Implementing A Nonlinear Optimization Procedure
to Estimate Disclosure Risk

Betsy S. Greenberg
Management Science and Information Systems Department
University of Texas at Austin

Task

Disclosure risk is usually assessed by estimating the number of individuals in a
population with unique characteristics. The problem is difficult because there are situations for
which samples from two or more very different populations can be nearly identical. This project
will examine an optimization procedure to estimate the number of unique individuals in a
population based on sample information. The resulting optimization program has multiple
solutions corresponding to different populations that could have been the source of the sample
data. Many if not all local solutions can be found using a new global optimization algorithm
called OptQuest NLP (OQNLP). The goal of this project was to modify the program to work on

large practical problems, test the procedure with public use Census data, and describe the result

and its limitations.

Background

Sets of characteristic values that are unique in a sample or data set are called sample
uniques and sets that are unique in a population are called population uniques. Sample uniques
may or may not be population uniques. All methods proposed for measuring disclosure risk
involve estimating the proportion of the sample uniques that correspond to population uniques or

the number of population uniques.

Various models have been proposed in the literature for estimating the number of
population uniques from a sample of data. The Poisson-Gamma (Bethlehem, et.al., 1990),

Poisson-lognormal (Skinner and Holmes, 1993), Dirichlet-multinomial (Tekemura, 1999), and

2
the negative binomial (Chen and Keller-McNulty, 1998) models have all been proposed. These
models assume that class sizes in a population follow a particular distribution. The performance
of these models depends on how well the population follows the model. Unfortunately,
performance is often poor, especially for low sampling fractions.

Greenberg and Zayatz (1992) proposed a procedure that is not dependent on a model for
the population of class sizes. Instead, they use the class sizes in the sample as an estimate for the
class sizes in the population and use the result to estimate the probability that a unique in the
sample is a unique in the population. The methods considered here are extensions of G&Z.

Let x, be the number of classes of size i in the population and let p; be the proportion of

classes that are of size i in the population. That is,

Pi = 4 Z/Ui . 1)

all i

Let m; be the number of classes of size j in the sample. If the p;’s are known, we can calculate

- piP(is 1y)
P = e=——""" _and 2
IR W LALD @

alli>j

> mPG, | J.)
e , 3
2 1-PQ, i) 3)

where P(j; |i,)is ahypergeometric probability.

- J AN, -]

P(j, [i,) =22 = @

N, ’
NS
where N, is the size of the population and N is the size of the sample.

P(i,|J,) is the probability that a class of size j appearing in the sample came from a

3
class of size i in the population and can be calculated using Bayes’ Rule in (2). Equation (3) is a

method of moments estimate for x,. Greenberg and Zayatz (1992) estimate p, from the

observed class proportions seen in the sample, so p, = m,/z m,. These estimates are then used

all i

to solve for P(i,|j;) and s, the number of uniques in the population. The algorithm can
potentially be improved by solving for all of the x; in (3) and using the revised estimates to
solve for p; P(i,|js) and g again. We call this the 1-step recursive procedure. The process

can also be repeated until the procedure converges as described in Greenberg (2002). The upper
limit on the sums in (1), (2), and (3) is selected so that the resulting class sizes are consistent

with the population size. That is,
M
N, = 2 i, 5)
is satisfied as closely as possible. The resulting values of ,, u,,--- provide estimates for the
number of uniques in the population, the number of pairs in the population, etc. Since data
coming from rarely occurring sets also has potential for disclosure, this is more useful than only
estimating the number of uniques.

The recursive algorithm, considered in Greenberg (2002) will converge to a population
from which the sample data could have been obtained. The estimates provided when sampling
rates are high to moderate are superior to those provided by other methods. Unfortunately, for
low sampling rates, there are situations for which samples from two or more very different
populations can be nearly identical. For such examples, the recursive algorithm may converge to

the “wrong” population. This problem is illustrated in Greenberg (2002) for two populations,

one with no uniques and another with many uniques.

4

In situations where two very different populations could have generated the same sample,

it will be very difficult, if not impossible, to find a method guaranteed to work well unless
additional information is used. When prior information is available, a starting point different
from the one based on the sample could be used, resulting in a much better solution. The
recursive algorithm converges to different solutions depending on the starting point. In the
absence of reliable prior information, it should be helpful to arbitrarily choose a variety of
starting points to see whether alternate solutions exist. In practice, although we can’t determine
which is the correct solution, it is useful in assessing disclosure risk to know that the data may

have come from two or more different populations.

Formulation of the Optimization Model

To eliminate p; from our formulation, we substitute (1) into (2), yielding

P(ip| Js) = 1, P(], |ip)/ Z,ukP(js |kp),for all (i,j)withi<M, j<S,j<i (6)
k> |

where S is the size of the largest class in the sample and M is the size of the largest class in the

population. The relaxed estimation equations (3) are:
wli-PO, |i,)]-Xm,Pli, | j.)= pdev, —ndev,,i=1,.M @
j=1

where pdev; and ndev; are nonnegative “deviation” variables representing the positive and
negative errors in the ith equation.
To reflect the fact that classes of size j in the sample, must arise from classes of size j or

larger in the population, we impose the constraints

Suzm,, j=1..8 (8)

i>]

5

In addition, all variables y;, P(i, | j;), pdev;, ndev;must be nonnegative. The objective is to

minimize some norm of the residuals in equation (7). If the Ly norm, the sum of absolute

residuals is used, the objective is:

M
minimize abserr = Z(pdevi + ndev;) 9)
i=1

Alternatively, if the L, norm is used, the objective would be to minimize the sum of the squared
deviations. If the Lnax norm is used, the objective would be minimize the largest deviation. For
this project, the Ly norm was used.

The resulting model minimizing (9) subject to (5), (6), (7), and (8) is an overdetermined
set of nonlinear equations. The optimization program attempts to find an approximate solution
to the set of equations by minimizing the sum of absolute residuals. Since the resulting nonlinear
program is nonconvex, it will have several local minima. Many solutions can be found using a
new global optimization algorithm called OptQuest NLP (OQNLP). Initial testing with artificial
data, described in Greenberg and Lasdon (2003), showed that the model does generate multiple
solutions. In some cases, especially when sampling rates are high, only one or two populations
are identified. When sampling rates are lower, more potential populations are identified, often
with very different values for the number of population uniques. The solutions generated in all
cases have the property that the expected samples are nearly equal to the input sample.

There is not likely to be a method that could accurately determine from which population
the sample was actually selected. However, when all potential solutions are identified, rather
than just one that may be incorrect, disclosure risk can be more accurately assessed. Similarly,
when multiple solutions are found for the number of species in a population, it will provide

information about the degree of uncertainty in the estimates.

Software Description

The optimization model was coded using The General Algebraic Modeling System
(GAMS) and solved using OQNLP with CONOPT. GAMS is specifically designed for
modeling linear, nonlinear and mixed integer optimization problems. Additional information

about GAMS is available at http://www.gams.com. Instances of the model are provided at

http://www.gamsworld.org/global/globallib/globalstat.htm under the names bayes2 10,

bayes2_ 20, bayes2 30, and bayes2_50. The full model is provided in Appendix A.

OQNLP is a multi-start heuristic algorithm designed to find global optima of smooth
constrained nonlinear programs. Multi-start means that OQNLP calls an NLP solver from
multiple starting points, and keeps track of all feasible solutions found by the solver. The
starting points are computed by a scatter search implementation called OptQuest. The scatter
search algorithm operates on a set of points, called reference points, which constitute good
solutions from previous solution efforts. The approach systematically generates new
combinations of the reference points to create new points, each of which may be mapped into an
associated feasible point. The process of generating new points is intended to balance two
important, but often contradictory requirements: intensification and diversification of the new
points. Additional information about OQNLP is available at

http://www.gams.com/dd/docs/solvers/ognlp.pdf.

