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To clarify the neural systems deployed by individual subjects during
working memory (WM), we collected functional neuroimaging data
from healthy subjects, and constructed a model of 2-back WM using
structural equation modeling (SEM). A group model was constructed,
and models for each subject were validated against it. The group
model consisted principally of regions in the prefrontal and parietal
cortex, with considerable interindividual variance in the single-
subject models. To explore this variance, subjects were split into
two groups based on performance. Performance level and self-
reported strategy scores were used in a correlation analysis against
path weights between nodes of individual models. High performers
utilized a left hemisphere sub-network involving inferior parietal
lobule and Broca’s area, whereas lower performers utilized a right
hemisphere sub-network with interactions between inferior parietal
lobule and dorsolateral prefrontal cortex. Further, we observed an
interaction between the parahippocampal formation and the inferior
parietal lobule that was related to the different strategies used by
the individuals to perform the task. Strategy and performance level
appear to be intricately related in this task, with neural systems
supporting verbal processing producing better performance than
those associated with spatial processing. These results demonstrate
that individual behavioral characteristics are reflected in specific
neurofunctional patterns at the system level and that these can be
captured by analytical techniques such as SEM.

Introduction

It has become increasingly apparent that all but the simplest
functions require coordinated activity among networks of brain
regions, rather than depending upon a single, segregated
region, and that there are likely to be interindividual differences
in the way humans bring these networks to bear on cognitive
tasks. Studies in nonhuman primates have provided important
evidence that the neural substrate supporting working memory
(WM) is no exception to the first of these assertions, and that
prefrontal cortex and parietal regions have particular primacy in
this system (Friedman and Goldman-Rakic, 1994; Chafee and
Goldman-Rakic, 1998). Functional neuroimaging has identified
these regions as co-activated in groups of humans performing
WM tasks (Hartley and Speer, 2000), in accord with the
proposal that the WM central executive is supported by phono-
logical and visuospatial rehearsal systems (Baddeley, 1992). The
now extensive WM neuroimaging literature at the group-
average level suggests that the supporting system is more exten-
sive, encompassing not only dorsolateral prefrontal and parietal
regions, but premotor, anterior cingulate cortex, Broca’s area,

and cerebellum as well (Smith and Jonides, 1998, 1999; Cabeza
and Nyberg, 2000).

Functional neuroimaging has begun to provide clues about
the workings of separate neural components of this WM system
in individuals (Rypma and D’Esposito, 1999). However, there
has been little formal analysis of interregional interactions in
single subjects, particularly in the domain of WM. Thus, it is not
clear how these regions dynamically interact in individuals or
how individual differences in subject performance or strategy
are reflected in these system-level networks. Understanding
how self-reported strategy is reflected at the system level would
clarify the role of distinct networks of brain regions in cogni-
tion. Identifying individual characteristics in brain network
interactions has clear import for understanding differences in
abilities and cognitive styles among healthy subjects and holds
great promise for elucidating the neurobiology of learning
(Buchel et al., 1999) and of abnormal cognition in psychiatric
and neurological patients.

Covariance-based methods that assess the within-task, inter-
regional effective connectivity in activated brain networks can
be implemented using structural equation modeling (SEM)
(McIntosh and Gonzalez-Lima, 1994; McIntosh et al., 1996a;
Buchel and Friston, 1997). SEM belongs to a class of multivariate
modeling methods that includes eigenimage and partial least-
squares (PLS) analysis. SEM applied to neuroimaging examines
the covariance matrix between tasks within-group or between
groups, within-task. Eigenimage analysis allows the specifica-
tion of temporally-dependent brain activation patterns of func-
tional connectivity between conditions or groups of subjects,
where each eigenvector is associated with a unique pattern of
brain activation (Friston, 1994). PLS is similar to eigenimage
analysis in that it uses single-value decomposition to model
patterns of activation but includes experimental design, block
effects, and behavioral outcomes (McIntosh et al., 1996b). SEM
differs fundamentally from the other two methods in that it
attempts to identify the explicit influence of one brain region
on another (Horwitz et al., 1999). These models are usually
constrained by known anatomical connections within the
network, along with identification of the regional pattern of
activation. In PET and fMRI this typically means an increase in
signal that reflects synaptic processes (Waldvogel et al., 2000;
Logothetis et al., 2001). Most models are derived at the group-
average level, with a single cohort tested across a number of
experimental conditions (McIntosh et al., 1996a), or multiple
groups across one experimental condition (Horwitz et al.,
1995).



Cerebral Cortex December 2003, V 13 N 12 1353

The aim of the current study was to use SEM with PET data
acquired during a WM task (Callicott et al., 1999) that allows
different strategies for successful performance, and to assess
how strategy and performance level are reflected in the func-
tional networks, both for the group as a whole, and in indi-

vidual subjects. We were particularly interested in gaining
knowledge on how well different self-reported cognitive strat-
egies can be discriminated at the cortical level. Our hypotheses,
based on previous work, were that we would see different
networks of activity in different hemispheres reflecting spatial
or verbal strategies (Smith and Jonides, 1998; Gevins and Smith,
2000), and that collaborative activity between frontal and pari-
etal regions would reflect a given subject’s task performance
(Diwadkar et al., 2000).

