S G F5) 25424 am N95- 28845

Buckling Analysis of Curved Composite Sandwich Panels
Subjected to Inplane Loadings

<
Juan R. Cruz ~22 — 2%
NASA Langley Research Center
Hampton, Virginia 23681 Ly 2 L

Introduction

Composite sandwich structures are being considered for primary structure in
aircraft such as subsonic and high speed civil transports. The response of
sandwich structures must be understood and predictable to use such structures
effectively. Buckling is one of the most important response mechanisms of
sandwich structures. In reference 1, a simple buckling analysis is derived for
sandwich structures. This analysis is limited to flat, rectangular sandwich
panels loaded by uniaxial compression (Nx) and having simply supported
edges. In most aerospace applications, however, the structure’s geometry,
boundary conditions, and loading are usually very complex. Thus, a general
capability for analyzing the buckling behavior of sandwich structures is needed.

The present paper describes and evaluates an improved buckling analysis
for cylindrically curved composite sandwich panels. This analysis includes
orthotropic facesheets and first-order transverse shearing effects. Both simple
support and clamped boundary conditions are also included in the analysis.
The panels can be subjected to linearly varying normal loads Ny and N, in
addition to a constant shear load N,y. The analysis is based on the modified
Donnell’s equations for shallow shells [2]. The governing equations are solved
by direct application of Galerkin's method. The accuracy of the present analysis
is verified by comparing results with those obtained from finite element analysis
for a variety of geometries, loads, and boundary conditions. The limitations of
the present analysis are investigated, in particular those related to the shallow
shell assumptions in the governing equations. Finally, the computational
efficiency of the present analysis is considered.
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Panel Geometry

The geometry of the composite panel analyzed in this study is shown in
figure 1. This panel is rectangular, of length a and width b. The panel is
cylindrically curved with radius of curvature R. The panel as a whole, and the
individual facesheets, are symmetrically laminated. In addition, the facesheets
are considered to be specially orthotropic plates (A1 = Aze = 0, Dig = Dog =
0). The principal directions of the core material are assumed to coincide with
the x and y coordinate directions. The core possesses only shear stiffness
and is also considered to be specially orthotropic. Only two constants, G,, and
Gy, are needed to define the core shear stiffness. Monolithic panels are a
special case of the composite sandwich panel shown in figure 1. For monolithic
panels the core thickness is zero and the total panel thickness is denoted by to.
The transverse shear moduli Gy, and Gy, are those of the panel material.

Facesheet /‘\

Figure 1



Panel Loading and Boundary Conditions

General inplane loadings, Ny, Ny, and N,, are considered for the
sandwich panels in this study. In the present study the panel can be subjected
to linearly varying N, and N, loads, in addition to a constant N, load. An
example loading is shown in figure 2. All four edges of the panel must have the
same boundary condition and may be either simply supported or clamped.
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Figure 2
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Governing Partial Differential Equations

The governing differential equations for buckling used in this study were
derived in reference 2. These equations are three, coupled equations in the
unknowns w, Q,, and Qy, the out-of-plane displacement and the transverse
shear stress resultants, respectively. These equations form a set of Donnell's
equations modified to include first order transverse shear effects.

An inverse differential operator is used with the governing equations to
avoid escalating the partial differential equation. As shown in reference 3,
escalating differential equations may lead to incorrect solutions. The inverse
differential operator results when the inplane displacements u and v are
removed as independent variables in the governing equations. A drawback of
using this inverse differential operator is that boundary conditions cannot be
specified for u and v; these boundary conditions are implied in the assumed
solution for w.

The governing equations used in the present study define a simple shell
theory. The shell curvature, R, appears only in one term of the governing
equations. In addition, an important simplifying assumption in the derivation of
these equations is that the pre-buckling out-of-plane displacement wg can be
ignored. These assumptions limit the application of these equations to shallow
shells.