The output for this project was produced with default parameter values for OQNLP
options and tolerances, except the maximum runtime was increased (from 1000 to 20000
seconds) and the distance and merit filters were turned off to obtain as many local solutions as
possible. The OQNLP options file has the default value of 1000 solver calls, so it was possible

for that many solutions to be generated.

http://www.gams.com/
http://www.gamsworld.org/global/globallib/globalstat.htm
http://www.gams.com/dd/docs/solvers/oqnlp.pdf

.

The NLP solved called by OQNLP was CONOPT. CONOPT is a solver for large-scale
nonlinear optimization (NLP) developed and maintained by ARKI Consulting & Development
A/S in Bagsvaerd, Denmark. It has been under continuous development for over 25 years.
CONOPT is a feasible path solver based on the GRG method with many newer extensions.
CONOPT has been designed to be efficient and reliable for a broad class of models, especially
for models where feasibility is difficult to achieve. Additional information about CONOPT is

available at http://www.gams.com/docs/conopt3.pdf.

Test Populations

Two populations were considered for this project. The first population is described in
Table 2 of "Estimation of the percent of unique population elements on a microdata file using the
sample” by L.V. Zayatz (Census/SRD/RR-91/08). The population had 56,372 individuals and
22,026 of these are in unique categories. Class sizes in the population ranged up to 298.
According to Steel (2003), a population with so many individuals in unique categories would be
unpublishable as a table for a county or tract publication. Table 3 of Census/SRD/RR-91/08
provides one sample from this population. Nineteen additional samples were randomly
generated for testing.

The second population considered was a similar population with 56,376 individuals.
Steel (2003) coarsened the categories used to tabulate the population data so that the disclosure
risk would be lower. Only 1,175 individuals in the second population were in unique categories.
Class size in the second population ranged up to 1835. Twenty samples were randomly selected
from this population for testing.

A sampling rate of 1 out of 6 was used to generate all populations including the one in

Table 3 of Census/SRD/RR-91/08. The data for each sample is included in the GAMS model in

http://www.gams.com/docs/conopt3.pdf

8
Appendix A. The following line from the program corresponds to the sample described in Table

3 of Census/SRD/RR-91/08.

1 5563, 2 591, 3 171, 4 97, 5 54, 6 44, 7 29,
23, 9 10, 10 10, 11 10, 12 12, 13 5, 14 5, 15 3, 16
17 3, 18 1, 19 1, 22 1, 66 1/;

00N\

That is, there were 5,563 uniques, 591 pairs, 171 groups of three, ... and one group of 66 in the
sample. Lines starting with an asterisks (*) in the GAMS code are comments, so samples can be

selected by moving the asterisks.

Modifications needed for census problems

Greenberg and Lasdon (2003) considered examples with population class sizes of no
more than 22. This project considered the populations with much larger class sizes (298 and
1,835). Solving problems of this magnitude required significant modifications to the programs.

1. Model reduction

The optimization model minimizing (9) subject to (5), (6), (7), and (8) has
S(2M -S +1)/2+3M variables with non-negativity constraints and

S(2M =S +1)/2+S+M +1 additional constraints. Eliminating P(i, |,) can reduce the model

size. To do this, define Em;, the expected number of classes of size j in the sample:

M
Em; => uP(j,li,) j=1,..58 (10)
i~
Substitute (10) into (6) to obtain
P(i,\j)=puP(j, i,)/Em;, forall (i,jywithi<M,j<S,j<i

which we substitute into (7) to eliminate P(i, |,). We obtain

el
ﬂi[l—P(Oslip)]—ﬂizmj%

j=1 j

= pdev; —ndev;, i=1,.M

which we simplify by noting that Z P(j5 | ip): 1. Finally, we obtain

j=0

i m.
U P(jS |ip{1— EmJ J: pdev; — ndev, , i=1,..,M (11)

=1 i

It is necessary to impose small positive lower bounds on Em; because it appears in the

denominator of (11):
Em; 2 eps j=1,..S (12)
where eps = 1.E-10 has sufficed for this project.

The formulation minimizing (9), subject to (5), (8), (10), (11) and (12) has 3M + S variables
with non-negativity constraints and 3S + M +1 additional constraints. For the first population with class
sizes up to 298 in the population, this reduction reduces the size of the problem from one with more than
18,000 variables and 14,000 constraints to one with less than 1000 variables and 500 constraints. For the
second populations with class sizes up to 1,835 the improvement if even more substantial. The problem
size is reduced from a model with over half a million variables and constraints to one with fewer than
3000 constraints and 6000 variables.

2. Smoothing Constraint
Optimal solutions of the above NLP estimation problem have many components of the

errors (where error; = pdev, —ndev,) in the estimator equations (11) equal to zero. This causes
many components of the estimate vector z,---, ,, to be zero. Examination of (11) shows that
the error in the ith estimator equation is the product of x, and the weighted sum of deviations

between the expected sample for the population and the actual sample. Hence if the ith error is

nonzero, u; must be nonzero. If the ith error is zero, x; can be nonzero if the second factor in

10
the product is zero. However it is rare for the second term to vanish, so zero errors usually imply

zero values for y; .

This “choppiness” leads to poor estimates when the true class size distribution is smooth.

This can be remedied by imposing smoothness constraints on the z; . Steel (1999) suggested that

a monotonicity constraint

YA i=1,.,M-1 (13)
would be appropriate. (13) was used to correct for choppiness and to reflect the belief that the
populations with disclosure risk have a high number of uniques, fewer pairs, etc. This adds an

additional M-1 constraints to the optimization problem.

3. Reducing solver problems leading to infeasibility

Numerical problems occur because the model involves both large numbers, such as the
population size and small probabilities. As a result, CONOPT initially failed to find a feasible
solution for one of the samples generated from the first population and all of the samples initially
tested for the second population. To improve the solver performance, the following changes
were made.

Values of P(j,|i,) less than a small threshold were set to zero. This reduced the

number of non-zero model coefficients, making the problem easier to solve. Sometimes
CONOPT fails when a derivative is very large. CONOPT uses a default value of
RTMAXJ=1.0E5. If derivatives larger than this default value are encountered, CONOPT fails to
find a solution. By increasing the value of RTMAXJ to 1.0E-8 (in the CONOPT options file)
and setting THRESH=1.E-6 (in the GAMS model provided in Appendix B), all samples for both

populations generated solutions.

11

For the second population considered in this project, the class size in the population
ranged up to 1,835, resulting in classes ranging up to 346 in one of the samples. To reduce the
size of the problem, a few problems were tested by allowing class sizes in the sample to be 50 or
less. The size of the sample falling into classes of size 50 or smaller was calculated and then the
population was assumed to be equal to six times that amount. Similarly, the size of the largest
class in the population was set to be equal to 350. The maximum values of 50 and 350 were set
somewhat arbitrarily, however initial test results showed that the results from the reduced

problem were very similar to the results from the full problem.

Results

For all 20 cases from each population, results were obtained from the optimization
model. A LOCALS.OUT file was generated with the objective and variable values for each
feasible solution. When multiple solutions are generated, it is not clear how to use the results to
estimate disclosure risk. One possibility is to be conservative and use the solution with the
largest value for z,, the number of uniques. Other possibilities are to use the mean or median of
the solutions obtained. The mean, median, and maximum were calculated using all of the
solutions reported that had objective values no larger than 10 times as large as the best objective
value. The cutoff of 10 was selected arbitrarily. The solution with the best objective value, the
mean, median, and maximum in addition to the number of solution used for these calculations is
listed in Tables 1 and 2. As expected, the solution with the lowest objective value is usually not
the one that is closest to the correct value.