Materials and Methods

Subjects
Data were collected from a group of 39 healthy right-handed control
subjects consisting of 17 females and 22 males with a mean age of 30
years (range 20–48). Subjects were fully informed and gave written
consent to participate in accordance with the study protocol approved
by the NIMH Institutional Review Board and the NIH Radiation Safety

Committee. Prior to scanning, all subjects were trained until they
reached a consistent level of performance.

Experimental Task and Data Acquisition Procedures
The WM task was an adaptation of the n-back task designed for use in
EEG studies (Gevins and Cutillo, 1993) and utilized with neuroimaging
(Weinberger et al., 1996; Callicott et al., 1998). Briefly, subjects are
presented with a diamond-shaped figure containing four circles, one in
each corner (Fig. 1, left panel). A single number (1, 2, 3 or 4) appears at
random in one of the four positions, but the same number (e.g. 2)
always appears at the same spatial location (i.e. left circle). Stimuli are
presented for 1.5 s and each trial lasts for 2 s. Subjects are asked to
remember the current number and to press one of four buttons, using
their right thumb, on a diamond-shaped button box. In this task, the
subject must make a response at every stimulus presentation. For the 0-
back condition, the subject maps the current number to the position on
the button box, while for the 2-back condition the subject maps the
stimulus presented two-before to the appropriate button on the box.
Thus, the 2-back condition contains a WM and a sensorimotor element,
whereas the 0-back condition contains only a sensorimotor element
(notwithstanding having to keep the basic task requirements in mind).
In the WM condition the encoding, maintenance and retrieval processes
occur concurrently and with every stimulus presentation, and thus they
cannot be separated into discrete components with the paradigm used.

Figure 1. Left panel: the n-back WM task. A number is presented at random in the corner of the diamond-shaped figure (left) (the stimuli are presented every 2 s, for 1.5 s
duration). The subject maps their response on to a diamond-shaped button box (right). For the 2-back response, the subject responds by pressing the button that corresponds to
the stimulus presented two-before the current stimulus. The black number represents the current stimulus, the gray numbers those currently being held in WM and are shown for
illustration purposes only — the subject would only see the black number. Right panel: SPM96 map showing the brain regions that activate in the 2-back task compared with the
0-back task. The statistical threshold is set to display Z-values greater than 4, corrected for multiple comparisons. Activation sites and coordinates are listed in the Table 1.



1354 Neurofunctional Interactions in Working Memory • Glabus et al.

It is possible for subjects to use a spatial strategy (remembering the
spatial positions of the presented numbers), a verbal strategy (sub-
vocally rehearsing the presented numbers), or a combination of both to
perform this task. Data were collected from 14 of the 39 subjects on
cognitive strategy (spatial or verbal) via a five-point scale that classified
task strategy in verbal:spatial percentage ratios, where 1 = 100:0, 2 =
75:25, 3 = 50:50, 4 = 25:75, 5 = 0:100.

Imaging data were acquired while subjects lay supine in a GE
Advance, 3D PET camera (GE Medical Systems, Milwaukee, WI) using an
i.v. bolus of 10 mCi of H2

15O for each scan. Head position was main-
tained using a thermoplastic face-mask. Twenty-six subjects had 14 0-
back alternating with 14 2-back scans collected in two separate sessions
spread over 2 days with no more than 2 weeks between sessions. Thir-
teen subjects had only seven 0-back and seven 2-back scans. The scans
occurred at 6 min intervals and PET data were collected for 60 s during
2 min of stimulus presentation, allowing 61 trials. Each subject’s
performance was logged on a laptop computer that recorded responses
to each stimulus.

Image Data Processing
PET images were converted to Analyze format (Biomedical Imaging
Resource, Mayo Clinic, Rochester, MN). Data for each subject were
motion-corrected using AIR 3.0 (Woods et al., 1992). A mean image was
made from all co-registered 2-back and 0-back scans. Images were then
processed and analyzed with SPM96 (Friston et al., 1995) as follows: the
mean image was spatially normalized against a PET brain template image
supplied with the software. The normalization process used linear (12-
point Affine) and non-linear (Basis functions: ‘4, 5, 4’) options. The
computed spatial normalization parameters for each subject’s mean-
image were then applied to their 0-back and 2-back images. Voxel
dimensions after normalization were 2 × 2 × 4 mm in the x, y and z

dimensions, respectively. All normalized images were subsequently
smoothed with a Gaussian kernel (10 mm FWHM, isotropic) to reduce
noise and interindividual differences in gyral and sulcal anatomy. The
data were then analyzed using the PET statistics toolbox in SPM96, first
being proportionally scaled to the global mean intensity across all scans
for all subjects, then analyzed using a ‘multiple-subject replication of
conditions’ design. Two contrasts were produced: (i) showing increases
in the 2-back versus the 0-back condition; (ii) showing reductions in the
2-back versus 0-back condition.