Assumed Series Solutions

The governing equations are solved using assumed trigonometric series for
the independent variables w, Qy, and Qy. Two sets of series solutions
corresponding to the simple support and the clamped boundary conditions are
shown in figure 3. These series solutions must satisfy all boundary conditions.
The series solution for w implies specific boundary conditions for u and v
since an inverse differential operator is used to remove u and v as
independent variables. Different boundary conditions for u and v than those
implied by the series solution may result in significantly different buckling loads
and mode shapes.

SIMPLY SUPPORTED SOLUTION
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Figure 3
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Solution Approach

The governing equations are solved by Galerkin’s method. Applying Galerkin’s
method as illustrated in figure 4 yields a set of equations which constitute a
symmetric algebraic eigenvalue problem. Solving the eigenvalue problem
yields the buckling loads and mode shapes.

Galerkin’s Method
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Figure 4



Analysis Verification

The present analysis has been implemented in two FORTRAN computer
programs corresponding to the simple support and the clamped boundary
conditions. The present analysis was verified and evaluated as outlined in
figure 5. To verify the accuracy of the present analysis, comparisons are made
with results obtained from a finite element analysis. In addition, the number of
terms required in the solution series to achieve convergence is evaluated.
Since the analysis is limited to shallow shells, the analysis accuracy is also
assessed as a function of the panel curvature. Finally, the computational
expense (as measured in CPU seconds) of the present method is compared to
an equivalent solution obtained by a finite element analysis to assess the
present method's computational efficiency.

Comparison with Finite Element results

o« Convergence rate
o Limitations of shallow shell theory
o Computational efficiency

Figure 5
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Verification Test Cases

A set of 48 test cases has been defined and are described in figure 6. These
test cases include a variety of geometries, materials, and loadings. For
computational convenience, all test cases consist of monolithic panels.
Transverse shear effects are introduced in some cases by setting low values for
Gx; and Gy;. All panels are assumed to be made out of a typical graphite-
epoxy composite material. The laminates are assumed to be homogeneous
and to have either a unidirectional, with the 0° direction along the x axis, or a
quasi-isotropic stacking sequence. Three sets of load conditions are
considered: uniaxial compression only, shear only, and combined inplane
bending and shear. All 48 test cases are evaluated for both simple support and
clamped boundary conditions.

Wide range of test cases:
o« Geometry: length, width, radius of curvature
o Layup: isotropic, unidirectional
o Transverse shear stiffness: infinite, finite

o Loading: compression, shear, combined load

Total load cases: 48

All test cases applied to both simply supported
and clamped panels

Figure 6
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Simply Supported Panels

Results for the buckling load ratio, Rs, as a function of the number of terms
in the series solution are shown in figure 7 for plates with simple support
boundary conditions. The buckling load ratio is defined as the ratio of the
present analysis solution to the converged finite element solution. The finite
element solution is assumed to be exact. Buckling load ratio results for the case
with the worst convergence rate are shown by the solid line on the figure. Even
for this worst case, ten terms for the assumed series solution were sufficient to
obtain a converged Rg within one percent of the exact solution. Most other
cases had converged results with much fewer terms for the assumed series
solution. All 48 test cases converged to within + 1 percent of the exact solution
as illustrated by the dotted lines on the figure. These results illustrate that for
panels consistent with the assumptions of the present analysis, accurate
response can be predicted for a wide variety of structural parameters (e.g., high
aspect ratio, high degree of orthotropy).

Convergence Rate and Comparison with FE Results
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Figure 7
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Clamped Panels

Results for the buckling load ratio, Rg, as a function of the number of terms
in series solution are shown in figure 8 for plates with clamped boundary
conditions. The buckling load ratio is defined as the ratio of the present
analysis solution to the converged finite element solution. The finite element
solution is assumed to be exact. Buckling load results for the case with the
worst convergence rate are shown by the solid line on the figure. For this case,
twelve terms for the assumed series solution were required to obtain a
converged Rg within eight percent of the exact solution. Most other cases had
converged results with much fewer terms for the assumed series solution. All
48 test cases converged to within plus eight to minus three percent of the exact
solution. The reason for the slower convergence as compared to the simple
support results is that the assumed series for clamped boundaries does not
capture the buckling behavior as rapidly as the assumed series for simple
support boundaries. The range of converged results for panels with clamped
boundaries is wider than the converged results for panels with simple support
boundaries. This difference is due to the limitations of the present analysis.