Although duplicate solutions were deleted from the LOCALS file, many of the solutions
were very similar. As a result, the number of different values for the estimate of , is much
lower than the number of solutions. The number of different solutions (for the number of

uniques) is also listed in Tables 1 and 2.

12

The results for the optimization model appear to be too variable to use. The estimates are
especially poor for the second population described in Appendix B. Comparing the results for
the two populations, the objective values for the first population were much lower, averaging
about 1.6 for the first population and about 53 for the second. Similarly, many more solutions
were obtained for the first population, an average of 511 for the first population, compared to
only 38 for the second. Therefore, although the second population has fewer uniques, it appears
to be more difficult to estimate that number using the optimization method considered in this
project.

In both cases, the objective values obtained by GAMS/OQNLP/CONOPT are
considerably lower than the values obtained by calculating Em; using the true population values
in (10) and then calculating the deviation values using sample values in (11) and adding them up
asin (9). On average, these values were about 55 for the first population and 98 for the second.

For comparison, the estimates obtained using the method of Greenberg and Zayatz
(G&Z), 1-step of the recursive procedure, and two other methods (Bethlehem, et.al. and
Hashino) are given in Tables 1 and 2. Both Bethlehem, et.al. and Hashino appear to be very
biased. G&Z and the solutions from the 1-step recursive procedure appear to be better. For the
first population, the 1-step procedure improves the result from the G&Z initial solution in all 20
samples. Both the G&Z and the 1-step estimates are consistent overestimates for population 1.
This is a desirable property, since it would be preferable to overestimate disclosure risk. The
average value of the bias is 2564 for G&Z and 1689 for the 1-step procedure.

For the second population, the 1-step procedure improves the result in the majority (15
out of 20) of the samples. That is, the results from the 1-step procedure are usually closer to the

true value. G&Z estimates for this population are biased high in 19 out of 20 cases for an

13

average bias of 123. The estimates from the 1-step procedure are biased high in 18 out of the 20

cases for an average bias of 105.

Recommendations

The variability in the results from the optimization procedure may be due to the
difficulties in solving the nonlinear program or it may be due to the lack of information in the
sample. Further study is needed to see if the optimization procedure can be improved. If
solutions can be obtained with lower objective values, it is likely that the results would be more

useful.
Further study is needed to see if the 1-step recursive procedure is useful and whether

allowing the procedure to converge would further improve the solutions.

References

Bethlehem, J.G., Keller, W.J., and Pannekoek, J. (1990). Disclosure Control for Microdata.
Journal of the American Statistical Association, 85, 38-45.

Chen, G. and Keller-McNulty, S. (1998). Estimation of Identification Disclosure Risk in
Microdata. Journal of Official Statistics, 14, 79-95.

Greenberg, B.G. and Zayatz, L.V. (1992). Measuring Risk in Public Use Microdata Files.
Statistica Neerlandica, 46, 33-48.

Greenberg, B.S. (2002). A Recursive Algorithm to Estimate Disclosure Risk. Submitted for
possible publication to Journal of Official Statistics.

Greenberg, B.S. and Lasdon, L.S. (2003). A Global Optimization Procedure to Estimate Class
Sizes. Submitted for possible publication to The Journal of Global Optimization.

Hoshino, N. (2001), Applying Pittman’s Sampling Formula to Microdata Disclosure Risk
Assessment, Journal of Official Statistics, 17, 499-520.

Skinner, C.J. and Holmes, D.J. (1993). Modelling Population Uniqueness. Proceedings of the

14
International Seminar on Statistical Confidentiality. Statistical Office of the European
Communities, Luxembourg, 175-199.

Steel, Philip M. (1999), “A new estimation for the number of unique population elements based
on the observed sample”, ASA Proceedings of the Section on Government Statistics and
Section on Social Statistics, 80-85

Steel, P. (2003). Personal communication.

Takemura (1999), Some superpopulation models for estimating the number of population

uniques, Statistical data protection - Proceedings of the conference, Lisbon, 25 to 27 March
1998 - 1999 edition, Office for Official Publications of the European Communities,

Luxembourg, 59-76.

Zayatz, L.V. (1991). Estimation of the Percent of Unique Population Elements in Microdata File

Using the Sample. Statistical Research Division Report Series, Census/SRD/RR-91/08.

Table 1 — Results for First Population (correct number of uniques = 22026)

15

Sample | Solution Mean Median Max # # G&Z 1 step Hoshino Bethlehem
w/best Solutions Different
objective Solutions
1 15177 19600 20410 21656 47 47 24508 23606 29856 10918
2 18693 19868 18707 23988 652 9 24865 24013 29377 11663
3 23987 23426 23955 24019 297 15 25189 24386 29861 11679
4 23716 24020 23717 25163 629 2 25294 24496 29628 11748
5 25075 24003 24888 25205 547 29 24612 23689 29365 11242
6 25315 25109 25315 25315 601 12 24464 23533 29487 11546
7 23965 23895 23965 23965 606 2 24127 23224 29134 11670
8 22969 23735 24195 25338 178 149 24492 23598 29272 11115
9 23811 22338 22093 23947 631 28 24448 23629 28445 11274
10 18000 18002 18000 18008 635 2 24694 23923 29222 11253
11 24105 24105 24105 24105 614 1 24413 23492 29626 11604
12 26307 26283 26296 26307 631 12 24044 23186 28234 10817
13 25105 22033 22903 25105 452 88 24842 24016 29523 11424
14 15094 15094 15125 22462 552 13 24511 23635 29373 11415
15 21108 18450 17610 21108 627 11 24839 23924 29608 12041
16 27168 27168 27168 27168 615 1 24397 23457 30332 11605
17 21602 20836 20827 21602 657 5 23556 22562 28519 10925
18 20417 20146 20417 20417 622 4 25118 24291 29785 11569
19 17872 17872 17872 17872 623 1 24941 24074 29689 11765
20 25335 25335 25335 25335 1 1 24449 23567 29521 11023
Table 2 — Results for Second Population (correct number of uniques = 1175)
Sample | Solution Mean Median Max # # G&Z 1 step Hoshino Bethlehem
w/best Solutions Different
objective Solutions
1 519 519 519 519 31 1 1355 1344 2036 634
2 558 1109 565 2616 18 6 1352 1354 2062 609
3 565 565 565 565 29 1 1317 1317 1913 628
4 617 617 617 617 28 1 1262 1249 1895 615
5 1341 908 895 1341 35 2 1265 1254 1875 597
6 2928 2928 2928 2928 41 1 1458 1468 2032 639
7 752 867 613 2261 29 10 1199 1159 1942 609
8 2394 1285 1008 2394 30 3 1257 1237 1911 608
9 543 970 543 2588 31 6 1350 1360 1946 616
10 830 872 830 2443 42 3 1401 1389 2082 610
11 453 486 449 1158 114 7 1304 1283 1996 648
12 947 941 947 947 23 2 1313 1289 2013 625
13 522 522 522 522 27 1 1290 1274 1966 612
14 962 962 962 962 49 1 1323 1319 1944 625
15 1041 799 776 1355 36 3 1284 1265 1947 615
16 1292 698 645 1407 33 5 1238 1196 2000 608
17 420 463 420 1911 37 4 1227 1177 2042 622
18 551 810 554 2189 32 9 1166 1128 1873 623
19 473 476 473 492 51 2 1267 1232 1991 637
20 562 564 562 572 35 3 1330 1304 2052 640

16
Appendix B - GAMS Code

This model estimates the class size distribution of a population using the
same distribution in a random sample from that population. The estimator
uses Bayesian principles

Developed by Leon Lasdon and Betsy Greenberg

Last update 8/25/03

this version assumes the population class size distribution is monotone

L N T T .