SEM Methods
The method we adopted to construct our SEM models was based on
published methodology (McIntosh and Gonzalez-Lima, 1994; Goncalves
et al., 2001). Briefly, this involved combining anatomical and functional
information to help define brain nodes and interregional connections. A
correlation matrix was derived from the regional intensities of the 2-
back activation scans. The observed correlation matrix was tested
against an expected correlation matrix, generated by the SEM software,
and the validity of the model was established using stability and fit
criteria (defined below). One half of the data were tested against the
other half (see below, the split-half method), as no accepted model
existed to test the complete data set against. Once a stable, unique and
good-fitting group model was established, individual models for each
subject were constructed in a similar manner, then tested against the
group model using the same indices of stability and fit. The specific
details of how this was achieved are now given.

The Group WM Model

Data Extraction: Regions of Interest and Coordinates

The coordinates of the brain regions included in the model were derived
by examining in detail the group contrast-of-conditions output from SPM
for the 2-back task versus the 0-back task. Coordinates of the principal
sites of activation were determined and used as a guide for extracting
information from individual subjects images. The group analysis repre-
sents the average location of the sites of activation for all the subjects.
An algorithm was used to extract the average count data in a region, 5
by 5 by three voxels in the x, y and z dimensions, centered on the
selected voxel — a volume of 1.2 cm3 (10 × 10 × 12 mm) — for each
subject.

Constructing the Group Model

The group network model of WM was constructed guided by regions
activated during the 2-back WM task. The process involved two stages:
identifying the anatomical nodes and the functional connections
between them; establishing the directionality of the connections
between the nodes during the modeling process.

The model was based on known anatomical connections in human
and non-human primates (Middleton and Strick, 1994, 2000, 2001;
Petrides and Pandya, 1999; Clower et al., 2001) and on data from
published functional imaging studies (Kim et al., 1994; Andreasen et

al., 1998). Paths between some regions without known direct anatom-
ical connections, but which have documented functional interactions,
were also included (McIntosh and Gonzalez-Lima, 1994). Using putative
connections based on function is acceptable in modeling higher order
cognitive processes, essentially accounting for interactions mediated by
regions not in the model.

Extracted regional activity was averaged across all scans for the 2-back
condition for each of the 39 subjects at each node, and a group interre-
gional correlation matrix was produced. A group SEM WM model was
constructed from the group correlation matrix using the MX (Neale et

al., 1999) SEM software (supplied by Dr Michael Neale, Virginia
Commonwealth University, http://views.vcu.edu/mx/). The standard
approach was adopted: to construct a group WM model based on all the
data, then to test the expected correlation matrix generated by the
model against the experimentally observed correlation matrix. The pres-
ence and directionality of paths were established using a combination of
a priori information and information obtained during the modeling
process. It should be noted that these paths represent functional

connections during the WM process and not the anatomical connections
per se.

Testing the Group Model

The steps in WM model construction involved testing the validity of path
connections with indices of stability and fit, then adjusting the residual
variance, Psi (Ψ), downwards and re-testing the model in an iterative
manner. Ψ is a measure of the proportion of the total variance due to the
combined influence of regions outside the model, and is included as a
residual term in the model (Bullmore et al., 2000). The value that Ψ is set
to specifies the amount of residual variance that is used in the model
(McIntosh and Gonzalez-Lima, 1994; Goncalves et al., 2001). Setting the
value of Ψ has been fairly arbitrary in PET studies in the past, but fixing
its value reduces the number of model parameters that must be esti-
mated, leading to more stable models. However, the higher Ψ is set, the
less variance the model has to work with and the more unlikely that a
unique solution will be found, while freeing the parameter completely
can lead to model indeterminacy. The lowest possible value of Ψ, while
maintaining model stability, is the aim. The method for determining the
‘best’ Ψ for the model is a balance between ensuring the model is a good
fit and that the solution is fairly unique.

Thus, once a stable model was found with Ψ set to an initial value of
0.7, it was incrementally reduced and the model re-tested, using two
goodness-of-fit indices: the Akaike Information Criteria (AIC) (Akaike,
1987) and the root-mean-square error of approximation (RMSEA)
(Browne and Cudeck, 1993). The rule-of-thumb for assessing goodness-
of-fit is that a zero or negative AIC and RMSEA value of ≤0.1 are desirable
(Neale et al., 1999). Paths were initially modeled between nodes, indi-
vidually in one of two directions, then together in both directions at the
same time. The most parsimonious fit, derived from the goodness-of-fit
indices, was used to determine path inclusion. This method is equivalent
to bootstrapping the model prior to the next stage, and adjusting the
residual variances. In summary, our approach was to define a model,
then to test it and a series of close alternatives using goodness-of-fit
indices to establish that our proposed model was amongst the best-
suited for describing the functional interactions implicit to our data set
(Bullmore et al., 2000).

The Split-half Method

The group WM model was tested using the split-half method (McIntosh
and Gonzalez-Lima, 1994). Because there was no clearly established
model against which to test our proposed model, we adopted a conserv-
ative approach where we construct a model on one half of the data and
test it on the other half. The method uses a stacked-model configuration,
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where null and alternative models are compared. In one half of the stack
(the null) equivalent SEM paths across models are constrained to be the
same and the χ2 statistic is computed. In the second half of the stack
(the alternative) the equivalent paths across the two models are freed
and the χ2 statistic is again computed. The P-value is established by refer-
ring to a χ2 table, employing the difference in degrees-of-freedom
between null and alternative models.

