

# Instrument Development





## Laboratory Experiments

#### **Field Studies**



#### POSTERS



#### Aerosol Particle Density Determination Using Light Scattering in Conjunction with Mass Spectrometry E. Cross et al.

#### Carbonaceous Aerosol Processing in the Mexico City Metropolitan Area

J. Slowik et al.







# Factors Affecting CCN Activity of Soot Aerosols

E. S. Cross<sup>1</sup>, E. F. Gagne<sup>1</sup>, J. G. Slowik<sup>1</sup>, P. Davidovits<sup>1</sup>, T. B. Onasch<sup>2</sup>,

J. T. Jayne<sup>2</sup>, D. R. Worsnop<sup>2</sup>.

<sup>1</sup>Boston College, Chestnut Hill, MA 02467 <sup>2</sup>Aerodyne Research Inc. Billerica, MA 01810 DOE ASP Meeting Boulder, CO October 25 – 27, 2006



## **AMS-Based Characterization of Soot Particles**

Soot composed of BC

#### Soot composed of aggregated BC spherules



- Effect on Soot CCN Activity of:
- Thickness of salt coating e.g.  $(NH_4)_2SO_4$
- Thickness of organic coating of varying hydrophilic properties e.g. glutaric acid
- Effect of soot morphology; mobility diameter (major axis), spherule size.
- Current results:
- CCN activity increases with mobility diameter (expected)
- CCN activity decreases with increasing spherule diameter (unexpected)
- Future Work:
- Deactivation of Sulfate Cores with Hydrophobic Organic Coating.
- CCN Activity of Inorganic-organic Internally Mixed Aerosols



Supersaturation Point (50% Activation)

#### **Current results:**

•CCN activity increases with mobility diameter•CCN activity decreases with increasing spherule diameter