Options limcol = 0, limrow = O;

Sets i1 population index / 1*298/
J sample index / 1*66/
alias (1,k);

Parameters
m(J) num size j classes in sample
* populationl
* sample from Table 3
/ 1 5563, 2 591, 3 171, 4 97, 5 54, 6 44,
7 29, 8 23, 9 10, 10 10, 11 10, 12 12, 13 5, 14
5, 15 3, 16 1, 17 3, 18 1, 19 1, 22 1, 66
1/;
* sample 2

* /1 5621, 2 541, 3 208, 4 107, 5 58, 6 39, 7 17, 8

21, 9 14, 10 13, 11 13, 12 5, 13 6, 14 4, 15 2, 16 2,
17 2, 18 1, 20 2, 22 1, 48 1/;

* sample 3

* /1 5657, 2 545, 3 180, 4 96, 5 65, 6 42, 7 27, 8 20,
9 14, 10 14, 11 6, 12 7, 13 8, 14 5, 15 2, 17 2, 18

1, 21 1, 22 1, 24 1, 47 17/;

* sample 4

* /1 5674, 2 525, 3 207, 4 94, 5 60, 6 36, 7 26, 8 26,
9 13, 10 14, 11 9, 12 7, 13 3, 14 1, 16 3, 17 3, 18

3, 19 1, 21 1, 24 1, 46 17/;

* sample 5

* /1 5598, 2 559, 3 201, 4 97, 5 70, 6 47, 7 31, 8 13,
9 15, 10 9, 11 10, 12 7, 13 1, 14 3, 15 1, 16 4, 17

2, 21 1, 25 1, 26 1, 64 1 7/;

* sample 6

* /1 5573, 2 578, 3 208, 4 84, 5 64, 6 41, 7 33, 8 18,
9 13, 10 11, 11 6, 12 6, 13 3, 14 3, 15 5, 16 2, 17

2, 18 4, 21 1, 25 1, 48 1/;

* sample 7

* /1 5525, 2 578, 3 198, 4 95, 5 65, 6 46, 7 20, 8 29,
9 14, 10 13, 11 4, 12 8, 13 9, 14 3, 15 3, 16 3, 20

1, 21 1, 23 1, 43 1/;

* sample 8

* /1 5570, 2 559, 3 211, 4 94, 5 61, 6 33, 7 29, 8 19,
9 18, 10 11, 11 13, 12 8, 13 6, 14 3, 15 2, 17 1, 19
1, 20 1, 23 1, 25 1, 63 1/;

* samp9

17

* /1 5557, 2 537, 3 203, 4 103, 5 69, 6 36, 7 25, 8

25, 9 12, 10 16, 11 9, 12 6, 13 9, 14 1, 15 5, 16 2,
17 1, 21 1, 23 1, 57 17/;

* sampl0

* /1 5579, 2 535, 3 192, 4 102, 5 65, 6 35, 7 27, 8

25, 9 13, 10 14, 11 9, 12 5, 13 8, 14 3, 15 1, 16 3,
17 2, 18 2, 19 1, 20 2, 21 1, 51 17/;

* sampll

* /1 5562, 2 589, 3 194, 4 85, 5 63, 6 46, 7 26, 8 21,
9 13, 10 9, 11 6, 12 6, 13 9, 14 8, 15 2, 16 2, 17

2, 21 1, 22 1, 23 1, 44 1 7/;

* samp 12

* /1 5500, 2 552, 3 217, 4 98, 5 52, 6 40, 7 43, 8 26,
9 9, 10 12, 11 5, 12 4, 13 3, 14 4, 16 2, 17 4, 18

3, 20 1, 22 2, 23 1, 29 1, 58 1/;

* samp 13

* /1 5609, 2 548, 3 196, 4 96, 5 61, 6 47, 7 18, 8 20,
9 15, 10 12, 11 10, 12 6, 13 8, 14 3, 15 1, 16 5, 17
1, 18 1, 22 2, 28 1, 48 1/;

* samp 14

* /1 5570, 2 564, 3 194, 4 109, 5 65, 6 32, 7 23, 8

19, 9 17, 10 10, 11 11, 12 8, 13 5, 14 3, 15 1, 17 2,
18 1, 19 2, 20 1, 21 1, 22 1, 23 1, 24 1, 45 1 /;

* samp 15

* /1 5633, 2 562, 3 195, 4 106, 5 66, 6 35, 7 29, 8

19, 9 14, 10 12, 11 10, 12 5, 13 6, 14 3, 15 2, 16 1,
17 3, 20 1, 24 1, 45 1/;

* samp 16

* /1 5571, 2 552, 3 236, 4 107, 5 53, 6 41, 7 26, 8

18, 9 8, 10 8, 11 8, 12 7, 13 5, 14 3, 15 6, 16 3, 17
2, 18 1, 20 1, 22 1, 24 1, 48 17/;

* samp 17

* /1 5452, 2 608, 3 189, 4 105, 5 72, 6 44, 7 28, 8

25, 9 11, 10 8, 11 2, 12 6, 13 8, 14 3, 15 1, 16 4, 18
1, 20 1, 21 2, 22 2, 26 1, 60 1/;

* samp 18

* /1 5653, 2 546, 3 178, 4 104, 5 60, 6 47, 7 27, 8

19, 9 17, 10 12, 11 10, 12 6, 13 3, 14 5, 15 2, 16 1,
17 2, 19 1, 22 1, 25 1, 55 1/;

* samp 19

* /1 5632, 2 556, 3 197, 4 104, 5 55, 6 30, 7 29, 8

16, 9 22, 10 12, 11 11, 12 8, 13 3, 14 4, 15 2, 16 3,
17 3, 18 1, 21 1, 48 1/;

* samp 20

* /1 5554, 2 575, 3 200, 4 84, 5 53, 6 42, 7 31, 8 20,
9 11, 10 17, 11 7, 12 7, 13 9, 14 5, 15 2, 16 5, 17

1, 18 1, 26 1, 61 1/;

* sampl from population 2

* /1 632, 2 187, 3 89, 4 61, 5 42, 6 33, 7 33, 8 20, 9
12, 10 16, 11 17, 12 13, 13 16, 14 9, 15 8, 16 8, 17

12, 18 5, 19 2, 20 8, 21 3, 22 7, 23 5, 24 2, 25 5, 26
6, 27 3, 28 2, 29 2, 30 1, 33 1, 34 4, 35 2, 36 1, 37
1, 38 1, 40 2, 41 2, 43 2, 44 2, 45 1, 48 1, 49 2, 51

18

1, 52 1, 54 1, 59 1, 60 1, 62 2, 64 1, 66 1, 67 1, 72
1, 74 1, 76 2, 82 1, 85 1, 86 1, 87 2, 93 1, 94 1, 101
1, 104 1, 106 2, 114 1, 115 1, 123 1, 130 1, 132 1, 137

1, 138 1, 144 1, 179 1, 182 1, 312 1 /;