The two sub-groups were matched for age, sex and performance. Null
and alternative models were assessed for fit using the χ2 difference
between null and alternative models. Residual variances on model nodes
were lowered from 0.7 until a P-value for the χ2 difference statistic was
>0.1. Lowering the Ψ allows the model more freedom to fit individual
paths, providing the fit is stable. A probability value greater than 0.1
indicates that, under the null-hypothesis, there is no significant differ-
ence between the observed and expected interregional correlation
matrices, and thus the model fit is acceptable, by conventional standards
(Bullmore et al., 2000), providing the AIC indicates a stable model.

Single-subject WM Models

Data Extraction: Regions of Interest and Coordinates

To account for interindividual differences in 2-back WM activation
patterns, 39 ‘single-subject replication of conditions’ designs were
performed on the 2-back versus 0-back scans, one for each subject.
Coordinates for the principal sites of activation for each subject were
then determined from these analyses and used as a guide for extracting
the proportionally scaled intensity values from each individual’s 2-back
scans. The loci of activation for individual subjects were defined within
one FWHM (10 mm isotropic) of the spatial smoothing filter of the prin-
cipal loci of activation for the group model. As in the group model, the
average count data in a region, 5 by 5 by three voxels in the x, y and z
dimensions, centered on the selected voxel — a volume of 1.2 cm3 (10 ×
10 × 12 mm) — for each subject.

Constructing the Single-subject Models

A correlation matrix was constructed for each individual based on the
average intensity values derived from the subject’s extracted 2-back
regional activations — seven or 14 measures depending on how many
repeat scans the subject had. Based on the group model, a WM model
was constructed for each subject using that subject’s interregional corre-
lation matrix. The same nodes and paths in the group model were used
to construct a model for each subject, with Ψ set to the value deter-
mined from the split-half test of the group model.

Testing the Single-subject Models

As for the group model, the stacked-model approach described above
was used to test the goodness-of-fit of each single-subject against the
group model. Path weights between individual nodes were then
recorded for the alternative model for each of the single-subject models.
Thus, the single-subject WM models differed from the group model only
in terms of the values of each effective connection.

Exploring the Relationship Between Path Weights and Behavioral

Measures

To establish the relationship between the recorded behavioral measures
and the WM model, correlation analyses were conducted between path
weights derived from individual models and performance and self-
reported strategy scores. Prior to the correlational analyses all data were
tested for normality of distribution using the Kolmogorov–Smirnov test.

Only models that met stability criteria established by AIC and RMSEA
measures (Goncalves et al., 2001) were used. Thus models from subjects
who only had seven repeat scans were removed from the analysis
because they were unstable — this left a total of 26 single-subject models.
Self-reported strategy rating was collected from 14 of these remaining 26
subjects (six high-performers and eight low-performers — see below),
who were entered into the correlation analysis of strategy with path
weights.

Results

Behavioral Measures
The mean strategy score for the 14 subjects who reported it was
2.71 (SD = 1.4, range was 1–4.75). The 2-back performance
score (percent correct) for each subject for each scan session
was averaged to produce a single score per subject. The mean
performance score for the 2-back task for the group of 26
subjects was 83% correct (SD = 14.3, range was 52.9% to
98.4%).

Examination of the performance scores’ distribution
suggested the existence of two groups: (i) high performers (HP,
n = 16), with scores ranging from 84.7% to 98.4% (mean = 93.5,
SD = 3.6), and (ii) low performers (LP, n = 10) with scores
ranging from 52.9% to 75.6% (mean = 66.3, SD = 6.5), with the
mean 2-back score significantly different between LP and HP
groups [t(24) = –13.7, P < 0.0005]. There was no significant
difference in age between groups [t(24) = –0.61, P = 0.55]. The
male:female sex ratio for each group was HP = 12:4, LP = 3:7
(χ2 = 3.72, P = 0.054).

Voxel-based (SPM96) Statistical Activation Analysis
Figure 1 (right panel) shows the sites of increased activity in the
SPM[Z] contrast of 2-back against 0-back conditions. Areas of
increased activity were found bilaterally in the inferior parietal
lobule (iPL), dorsolateral prefrontal cortex (dlPFC), thalamus
(medial dorsal nucleus), cerebellum, left inferior frontal gyrus
(Broca’s area), and an extensive bilateral region of activation
overlapping both the dorsal premotor areas (PMA) and anterior
cingulate cortex (ACC) that made these regions indistinguish-
able (henceforth we refer to this as a single node labeled
‘Cing’). There was a significant reduction in activity (not shown
in the figure) in the 2-back compared with 0-back condition
bilaterally in the parahippocampal gyrus (PHG).

Table 1 lists the regions activated, their Talairach coordinates,
and the statistical results reported by SPM96. Most of the
regions of activation have been reported in studies that use the
n-back WM task with PET or fMRI (Cohen et al., 1994; Smith
and Jonides, 1998; Cabeza and Nyberg, 2000; Mottaghy et al.,
2000; Meyer-Lindenberg et al., 2001), and some have been
identified in monkey studies of WM (Rainer et al., 1998; Chafee
and Goldman-Rakic, 2000; Compte et al., 2000).

