Go to Science@NASA home page

Meridiani Planum: "Drenched"

Long ago, parts of Mars were soaked in liquid water, say scientists analyzing data from NASA's Mars rover Opportunity.

NASA

Link to story audioListen to this story via streaming audio, a downloadable file, or get help.

March 2, 2004: Some rocks at Opportunity's landing site in Meridiani Planum on Mars were once soaked in liquid water. Members of the Mars Exploration Rovers' international science team presented the evidence today to news reporters at NASA Headquarters in Washington, DC.


Sign up for EXPRESS SCIENCE NEWS delivery
"Liquid water once flowed through these rocks. It changed their texture, and it changed their chemistry," said Cornell University's Steve Squyres, the principal investigator for the science instruments on Opportunity and its twin, Spirit. "We've been able to read the tell-tale clues the water left behind, giving us confidence in that conclusion."

Here are some of the clues that water formerly pervaded an outcropping of rocks where Opportunity has been working:

(1) The rover's alpha particle X-ray spectrometer found lots of sulfur in the outcrop. Related clues from that instrument and the miniature thermal emission spectrometer suggest the sulfur is in the form of sulfate salts (similar to Epsom salts). On Earth, rocks containing so much salt either formed in water or, after formation, were soaked in water a long time.

see caption

Above: These spectra show that a rock dubbed "McKittrick" near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, possesses the highest concentration of sulfur yet observed on Mars. [More]

(2) The rover's Moessbauer spectrometer detected jarosite, a hydrated iron sulfate mineral that could result from the target rock spending time in an acidic lake or acidic hot springs environment.

(3) Pictures from Opportunity's panoramic camera and microscopic imager show many thin, flat holes--"about the size of pennies," says Squyres--in an outcrop rock selected for close-up examination. These holes, or "vugs," match the distinctive appearance of Earth-rock vugs that form where crystals of salt minerals grow inside rocks that sit in briny water then disappear by eroding or dissolving.

see caption(4) The cameras have revealed spheres the size of BBs embedded in outcrop rocks. Researchers call them "blueberries"-- although they're not blue, they're gray. The spherules are not concentrated at particular layers within the rock, as they would be if they originated outside the rock and were deposited onto accumulating layers while the rock was forming. Instead, the spherules are scattered. This means they are probably what geologists call "concretions" that formed from accumulation of minerals coming out of solution inside a porous, water-soaked rock.

Right: A spherule in a region of the rock outcrop dubbed "El Capitan." The area in this image, taken on Sol 28 of the Opportunity mission, is 1.3 centimeters (half an inch) across. [Larger image]

(5) Some of the spherules in pictures from the microscope appear to have stripes that correspond to layering of the matrix rock around them. This would be consistent with the interpretation that the spherules are concretions that formed inside a wet rock.

There is still much to learn: When was the area wet? And how long did the wet conditions last? How was the water collected--e.g., in a salty lake or sea? How deep was the water? Scientists and engineers plan to keep Opportunity busy in the days ahead looking for more clues that might answer some of these questions.

Visit http://marsrovers.jpl.nasa.gov for the latest information about Spirit and Opportunity.

SEND THIS STORY TO A FRIEND


Credits & Contacts
Source: NASA press release
Responsible NASA official: John M. Horack

Production Editor: Dr. Tony Phillips
Curator: Bryan Walls
Media Relations: Steve Roy

The Science and Technology Directorate at NASA's Marshall Space Flight Center sponsors the Science@NASA web sites. The mission of Science@NASA is to help the public understand how exciting NASA research is and to help NASA scientists fulfill their outreach responsibilities.


more information

Mars Exploration -- (NASA/JPL) NASA's home page for exploration of the red planet

Rover Finds Signs of Wet Martian Past -- (NASA) NASA's Opportunity rover is showing indications that water once flowed on Mars.

Destination: Meridiani Planum -- (Science@NASA) On January 24, 2004, NASA's Mars rover Opportunity landed on a Martian plain in search of evidence for water.

Interplanetary Hole in One -- (Science@NASA) After traveling 300 million miles, Spirit's twin rover Opportunity landed on Mars in a small shallow crater--the perfect place to look for signs of ancient martian water.

The Case of the Missing Mars Water -- (Science@NASA) Plenty of clues suggest that liquid water once flowed on Mars --raising hopes that life could have arisen there-- but the evidence remains inconclusive and sometimes contradictory

Making a Splash on Mars -- (Science@NASA) On a planet that's colder than Antarctica and where water boils at ten degrees above freezing, how could liquid water ever exist? Scientists say a dash of salt might help.


Join our growing list of subscribers - sign up for our express news delivery and you will receive a mail message every time we post a new story!!!

Moresays 'NASA NEWS' Headlines


THE END