* samp2

* /1 625 , 2 176 , 379, 4 62 , 5 53, 6 29 , 7 37 , 8 18 , 913, 10
17 , 11 12 , 12 8 , 13 17 , 14 9 , 15 6 , 16 5 , 17 7, 18 5, 19 15 ,
20 6 , 21 7 , 22 3, 23 3, 24 8 , 25 4 , 26 1, 27 2, 28 2, 29 1,
30 2, 311, 32 5, 331, 34 3, 3 2, 361,371, 381, 40 2 ,
41 1 , 43 1 , 44 2 45 1 , 46 1 , 47 1 , 48 1 , 49 1, 52 1, 551,
57 1, 58 1, 59 2 , 63 1 , 641,651, 66 1 , 70 1 , 73 1, 78 1 ,
811, 821, 87 1, 891,921, 93 2 , 103 1, 105 1 , 113 1, 116
1, 118 1 , 124 1 , 128 1 , 134 1 , 136 2 , 138 1, 161 1 , 179 1 ,

205 1 , 321 1 /;

* samp3

* /1 617 , 2 169 , 388, 4 58 , 5 48 , 6 39 , 7 39 , 8 20 , 912 , 10
13 , 11 14 , 12 14 , 13 10 , 14 6 , 157 , 16 10 , 17 6 , 18 10 , 19 2
, 20 5, 21 5, 22 9, 23 7, 24 4 25 2, 26 2 , 27 3, 281, 29
2, 301, 32 6 , 34 2 , 35 4 , 36 4 , 393, 441, 46 1 , 47 2,

48 1 , 49 1 , 50 2 , 52 1 , 54 2 , 553,581, 59 1, 61 1, 62 1,
66 1 , 68 1 , 811, 84 2 , 86 2 , 87 2, 90 1 , 91 1 , 93 1 , 102 1 ,
103 1, 105 2 , 109 1, 113 1 , 118 1 , 120 1 , 137 1, 141 1 , 146 1 ,
147 1 , 1811, 190 1 , 293 1 /;

* samp4

* /1 605 , 2171 , 3 93, 4 69 , 5 43 , 6 33 , 7 29 , 8 27 , 9 20 , 10
13 , 11 15 , 12 10 , 13 9 , 14 9 , 15 9 , 16 7 , 17 11 , 183, 195,
20 6 , 21 3, 22 3, 23 5, 24 3, 25 3, 26 7 , 271, 28 2, 29 4 ,
30 2, 31 3, 321, 335, 34 2, 36 3, 382, 40 3, 41 1 , 44 2 ,
45 1 , 47 1 , 53 1, 551, 56 1, 59 2,621, 63 1, 66 2 , 69 1,
71 1 , 731, 75 1, 80 2 , 811,831, 86 1 , 88 1 , 99 1 , 101 1,
102 1 , 107 1 , 109 1 , 110 , 112 1, 120 1 , 123 1 , 125 1 , 130 1 ,
132 1, 139 1, 142 1 , 151 1 , 200 1 , 211 1, 268 1 /;

* samp5

* /1 600 , 2 166 , 3 105 , 4 57 , 5 44 , 6 31 , 7 28 , 8 23, 9 13 ,
10 17 , 11 11 , 12 12 , 13 14 , 14 12 , 15 4 , 16 9 , 17 6 , 18 6 , 19
7, 20 5, 21 6 , 22 2, 237, 24 3 , 25 6 , 26 2 , 284, 295 ,

30 2, 311, 32 4, 34 1, 35 3, 37 1, 381, 392, 40 2, 41 1 ,
43 2 , 44 1 , 46 2 , 47 1 , 48 1 , 51 1, 572,591, 62 2 , 63 2 ,
65 1 , 67 1 , 71 1 , 75 1, 80 2 , 822,832, 87 1, 89 1, 91 2 ,
92 1 , 106 1 , 107 1 , 110 1 , 112 1, 114 1 , 119 1 , 130 1 , 132 1,
140 1 , 143 1 , 145 1 , 180 1, 200 1 , 345 1 /;

* samp6

* /1 659 , 2 154 , 3 102 , 4 81 , 5 50 , 6 33 , 7 17 , 8 18 , 9 20 ,
10 15 , 11 8 , 12 10 , 13 12 , 14 15 , 15 5, 16 12 , 17 8 , 18 7 , 19
6 , 20 6 , 21 4 , 22 5, 23 5, 24 3 , 25 2, 26 7 , 271, 283,

29 3, 301, 31 2, 321, 33 2, 34 1, 35 2, 372,31, 40 2 ,
42 1 , 43 2 , 46 3 , 50 1, 51 1 , 52 3, 541,591, 61 1, 62 1,
63 2 , 65 2 , 73 1, 74 3 , 75 2, 831,872, 92 1, 93 1, 97 1 ,
98 1 , 102 1 , 104 1 , 107 1 , 109 1, 114 1 , 127 1, 129 2 , 130 1 ,
149 1 , 158 1 , 190 1 , 201 1, 277 1/;

* samp7

* /1 593 , 2 195 , 384 , 4 75 , 5 46 , 6 41 , 7 19 , 8 16 , 922, 10

18 , 11 8 , 12 12 , 13 13 , 14 13 , 15 10 , 16 11 , 17 11 , 18 3 , 19
8, 20 3, 21 1, 22 5, 23 3, 24 3 , 251 , 261, 27 4, 281 ,

29 5, 30 3, 321, 33 2, 34 3, 35 4 , 371,31, 41 1 , 42 3 ,
43 1 , 46 2 , 47 2 , 48 3 , 49 2 , 521,541, 56 1, 58 1, 65 1 ,
71 1 , 72 1, 73 2 , 83 2 , 852,861, 88 1, 89 1, 90 1 , 95 1 ,
99 2 , 105 1 , 107 1 , 110 2 , 111 1 , 117 1, 134 1 , 140 1 , 146 1 ,
149 1 , 152 1 , 189 1, 2031 , 307 1 /;

* samp8

* /1 602 , 2177 , 3 90 , 4 81 , 5 43 , 6 28 , 7 22 , 8 18 , 919, 10
16 , 11 14 , 12 8 , 13 11 , 14 7 , 15 8 , 16 14 , 17 12 , 18 7 , 19 6
, 20 6 , 21 3, 22 6 , 23 2, 24 2 , 25 4 , 26 7, 27 4, 281, 29
1, 315, 331, 34 1, 351, 36 1, 372,381, 39 2, 41 3 ,

43 1 , 44 3 , 46 3 , 48 1 , 49 1 , 501,511, 531, 551, 58 1 ,
59 1, 61 2 , 64 1 , 65 1 , 691, 711, 84 1 , 88 1, 89 1, 91 4 ,
94 1 , 99 2 , 103 1 , 106 2 , 112 1 , 116 1 , 118 1 , 120 1 , 125 1 ,
135 1 , 138 1, 1551, 183 1 , 204 1 , 328 1/;

* samp9

* /1 621 , 2 175 , 378, 4 53 , 5 51, 6 41 , 7 29 , 8 19 , 9 10 , 10
17 , 11 9 , 12 15 , 13 8 , 14 12 , 15 9 , 16 12 , 17 9 , 18 9 , 19 8 ,
20 6 , 21 7 , 22 5, 23 5, 24 5 , 25 3, 26 1, 276, 28 1, 29 1,
301, 311, 321, 331, 34 3, 352,371, 381, 40 2 , 41 1 ,
44 1 , 45 1 , 46 3 , 47 1 , 48 2 , 49 2 , 50 1, 53 1, 54 1, 551,
60 1 , 63 3 , 64 1 , 681, 731, 77 1, 82 1 , 831, 87 1, 91 1 ,
92 1 , 93 1 , 951,981, 101 2 , 108 1 , 115 2 , 119 1, 122 1 ,

127 1, 130 1, 134 1 , 144 1 , 150 1 , 186 1 , 194 1 , 314 1 /;