Working Memory Group Model
The interregional correlation matrix for the 12 regions used in
the SEM WM model is given in Table 2. Averaged data from all
39 subjects was used to build and test the model with the
residual variance, Ψ, set to 0.7 for each node. There were a total
of 19 paths, generally constructed to fit well with anatomical
data prior to the modeling procedure. The path between the
left and right iPL exists anatomically in primates (Clower et

al., 2001), as do the paths between the right and left para-
hippocampal regions, not shown in Figure 2 (Gloor et al.,
1993). The path between the medial dorsal nucleus of the left
and right thalamus does not exist anatomically, but a strong
functional connection was implied in the correlation analysis.
We tested three models with different variants of this path: a
single path from left to right thalamus; a single path, in the
opposite direction (right to left); equally weighted bidirectional
paths between the two thalami. The model that generated the
best fit was for the path from the left to the right thalamus and
this was the one included in the final model.
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There was good fit for the group WM model [χ2(59) = 71.3,
P = 0.13, AIC = –46.7, RMSEA = 0.07]. Goodness-of-fit using the
χ2 value is indicated when there is no significant difference
between the observed and expected correlation matrices, as
typified by a P-value > 0.1. Figure 2 shows the group model
derived for the 2-back WM task. Among its prominent features
were strong fronto-parietal effective connections on the left
side of the brain and strong across-hemisphere effective
connections between iPL regions. Strong effective connections
between these regions were predicted as they are activated in
reported WM neuroimaging studies.

The data were then spilt into two groups, matched for age,
sex and performance and a split-half, stacked-model was tested
while adjusting Ψ on the observed variables to get the lowest
value possible with acceptable fit indices (AIC and RMSEA).
Lowering the Ψ to 0.65 gave a χ2

diff (19) = 27 (P > 0.1) between
null and alternative models. The fit indices were good, AIC =
–43.1 and RMSEA = 0.1. This determined the final group model
with which to compare the individual, single-subject models.

Single-subject Models
The individual-subject correlation matrices were each fitted in
turn to the group SEM model in MX. Thirty-nine stacked-models
were then tested, as before with null and alternative models,
but this time each individual subject’s model was tested in turn
against the group model, with all Ψ fixed at 0.65. All but two of
the 13 models derived from subjects with seven repeat meas-
ures were inestimable, and one of those had an AIC > 0 with a
large RMSEA. Thus it was decided to abandon the models from
subjects with seven repeat scans only. This left a group of 26
models representing the 26 remaining subjects, comprising 11
females and 15 males, mean age 30 (range 20–48), and all of
these models were stable, as indicated by the AIC and RMSEA
goodness-of-fit indices.

Seven of the 26 individual models had a χ2
diff < χ2

critcal giving
a P-value > 0.1. In other words those subjects had path models
that resembled the group model in terms of the path weights
between nodes. Four of these subjects were from the HP group,
three from the LP group and only four reported their strategy:
one mainly spatial, the rest split between verbal and spatial. The
remainder of the models varied, consistent with the notion of
individual differences in network activity (Goncalves et al.,
2001), and indicating sufficient variability to support the corre-
lational analyses below.

t-tests Across HP and LP Groups: Performance Scores and Path

Weights

t-tests were then performed across the two separate HP and LP
groups’ SEM WM path weights. Two paths significantly differed
between the HP and LP groups: left iPL — right PHG (t(24) =
2.21, P = 0.037: LPmean = 0.15, SD = 0.29; HPmean = –0.14, SD =
0.34) and right iPL — left PHG [t(24) = 2.203, P = 0.037: LPmean =
0.112, SD = 0.308; and HPmean = –0.127, SD = 0.245]. Note that

Table 1 
Principal sites of increases and decreases in activity for the SPM contrast of 2-back task versus the 
0-back task listing the anatomical region of the maximum voxel intensity, its coordinates in 
Talairach space, the Z-value reported at that voxel and the corrected probability value taking 
account of multiple comparisons

Annotations: dlPFC = dorsolateral prefrontal cortex; PMA = premotor area; iPL = inferior parietal 
lobule; MDN = medial dorsal nucleus; PHG = parahippocampal gyrus. A procedure developed by 
Dr Matthew Brett (http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace. html) was used to convert 
the MNI coordinates reported in SPM96 to Talairach coordinates and these are reported in the 
table.

Region Brodmann area Talairach coordinates Z-value P-value

Left dorsal PMA 6 –28 6 55 8.4 <0.0005

Right dorsal PMA 6 32 6 51 8.14 <0.0005

Left dlPFC 9/46 –46 29 28 8.18 <0.0005

Right dlPFC 9/46 42 30 24 8.86 <0.0005

Left iPL 40 –44 –41 43 8.54 <0.0005

Right iPL 40 44 –46 43 9.2 <0.0005

Left thalamus (MDN) –10 15 12 6.82 0.012

Right thalamus (MDN) 10 –15 12 7.3 <0.0005

Anterior cingulate cortex 24/32 –2 16 40 8.65 <0.0005

Left PHG 27 –30 –24 –12 –7.9* <0.0005

Right PHG 27 30 –22 –12 –7.38* <0.0005

Right cerebellum 36 –54 –28 8.04 <0.0005

Left cerebellum –36 –58 –27 8.75 <0.0005

Inf. frontal gyrus (Broca area) 44 44 8 11 4.62 0.056

Table 2
The matrix was derived from the average of all scans for each subject for the 2-back task

