	1996	1995	WA8680030931
Olympic View Sanitary Landfill			WAD042804971
Pacific Sound Resources (Wyckoff West Seattle)	1995	1992	WAD009248287
Pacific Wood Treating			WAD009422411
Palermo Well Field Groundwater Contamination			WA0000026534
Puget Sound Naval Shipyard Complex	1995		WA2170023418
Quendall Terminals	1985		WAD980639215
Rayonier Inc Port Angeles Mill			WAD000490169
Seattle Municipal Landfill (Kent Highlands)	1989	1988	WAD980639462

Region 10 cont.

WSR	PNRS	USAF EPA FACILITY ID
		WAD980724173
	1992	WAD980976328
1992	1991	WAD980639256
		WAD009264284
		WA2170023426
		WAD988519708
	1996	WAD980639280
1984		WAD009487513
		WAD009041450
	1989,1995	WA4170090001
1986	1988	WAD009248295
	1992	1992 1992 1991 1996 1984 1989,1995

October 2002

Donald L. Evans Secretary, U.S. Department of Commerce

Vice Admiral Conrad C. Lautenbacher, Jr., USN (Ret.) Under Secretary for Oceans and Atmosphere and NOAA Administrator

Margaret A. Davidson Acting Assistant Administrator for Ocean Services and Coastal Zone Management, NOAA Ocean Service