* sampl0

* /1 644 , 2179 , 3 99 , 4 56 , 5 51, 6 33 , 7 20 , 8 19 , 917 , 10
21 , 11 13 , 12 18 , 13 13 , 14 9 , 15 6 , 16 10 , 17 8 , 18 6 , 19 2
, 20 5, 21 7 , 22 5, 23 3, 24 2 , 25 4 , 26 4 , 27 2, 28 2 , 29
2, 30 2, 31 2, 32 2, 33 2, 34 2, 351,361, 381, 41 1 ,

42 1 , 44 2 , 47 4 48 1 , 50 2 , 512,531, 54 2 , 551, 56 1,
58 1, 61 1, 65 1 , 67 1 , 691, 731, 80 3, 83 2 , 86 1 , 88 1,
90 1 , 91 1 , 93 1, 100 1 , 103 1 , 104 1 , 108 1 , 109 1 , 113 1,

116 1 , 125 1 , 129 1, 140 1 , 148 1 , 163 1 , 181 1 , 191 1, 346 1 /;

* sampll,

*/1615, 2191, 3100 , 449 ,533,639, 727,82, 916 , 10 22
12 12 , 1311, 149, 158,168,178 ,189 ,199, 203, 212,223, 236,
245,254 ,262 ,274 ,283,292 ,303,324,332,362,34,381, 39
1,411,421 ,43 2 , 443,474,483 ,531,552 ,561,611,621, 651
, 671,691 ,731,741,761,781,811,821,902,911, 1003, 106 2
, 1081, 1132, 1231, 1331, 1371, 152 2 , 186 1 , 192 1 , 256 1 /;

* sampl2

*/1618 , 218 , 3106 , 453,541,637 ,719,82 , 917 , 10 14 , 11 14 ,
12 13 , 1321, 146 , 1511 , 166 , 176 , 186 , 198 , 205, 213, 223, 236,
243,255,264 ,274 ,282 ,293,304,312,322,331,341,352, 38
1,423,442 ,451 , 462 ,472 ,491 ,501,522 ,531,541,583, 702
, /51 ,7%3,781,791,82,911,9%1, 1002, 1011, 1051, 108 1 , 111
1,161, 1221, 1271, 1311, 1421, 1431, 1481 , 1541 , 170 1 , 191 1 ,
286 1 /;

* sampl3

*/1613 , 218 , 393,458,547 ,630 ,727,822,918, 1015, 11 12 , 12
14 , 1313 , 1410, 1515, 169 , 175,187 ,195, 205,215,228, 233,
244 , 252,263,274 ,282 ,297 ,301,321,332,342,372,392,4
1,433,441 , 463,481,492 ,511,561,592,631,641,651, 661
, 682 ,711,731,761,81,81,92,911,922,981, 91, 1041,

, 11 16 ,

20

1051, 1201, 117 1, 119 2
/;

* sampl4

*/1619 , 2166 , 3102 , 459 ,551,631,722,823,915, 10 17 , 11 14 ,
12 15,139, 145,159, 16 13 , 177 , 186 , 1912 , 206 , 213, 228, 23 3,
241,252,264 ,271,282 ,293,302,312,322,331,341,32, 37
2,32 ,391,402,41 2,431,452 ,481 ,501,514,562,581, 592
,601 ,621 ,641,661,781,791,81,841,861,81,81, 0912,
%6 1,991, 1032, 1081, 1201, 21121, 1171, 1201, 1251 , 127 1 , 134 1 ,
143 1, 1511, 1751 , 186 1 , 300 1 /;

* sampl5

*/1607 , 2182 ,381,470,548 ,638,724,818, 911, 10 13, 11 15 ,
1215, 135,149, 159, 16 13 , 1712 , 184 , 198 , 203 , 214 , 22 4 , 23 3,
243,256 ,265,271,284,291,303,314,332,342,31,372, 38
1,402,411 ,423 ,431 ,451,46 1,502,512 ,521,531,591, 601
,611,621,673,71,713,781,81,81,871,921,941, 091,
ic01, 1051, 1091, 1202 , 12121, 1151 , 1161 , 1191, 1281, 130 1 , 146 1
, 1561, 174 1, 199 1 , 307 1 /;

* sampl6

*/1606 , 2195 , 3108 ,458 ,543 ,632,725,822,918, 1025, 11 16 ,
129,136 ,146 ,158 , 169, 177 , 1810 , 194, 206 , 219, 223, 23 4,
248 ,252 ,264 ,274 ,282,291,301,311,321,331,342,32, 38
1,391,402 ,411 ,423 ,444 ,451 ,491 ,501,521,551,562, 571
,601 ,671,681,692,701, 781 ,811,871,882,921,972,0981,
1021, 1041, 10612, 1231, 116 1 , 1191 , 1221 , 124 2 , 1351 , 138 1 , 146 1
, 1901, 2231, 328 1 /;

* sampl7

*/1604 , 2210, 384 ,474 ,544 ,633,724,822,916 , 1015, 11 18 ,
12 13 , 1310, 147 , 157 , 1612 , 174,189 , 197 , 206 , 213, 226, 234,
247 ,253 ,264 ,271,283,291,301,314,333,341,31,361, 38
2,403,421 ,431,473,481,491 ,531,552,591,601,611, 641
,681,7v01,771,811,81,82,81,881,901,921, 971, 9 2,
106 1 , 1071, 1081 , 1091, 116 1 , 1221 , 1231, 1281, 1311, 1341, 145 1
, 146 1 , 174 1 , 212 1 , 290 1 /;

* sampl8

*/ 158 , 219 , 393,469 ,552,634,72,821, 914, 1017 , 11 19 ,
1211 ,139, 1412 , 156 , 169, 179,186 , 1910, 203 , 214 , 22 4 , 23 3,
245,254,261 ,274 ,285,291,304,312,321,332,341,361, 38
1,393,401, 424,431,472 ,482 ,511,531,541,551,571, 613
,641 ,691,711,741,751,7%1,771,791,831,81,81, 91,
931,941,991, 1021, 1061, 1122, 117 2 , 1181 , 129 1, 132 2 , 151 1 ,
167 1 , 210 1 , 313 1 /;

* sampl9

/1614 , 2189, 3105, 459,541 ,644 , 730,825,914, 1012, 11 11 ,
128, 1313, 1411, 156 , 1610 , 176 , 188 , 196 , 201 , 2110, 222 , 23 7
, 247 ,252 ,265 ,272,282,292 ,303,311,32,31,361, 376,
381,391,402 ,411 ,422 ,46 2,481,491 ,501,512,522,551, 60
1,622 ,631,661,701,731,771,802,82,861,871,9 1, 1011
, 106 1, 1071, 1091, 1201, 1221, 1121 , 1131, 121 1, 128 1 , 146 1 , 154
1,1621, 1751 , 188 1 , 287 1 /;

* samp20

*/ 1628 , 2192 ,39 ,462 ,546 ,629, 72,818, 920, 1018 , 11 15 ,
12 12 , 134, 14 16 , 1512 , 1610 , 177 , 185, 196 , 205 , 215,224, 234
, 247 ,254 ,263 ,271,282,291,301,312,321,333,341,31,

, 1231, 1411 , 1621 , 167 1 , 1781 , 204 1 , 3251

21

384,392,402 ,42 1,431,442 ,453 ,46 2 , 471,491,521 ,531, 54
1,561,571 ,631,661,681,691, 773,781 ,801,821,881, 901
, 922 ,931,991, 1012, 1041, 1051, 1101, 1151 , 1301, 142 1 , 1451 ,
147 2 , 183 1 , 187 1 , 288 1 /;

Parameter Np size of the population /56372/;
display Np;

Parameter Ns size of sample ;
Ns = sum(§,ord(d)*m(g)):

* round just in case m(jJ) are not integers (perfect samples)
Ns = round(Ns);
display Ns;