Convergence Rate and Comparison with FE Results
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Figure 8
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Limitations of Shallow Shell Theory

The theory used in the present work is limited to shallow shells. Results for
the buckling load ratio, Rs, as a function of the width-to-radius-of-curvature
ratio, b/R, are shown in figure 9. The ratio, b/R, is a measure of the curvature
of the shell, e.g., for b/R =0, the panel is a flat plate. Results are shown on the
figure for a clamped panel subjected to three types of loading: shear only,
compression and shear, and compression only. The material, stacking
sequence, and geometry (except for the radius of curvature R) for the panel
remain constant. The results on the figure show that the accuracy of Rg
decreases as the shell curvature, b/R increases. However, this decrease in
accuracy depends on the panel loading. When the panel is loaded in shear
only, the accuracy of Rg decreases very slowly as b/R increases. For the case
of compression only loading, however, the accuracy of Rg decreases rapidly
as b/R increases. The results for combined compression and shear loading
are between those for compression only loading and for shear only loading. An
example of the application of the present analysis for the conservative case of
compression only loading is as follows: a 5 percent error (Rg = 0.95) results for
a panel with b/R = 0.22. This example suggests that the present theory may be
used for panels with b/R<0.22 if a 5 percent error is allowable. The results on
the figure are typical for the present analysis.

Clamped Panel Example - Comparison with FE Results
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Figure 9
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Computational Efficiency

A signifcant advantage of the present analysis is its computational efficiency.
In an optimization program the analysis portion may be performed hundreds or
even thousands of times. Thus, the analysis must be as computationally
efficient as possible in terms of CPU time. The results presented herein were
obtained using a Convex C-240 computer for both the present analysis and the
finite element analysis. The FORTRAN programs for the present analysis used
the vectorizing option in the compiler. The finite element results were
generated with the COMET finite element computer program [4]. The
computational efficiency of the present analysis is outlined in figure 10. The
present analysis was 340 to 420 times faster and 50 to 80 times faster than the
corresponding finite element analysis for panels with simple support boundary
conditions or with clampled boundary conditions, respectively. The times
required for completing the present analysis suggest that this analysis is well
suited for optimization.

e Simply Supported Analysis

- 340 to 420 times faster than finite element
analysis

- Ten term solution requires = 0.5 to 0.8 CPU
seconds

e Clamped Analysis

- 50 to 80 times faster than finite element
analysis

- Ten term solution requires = 3.7 to 4.0 CPU
seconds

Present analysis well suited for optimization

Figure 10



Concluding Remarks

A buckling analysis for cylindrically curved composite sandwich panels has
been derived and implemented. This analysis is capable of analyzing panels
with orthotropic facesheets and first-order transverse shear effects. The panels
can be subjected to linearly varying Ny and Ny loads, in addition to a constant
Ny, load. Both simple support and clamped boundary conditions are included
in the analysis.

The governing equations for the analysis are a set of modified Donnell's
equations in the unknowns w, Qy, and Qy. These equations use inverse
differential operators to avoid escalating the partial differential equations.
Series solutions which satisfy all boundary conditions are assumed for w, Q,
and Qy. A direct application of Galerkin’s method is then used to solve the
governing equations. Because of assumptions made during the derivation, this
analysis is only valid for shallow shells.

To verify the accuracy of the analysis, comparisons were made with results
obtained from a finite element analysis. For simply supported panels, the
present analysis buckling load is usually within +1 percent of the finite element
results for shallow shells. For clamped panels the present analysis yields less
accurate, but still acceptable, results; the buckling load is within -4 to +8
percent of the finite element results for shallow shells. As the curvature of the
panels is increased, and the shell becomes less shallow, the accuracy of the
present analysis decreases. The degree to which the accuracy decreases with
increasing curvature is a strong function of the loading. Within the context of the
shallow shell assumptions, the present analysis provides useful results fora
wide variety of structures.
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