BROCA LPHG LCEREB LDLPFC LIPL LTHAL RPHG RCEREB RDLPFC RIPL RTHAL CING

BROCA 1

LPHG 0.051 1

LCEREB 0.065 –0.055 1

LDLPFC 0.111 0.052 –0.024 1

LIPL 0.643 0.083 –0.051 0.149 1

LTHAL –0.066 0.027 0.322 –0.204 –0.326 1

RPHG –0.170 0.344 0.033 0.011 –0.169 0.141 1

RCEREB 0.205 –0.294 0.447 –0.337 0.102 0.244 –0.148 1

RDLPFC 0.177 –0.078 0.198 –0.123 0.232 0.111 0.049 0.328 1

RIPL 0.331 –0.175 0.294 0.011 0.551 –0.077 –0.106 0.317 0.104 1

RTHAL –0.13 –0.058 –0.04 –0.28 –0.321 0.591 –0.134 0.138 –0.201 –0.110 1

CING 0.045 0.027 0.051 0.123 –0.061 0.049 –0.126 –0.073 0.278 –0.148 –0.059 1
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the iPL to contralateral PHG paths are negative in the HP group
and positive in the LP group. Because there was a trend for a
sex-ratio difference between the LP and HP groups, the original
group of 26 subjects was split into two groups by sex (11
females, 15 males) and the t-test analysis above repeated. This
time, only 2-back performance score was significantly different
(t = –2.84, P = 0.009: female mean = 74.4 (SD = 13.5); male mean
= 89.6 (SD = 11.8)), with left iPL — right PHG path (p = 0.86) and
iPL — left PHG (p = 0.5) now failing to show statistically signifi-
cant differences. Thus, this result suggests that group differ-
ences in path weights are related mainly to performance, not
sex, although the influence of sex cannot be completely ruled
out.

Task Performance Correlations

In the first set of correlation analyses the subjects’ path weights
were correlated against the 2-back performance scores sepa-
rately for each group. For the HP group, there was a significant
positive correlation between the left iPL — Broca path (r =
0.584, P = 0.018; for the LP group, this correlation was r = 0.07,
P = 0.854). For the LP group, there was a significant negative
correlation for the right iPL — right DLPFC path (r = –0.737, P =
0.015; for the HP group, this correlation was r = 0.021, P =
0.937). The significant results are shown in Figure 3.

A correlation analysis of path weights against 2-back perform-
ance score was performed for the combined group of subjects.
There were two results of note, both of borderline statistical

significance: the left iPL — right PHG path (r = –0.383, P =
0.054) and the right iPL — left PHG path (r = –0.374, P = 0.06).

Task Strategy Correlations

Next, a correlation analysis was performed between path
weights and the self-reported strategy scores for the 14 subjects
(six LP, eight HP) for whom strategy data were collected. There
was a significant correlation showing increasing spatial strategy
with the left iPL — right PHG path strength (r = 0.66, P = 0.01,
Fig. 4). A correlation analysis was then carried out for each
group, showing that strategy correlated positively with the path
between left iPL — right PHG in the HP group only (r = 0.755,
P = 0.03). The strategy scores for the two groups, while not
significantly different [HPmean = 2.2 (SD = 1.2); LPmean = 3.3 (SD
= 1.02)], showed a trend for the HP group to use a verbal
strategy with 6/8 subjects having a score less than three. In
contrast, no LP subjects showed a distinctly verbal strategy.

Discussion

Using SEM, we have produced a group average functional
network model for the 2-back WM task. This model promi-
nently involved strong functional links between parietal and
frontal cortex. Moreover, embedded in this group average
network were two distinct brain sub-networks that, when
viewed for individual subjects, appear uniquely associated with
a subject’s innate ability to perform the task. Subjects who
performed the task most successfully utilized a left hemisphere

Figure 2. Group path model. Positively weighted paths are colored red, negatively
weighted paths are colored blue. Thicker arrows indicate stronger connections. Two
paths — from right PHG to left PHG and left PHG to right PHG — have been omitted for
clarity. The strengths of both these paths was +0.7. Annotations: PHG =
parahippocampal gyrus; dlPFC = dorsolateral prefrontal cortex; Cing = cingulate
cortex; iPL = inferior parietal lobule; Thal = thalamus; Cereb = cerebellum; Broca =
Broca’s area.

Figure 3. Upper: correlation of 2-back performance score (percent correct) against
the path weight between LiPL and Broca’s region in the high-performance group (n =
16, r = 0.584, P = 0.018). Lower: correlation of 2-back performance score (per cent
correct) against the path weight between RiPL and RdlPFC in the low-performance
group (n = 12, r = –0.737, P = 0.015).
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network involving the iPL and Broca areas whereas subjects
who performed less well employed a right hemisphere network
involving the iPL and dlPFC. While the importance of the
frontal–parietal association in individual cognitive characteris-
tics was predicted, the results extend our predictions by
providing new information about the neural mechanisms
mediating these performance differences. We have also shown
that self-reported strategy is reflected at the cortical level,
specifically in a sub-network involving an effective connection
between the PHG and iPL. An intriguing association between
strategy and performance level was observed in this same sub-
network.