Parameters
prob(jJ,i) prob size j in the sample given size i in the population;

Parameter thresh /1.E-6/ ;

* loop to compute prob(j,i)

prob("1",%1") = Ns/Np;
Loop(i $(ord(i) ge 2),
prob("1*, i) = prob("1", i-1) * ord(i) * (Np - Ns -
ord(i) +2)/(ord(i)-1)/(Np-ord(i) +1) ;
if (prob("1",i)< thresh, prob("1",1)=0;);
Loop(J $(ordg) le (ord(i)-1)),
prob(J+1, i) = prob(g, i) * (ord(i) - ord(@)) *
(Ns - ord(d))/ ord() + 1)/(Np - Ns - ord(i) + ord(j) +1);
if (prob(J+1,i)< thresh, prob(J+1,1)=0 ;) ;
);
);

option decimals = 6;

Display prob;

Variables
classes estimate of total number of classes in population (for reporting only)
mu(i) num classes in pop of size i
Em@d) Expected m(jJ) from Goodman®s equations
pdev (i) positive deviation vars iIn estimate eqns
ndev(i) negative deviation vars iIn estimate eqns
maxerror largest absolute error in estimate eqns
objvaril objective variable for L1 norm
objvar?2 objective variable for L2 norm
objvarmax objective variable for Lmax norm

Positive variables mu, classes, Em, pdev, ndev;

* set upper bounds

mu.up(i) = Np;
mu_ (i) = 1;

pdev.up(i)
ndev.up(i) =

Em.1o(j) =

22

0.01*Np;
0.01*Np;
Em.up(d) = Ns ;
1.E-10;

Em_.1(@)=max(Em.-1o@).md));

maxerror.up = Np ;

Equations
defineEm(j) define Em(J)
Estimate(i) compute absolute error in estimate equations
Estimatelo(i) Jlower limit on error in estimate equations
Estimateup(i) upper limit on error in estimate equations
Population should sum to population size
Summu(j) classes in sample arise from same size or larger classes in
population
Total calculate the number of classes (reporting only)
mono monotonicity constraint
mulmax ensures that mul is the largest
Obj1 sum of absolute error
Obj2 sum of squares of errors
Objmax max error
defineEm()$m@)-- EmQ) =e= sum(k$(ord(k) ge ord(G)).mu(k)*prob(j.k)) ;
Population sum(i,ord(i)*mu(i)) =e= Np ;
SummuG)$mQg) sum(i $ (ord(i) ge ord(g)),.mui)) =g= mQ) ;
Total sum(i,mu(i)) =e= classes;
estimate(i) mu(i)* sum@ $ (ord@) le ord(i)),prob,)*A-(mA)/En())))
=e= pdev(i)-ndev(i);
estimatelo(i) mu(i)* sum@ $ (ord@) le ord(i)),prob,)*A-(mA)/En())))
=g= -maxerror ;
estimateup(i) mu(i)* sum@ $ (ord@) le ord(i)),prob,)*@A-(mA)/En(G))))
=I= maxerror ;
mono (i) mu(i) =g= mu(i+l);
mulmax(i) mu(*1®) =g= mu(i);
Obj1 objvarl =e= sum(i,(pdev(i)+ndev(i))) ;
Obj2 objvar2 =e= sum(i,sqr(mu(i))*sgr(sum@$Cord@) le ord(i)),
prob(d,)*(1-(mU)/Em()III)) ;
Objmax objvarmax =e= maxerror ;
Model L1 /

defineeM, population,summu,total, estimate,

*mulmax,

23

mono, objl /;
*L1.optfFile=1;

*Model L2 /

*defineeM,
*population,summu,total,

*mono,

*obj2 /;

*Model Lmax /
*defineeM,
*population,summu,total,
*estimatelo,estimateup,
*mono,

*objmax /;
L1.optfile = 1;
*L2.optFile = 1;
*Lmax.optfile = 1;
option nlp = oqnlp;
option decimals=6;

* solve L1 problem

Solve L1 using nlp minimizing objvarl;
Display classes.l, objvarl_.l, mu.l;

* compute and display errors iIn estimator egns
*Parameters esterr(i);
* esterr(i) =mu.I1(1)* sum $ (ord@) le ord(i)),prob(@, i))*A-mA)/Em_-14))));

*Display esterr ;
* solve L2 problem

*Solve L2 using nlp minimizing objvar2;

*Display classes.l, objvar2.1,

*poperr_1,mulerr.1,

*mu.l ;

* compute and display errors in estimator egns

*Parameters esterr(i);

* esterr(i) =mu.1(i)* sum $ (ord@) le ord(i)),prob,1)*A-MmQ)/En.1(4))));

*Display esterr ;
* solve Lmax problem

*Solve Lmax using nlp minimizing objvarmax;

*Display classes.l, maxerror._l,poperr._I,mulerr_1,mu.l ;

* compute and display errors in estimator egns

*Parameters esterr(i);

* esterr(i) =mu.1(i)* sum $ (ord@) le ord(i)),prob ,i1)*A-MAQ)/En.1())));

*Display esterr ;

Appendix B - Second population

fcount COUNT PERCENT

1 1175 40.8838
2 410 14.2658
3 225 7.8288
4 128 4_4537
5 101 3.5143
6 69 2.4008
7 56 1.9485
8 52 1.8093
9 36 1.2526
10 37 1.2874
11 28 0.9743
12 28 0.9743
13 16 0.5567
14 19 0.6611
15 18 0.6263
16 22 0.7655
17 13 0.4523
18 13 0.4523
19 16 0.5567
20 9 0.3132
21 11 0.3827
22 15 0.5219
23 13 0.4523
24 8 0.2784
25 12 0.4175
26 5 0.1740
27 10 0.3479
28 5 0.1740
29 4 0.1392
30 9 0.3132
31 7 0.2436
32 7 0.2436
33 6 0.2088
34 8 0.2784
35 5 0.1740
36 2 0.0696
37 7 0.2436
38 7 0.2436
39 6 0.2088
40 5 0.1740
41 6 0.2088
42 4 0.1392
43 7 0.2436
44 2 0.0696
45 6 0.2088
46 7 0.2436
47 5 0.1740
48 3 0.1044
50 3 0.1044
51 3 0.1044
52 3 0.1044

53
54
55
56
57
58
59
60
61
62
63
65
66
67
68
69
70
71
73
75
76
77
78
80
81
82
83
84
85
86
87
88
90
91
93
94
95
96
97
99
100
101
102
103
104
108
109
110
112
113
114
115
116
117

NNRPPRPRONRNRPRPRRPPRPRPPRPOPURPRPOPWOWONWRNRANNAMRPRPORPRPNUORNNNNNR®ONNER

0.0348
0.0696
0.0696
0.1044
0.0348
0.0696
0.0696
0.0696
0.0696
0.0696
0.0348
0.1740
0.0696
0.0348
0.0348
0.1044
0.0348
0.0348
0.1392
0.0696
0.0696
0.1392
0.0348
0.0696
0.0348
0.1044
0.0696
0.1044
0.1044
0.0348
0.2784
0.0348
0.0348
0.0348
0.1740
0.0348
0.1044
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0696
0.0348
0.0696
0.1044
0.0348
0.0348
0.0348
0.0696
0.0696

25

118
120
122
123
124
128
129
131
133
136
137
141
144
145
149
152
154
156
158
159
161
163
164
165
166
169
170
174
180
185
190
196
202
216
218
228
232
240
247
250
251
254
269
272
276
278
280
291
293
307
314
317
321
343

RPRRPRRPRRPRRPRPRPRPRPRPRPRPRPREPRENRRRRPRRPRRPRPRPRPREPNNNRPRPRPREPNRREPRPRPRPRPRRPRERNNRPRRPRPNRPNWONLER

0.0348
0.0696
0.1044
0.0696
0.0348
0.0696
0.0348
0.0348
0.0348
0.0696
0.0696
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0696
0.0348
0.0348
0.0348
0.0348
0.0696
0.0696
0.0696
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0696
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348

26

350
362
394
413
438
454
466
483
494
515
529
530
533
551
597
617
628
639
646
672
691
707
717
771
820
855
890
1092
1153
1835

RPRRPRRPRRPRRPRPRPRPRPRPRPRPRREPRPRRRRRRRPRRNRPRRPRRRREER

0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0696
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348
0.0348

27

Appendix C — OQNLP.OPT File

All records have the free format form <keyword> <value>

(d) means default choice

an asterisk in column one means the line is ignored

nothing Is case sensitive

a 1 line ogms.opt file with a single line containing the word
help will cause a template options file to be written to the
GAMS log file.

L B B N I DR R R

*help

echo

*debug
*bad_option

*

* STARTING POINT GENERATOR

*POINT_GENERATION random
POINT_GENERATION optquest
*

* RESOURCE LIMITS

* maximum runtime in seconds (1000(d))
MAXT IME 20000

* maximum number of nlp solver calls (1000(d))
MAX_SOLVER_CALLS 1000

* maximum number of local optima found(1000(d))
MAX_LOCALS 1000

* total number of OQMS iterations: (1000(d))
ITERATION_LIMIT 1000

*

* ALGORITHM PARAMETERS AND OPTIONS

* nlp solver to be used (conopt,lsgrg(d),minos,snopt)
NLPSOLVER conopt.1

* start with call to local solver before beginning stage one
START_WITH_NLPSOLVER 1

* all OptQuest trial points satisfy linear constraints (0-no(d),l-yes)
USE_LINEAR_CONSTRAINTS: 0

* use merit filter to determine if NLP solver should be started

* (0-no,1l-yes(d))

USE_MERIT_FILTER 0]

* use distance fTilter to determine if NLP solver should be started
* (0-no,1l-yes(d))

28

29

USE_DISTANCE_FILTER 0

* dynamic merit filter, which may increase THRESHOLD_ INCREASE_FACTOR if the merit
* filter rejects WAITCYCLE consecutive points (0-no,l-yes(d))
DYNAMIC_MERIT_FILTER 0]

* dynamic distance filter logic which reduces the basin radius if it rejects
* trial points for WAITCYCLE consecutive cycles (0-no,1l-yes(d))
DYNAMIC_DISTANCE_FILTER 0]

* distance filter logic which reduces pairs of radii if they overlap
* (0-no,1l-yes(d))
BASIN_OVERLAP_FIX 0]

* selects different options for the length of stage 1. Values are:
* 0:use STAGE1_ITERATIONS iterations (d)

* k,k>=1:use k "generations”™ of OptQuest trial points, where each
* generation is generated by the initial population (k=1),

* the population after 1 update (k=2), etc

INIT_CYCLE 0

* number of initial optquest iterations in stage 1 (200(d))
STAGE1_ITERATIONS 200

* value used as upper/lower bound on any variable with no bound

* (1-e3(d))
ARTIFICIAL_BOUND 1.e4

* penalty fcn used in stage 1:
* (0-OptQuest”s, l-exact penalty)(0(d))
PENALTY_FUNCTION 0]

* starting value for Lagrange multipliers (1000(d))
STARTING_MULTIPLIER 1000

* number of iterations before merit filter threshold is increased (20(d))
MERIT_WAITCYCLE 20

* number of iterations before distance filter radius is reduced (20(d))
* used only if DYNAMIC_DISTANCE_FILTER is 1
DISTANCE_WAITCYCLE 20

* factor to increase merit filter threshold (0.2(d))
THRESHOLD_ INCREASE_FACTOR 0.2

* factor to decrease distance filter basin size(0.2(d))
BASIN_DECREASE_FACTOR 0.2

* factor used in distance filter:don"t start NLP solver at a trial point if
* distance of trial point from any local optimum found so far <=

* distance_factor*(largest distance traveled

* to get to that local optimum)(0.75(d))

DISTANCE_FACTOR 0.75

30

Option MAX_SOLVER_CALLS_NOIMPROVEMENT controls algorithm termination

based on lack of progress in locating better local solutions.

if k solver calls are executed (and terminate with feasible solutions)

without detecting a local solution with an improved objectve value,

the algorithm will terminate. The default value for

MAX_SOLVER_CALLS_NOIMPROVEMENT is 10% of the value of MAX_SOLVER_CALLS.

Setting MAX_SOLVER_CALLS_NOIMPROVEMENT to O invokes that default.

Setting MAX_SOLVER_CALLS_NOIMPROVEMENT to k sets the count to k as described
above.

Setting MAX_SOLVER_CALLS_NOIMPROVEMENT to -1 (or any negative value)
removes this count as a termination criterion

MAX_SOLVER_CALLS_NOIMPROVEMENT 1000

L B R T I L B B

* insert nlp solver log into gams log (only applicable under gams)
SOLVER_LOG_TO_GAMS_LOG 0

AAAAAAAAAKX OPTQUEST parameters

* in MINLP"s, OptQuest knows only about discrete variables
*(0-no: OptQuest changes both continuous and discrete variables,
* 1-yes: OptQuest changes only discrete variables (1(d))
DISCRETES_ONLY_OPTQUEST: 1

* use only Optquest iterations (0-no(d), 1-yes,no solver calls are made):
OPTQUEST_ONLY: 0]

* OptQuest population size (10(d)):
0Q_POPSIZE: 10

* OptQuest Search Strategy: aggressive, boundary(d), crossover
SEARCH_TYPE: boundary

* 0Q search strategy parameter (0.5(d))
SEARCH_PARAMETER: 0.5

* OUTPUT CONTROL

* setting the frequency of iteration print to OQNLP log file (20(d))
LOGFILE_ITN_PRINT_FREQUENCY 20

* setting the frequency of iteration print to GAMS log file (20(d))
GAMS_ITN_PRINT_FREQUENCY 20

* set OQNLP print level (0(d))

* 0 gives least output

* any positive value gives more output
OQNLP_PRINT_LEVEL 0

* turn on different level of debug output (0-none,l-more,2-even more)

* output goes to a file (in the gams project directory if you are using gams)
* called <modelname>_dbg

OQMS_DEBUG 0

31

* turn on iteration log and termination messages to screen (0-no,l-yes(d))
ENABLE_SCREEN_OUTPUT 1

* gpecify path and name for file to which all local solutions
* found will be written

LOCALS_FILE locals.out

* sgpecify format for locals file "report® = human readable

* "datal® = <index of local optimum> <objval> <var index> <var value>
LOCALS_FILE_FORMAT datal

*enable stats log

ENABLE_STATISTICS_LOG 1

hkxkxkkkx | SGRG Output optionS

*(all O defaults except 1 for disable error messages)
*

* initial printing

GRG_INPRNT: 0]

* final printing

GRG_OTPRNT: 0

* printlevel set

GRG_PRINTLEVEL: 0]

* supress any error messages coming out of Isgrg2 0,1
GRG_DISABLE_ERROR_MSGS 1

*

Appendix D — CONOPT.OPT File

* Set option RTMAXJ larger than the defalut of 1.0E5 as CONOPT fails
* if it finds a Jacobian element larger than RTMAXJ. 1.0E5 is way
* too small.

*

RTMAXJ 1.0ES8

LFILOG 1

32

	Background
	References