The Group Average WM Model
The model constructed from the group average activity is
consistent with many functional neuroimaging activation
studies of WM. In such studies the regions that consistently
activate are frontal, parietal, cingulate and cerebellum. We
observed strong effective connections involving all these
regions, especially fronto-parietal and inter-parietal links.
The dlPFC and iPL regions are heavily interconnected in
primates (Cavada and Goldman-Rakic, 1989) and it has been
shown these regions subserve WM processes in both single
neuron primate recordings and human neuroimaging studies.
Neurons in these regions behaved interdependently during a
WM task in primates (Chafee and Goldman-Rakic, 2000). WM
load-dependent activity has been seen in posterior parietal
cortex (Honey et al., 2000) and prefrontal cortex (Manoach et

al., 1997) and collaborative activity is implied in WM from
human neuroimaging (Diwadkar et al., 2000; Mottaghy et al.,
2000; Bokde et al., 2001), EEG (Chao and Knight, 1996; Gevins
and Smith, 2000; Ross and Segalowitz, 2000) and TMS (Muri et

al., 2000; Oliveri et al., 2001) studies. It has been suggested that
the iPL serves as a phonological maintenance or short-term
storage area (Paulesu et al., 1993; Jonides et al., 1998; Smith
and Jonides, 1998), although other studies find a load-
dependent activation (Callicott et al., 1999; Jansma et al., 2000)
that might reflect other concurrent processes such as encoding
and retrieval, or that the iPL may have a role in the processing
of specialized visual information (Ungerleider et al., 1998). The
dlPFC is thought to be associated with planning, monitoring
and response selection in primates (Levy and Goldman-Rakic,
2000; Petrides, 2000) and, additionally, in human neuroimaging

studies, with all phases of encoding, maintenance, retrieval
(Braver et al., 1997; Cohen et al., 1997; Cabeza and Nyberg,
2000) and manipulation (D’Esposito et al., 1999).

It is interesting that the strongest group average fronto-
parietal effective connections were in the left hemisphere. As in
all group average data the characteristics of the individuals
comprising the group may be obscured, particularly if these
individuals employ diverse strategies and/or have differences in
innate ability, as was demonstrated in our behavioral data. Our
single-subject analyses, to which we now turn, help elucidate
this.

Single-subject SEM Models
We observed considerable interindividual variability in single-
subject models and in individual path weights, as has been
reported in a few other SEM studies (e.g. Goncalves et al.,
2001). Our results suggest that this type of neurobiological vari-
ability has implications for, and reflects, differences in cognitive
style and ability during WM.

Fronto-parietal Connectivity and WM Performance As a

Function of Hemisphere

Not only do our findings confirm that there is strong bilateral
collaborative activity between frontal and parietal regions in the
2-back task, they also indicate that the degree of fronto-parietal
coupling within each hemisphere appears to reflect perform-
ance level in individual subjects. Specifically, in the HP group
performance scores increased as the iPL-Broca’s area path-
strength on the left increased (Fig. 3, upper) and in LP group
the iPL-dlPFC path-strength in the right hemisphere became
weaker as performance scores improved (Fig. 3, lower).
Although the exact nature of these relationships was not
predicted, our results are consistent with and expand upon
published findings that lead to our hypothesis linking
frontal–parietal interactions and WM performance. It has been
proposed that a right fronto-parietal network is activated for
sustained attention, and a left fronto-parietal network for the
phonological rehearsal loop component of WM (Coull et al.,
1996). However, the same authors suggest that activation of the
right hemisphere network may also indicate that subjects are
activating a visuospatial buffer (Baddeley, 1992), putatively in
the right inferior parietal lobule. EEG activity has also been
found to be more prevalent in the left hemisphere of subjects of
high verbal ability, while predominantly right-sided EEG activity
is present in subjects with more spatial ability (Gevins and
Smith, 2000). In general, verbal/numeric WM tasks appear to
activate a network in the left hemisphere while spatial WM
tasks appear to activate a right hemispheric network, although
this pattern is by no means unequivocal in every study or in
every individual subject in our present study, and bilateral
activity often occurs in both types of tasks (Cabeza and Nyberg,
2000). In our study, subjects who performed poorly appeared
to activate a right hemisphere fronto-parietal connection whilst
subjects who performed well favored a similar, but left-sided,
network. Possible explanations for this may be related to either
innate cognitive ability and/or to the strategy that the subjects
use to perform the task.

It is possible that the predominance of the left-hemisphere
fronto-parietal connectivity in the group model reflects the fact
that there were more high performers in the study, and they
used a left-sided network. This demonstrates the power that the

Figure 4. The correlation of strategy and path weight for the left inferior parietal lobule
and the right parahippocampal gyrus. Circles denote subjects in the HP group; triangles
denote subjects in the LP group. There was no correlation with path weight and
strategy for the LP group; for the HP group r = 0.755, P = 0.03; for the combined
group, r = 0.66, P = 0.01 for all subjects who reported their strategy (n = 14).
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single-subject SEM approach has for resolving the individual
contributions hidden within the group average model.

Parietal–Hippocampal Connectivity and WM Strategy

The number of subjects for whom we had strategy data was
small, and we did not have an a priori hypothesis regarding this
interaction, thus we may attach only limited significance to the
results. However, the relationship between WM strategy and
iPL-contralateral PHG path strength is intriguing. As shown in
Figure 4, (i) there was a positive correlation between path
weight and strategy across all subjects; (ii) the HP group tended
to have a verbal strategy and a positive correlation with path
weight and (iii) there was no correlation of strategy with path
coefficient in the LP group. The LP subjects are grouped
towards the middle and the spatial end of the verbal:spatial
continuum, the HP subjects mainly to the verbal end.

There is anatomical support for the presence of a parietal-
hippocampal functional link. Within the medial temporal lobe,
the hippocampus is heavily connected to the adjacent
perirhinal and entorhinal cortices, and left and right hippo-
campii are interconnected via the fornix (Gloor et al., 1993)
and also to both ipsilateral and contralateral iPL (Clower et al.,
2001) in primates. The PHG receives cortical inputs from poste-
rior parietal cortex (Lavenex and Amaral, 2000), and, like the
hippocampus, has not been associated with WM but with
declarative long-term memory (LTM) formation (Lavenex and
Amaral, 2000). However, recent neuroimaging studies have
shown that the hippocampus and PHG may be involved in
WM processes. In a task using novel and learned faces, a clear
dissociation of function was demonstrated between anterior
hippocampus and PHG, with the former being active during
WM delay and the latter activating during both WM and LTM
encoding and retrieval (Ranganath and D’Esposito, 2001). A
study using spatial alternation with a WM maintenance demand
showed activation in the right hippocampus during alternation
(Curtis et al., 2000).

The role of the iPL as a WM buffer was outlined above and it
has been suggested that hippocampal–parietal interaction is
present in the process of spatial cognition (Maguire et al., 1998;
Save and Poucet, 2000). Our study showed that subjects who
utilize a more self-reported spatial strategy have a positively
weighted connection between left iPL and right PHG, while
those claiming a more verbal strategy have a negatively
weighted connection. Understanding the neural substrate of
SEM path weight polarity (positive or negative) is necessary to
make inferences on our results. Path weights are essentially
linear regression coefficients with the sign implying the positive
or negative influence of one node on another. The magnitude of
the weight gives the strength of the regression. It has been
suggested that relative suppression of activity at one node with
respect to another produces path weights that are negative,
implying that this represents an inhibitory process at the
neuronal level (Nyberg et al., 1996), although it is also possible
that a third area not included in the model exerts this influence.
This possibility was not explicitly tested in our study, but if we
assume subjects using a verbal strategy exhibit a suppression of
neuronal activity in the iPL–PHG connection, we speculate that
the process is suppressing the formation of LTM. Spatial strat-
egists, who tend to perform worse, appear to activate this
connection, which may, in turn, imply activation of an LTM
process, such as encoding, that is not advantageous for this WM
task.

Single-subject Studies Using SEM

It has been suggested that the number of subjects or number of
repeat measures required to construct a stable SEM model
should either be large or the effect size should be large and
normally distributed in smaller groups (Ullman, 1996), with a
minimum of 10 subjects. Our study has confirmed that, for indi-
vidual subjects, the number of repeat-measures required to
create a stable model with methods similar to ours is greater
than seven, because most models using only seven repeat-meas-
ures were inestimable.

Of the 26 single-subject models produced, seven had path
weights closely representing those of the group average model.
Because the goodness-of-fit measures are applied to the entire
network, rather than individual paths, it is possible for the
strengths and polarities of individual paths to vary considerably,
even across individuals who have models with very similar fit
indices. This emphasizes the interindividual variability of the
network as a whole, and shows that SEM can capture this indi-
vidual variability and model complex brain networks to reveal
how these networks are utilized in different individuals.

Conclusions

Using SEM, a group WM model is described that shows promi-
nent effective connections particularly on the left side of the
brain. Analyses of single-subject SEM WM models revealed
underlying cortical sub-networks in each hemisphere that are
related to behavioral measures. The performance and strategy
analyses indicated that subjects who utilized a verbal strategy
perform our 2-back WM task more efficiently than those who
utilized a spatial strategy. This point is supported by the fact
that the LP group tended to use a more equally mixed
verbal:spatial or mainly spatial strategy, whereas the HP group
tended to use a mainly verbal strategy (6/8 subjects). The path
analysis suggests that suppression of LTM may be a more effi-
cient use of neuronal resources than activation of LTM in this
WM task. It is also conceivable that the task is easier to perform
using a verbal rather than a spatial strategy, where use of sub-
vocal rehearsal of the numbers is more effective than remem-
bering their spatial position. Differences in performance could
then be due to either differences in innate cognitive ability or
because some subjects make a decision — consciously or
subconsciously — on a strategy that is either optimally matched,
or not optimally matched to the task. This may have important
implications in the study of mental illness, such as schizo-
phrenia, where subjects are known to perform WM tasks
poorly (Manoach et al., 1999, 2000; Callicott et al., 2000;
Meyer-Lindenberg et al., 2001). Despite innate capacity limita-
tions (Goldberg et al., 1998; Callicott et al., 2000) or aberrant
dopaminergic function (Meyer-Lindenberg et al., 2002), it is
possible that assistance with selecting a more rewarding
strategy might improve the performance of these subjects and
could form the basis of a future study.
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