

IKONOS Radiometric Characterization Lunar Lake Playa, Nevada

Mary Pagnutti

Lockheed Martin Space Operations NASA Stennis Space Center

March 19 - 21, 2001

phone: (228) 688-2135 e-mail: mary.pagnutti@ssc.nasa.gov

Co-Contributors

Stennis Space Center

Slawek Blonski Debbie Fendley Michelle Kelly Robert Ryan Chris Schera Bill Smith Vicki Zanoni

Kurt Thome

LMSO, Stennis Data Star, Stennis LMSO, Stennis LMSO, Stennis LMSO, Stennis Data Star, Stennis NASA, Stennis

University of Arizona

Lunar Lake Characterization Overview

Stennis Space Center

Objective

 Perform radiometric vicarious calibrations of IKONOS imagery and compare with Space Imaging calibration coefficients

Approach

- Utilize well-characterized dry lake bed in Nevada. Site is widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors
- Compare measurement techniques and data processing methods with other recognized groups
- Leverage characterization activity with other field measurement programs

Lunar Lake Playa, Nevada

Stennis Space Center

Site: Dry lake bed in central Nevada, predominantly clay surface, no vegetation, surface is hard and nearly impermeable to water. Elevation approx. 1800 m Center point 38.4° N, 116.0° W.

Purpose: Radiometric characterization, Intercomparison with Landsat 7

Targets: 4 - 8 meter square grayscale tarps (64%, 48%, 8%, 4%)

In-Situ Instrumentation: ASD spectroradiometers, Reagan sun photometer, radiosonde

Other Coincident Collects: Landsat 7, Terra ASTER/MODIS, ATLAS, AVIRIS

Stennis Space Center

Reflectance-based Approach

- Characterize surface reflectance at time of satellite overpass
- Characterize atmosphere at time of satellite overpass
- Use surface and atmospheric characterization to predict atsensor radiance
- Compare predicted at-sensor radiance to actual radiance acquired by sensor

Stennis Space Center

- CRSP FieldSpec FR Spectroradiometer
- Modified FieldSpec FR Spectroradiometer

- Provided by Boeing Aerospace Corp.

- Reagan Sun Photometer
 - Provided by University of Arizona
- Radiosonde
- Trimble GPS
- Reflectance Tarps (for ATLAS characterization)
 - 4%, 8%, 48%, 64% reflectance, 8 m x 8 m
- Spectralon Calibration panels
 - 99% reflectance, 10 in. X 10 in.
 - 50% reflectance, 12 in. X 12 in.
 - 10% reflectance, 12 in. X 12 in.
 - Dyprosium oxide, 4 in. X 4 in. wavelength calibration

JACIE WORKSHOP Greenbelt, MD

Data Acquisitions

Stennis Space Center

- June 7
 - Weather conditions
 - Little to no cloud cover
 - Extreme wind
 - U of AZ provided solar radiometer measurements taken at nearby site (Railroad Valley)
 - ASD measurements taken for 2 transects Line 1 and Line 2

• June 10

- Weather conditions
 - Little to no cloud cover
- U of AZ provided solar radiometer on site
- ASD measurements taken for 2+ transects Line 1, Line 2, and selected points along Line 3

Procedures

Stennis Space Center

ASD measurements

- 11 measurement stations per transect, 3 transects
- 99%, 50%, 10%, and dysprosium oxide calibration measurements at start of each transect
- 99% calibration measurement taken before each station
- Dark current taken after each station
- 10 data readings taken at each calibration, dark current, and measurement station

Atmospheric measurements

- Collect solar radiance data from early morning through post-sensor acquisition
- Radiosonde launch near time of sensor overpass
- GPS survey of sunphotometer, radiosonde launch site, transect measurement stations, reflectance targets, and other landmarks
- IKONOS Spacecraft overpass at approx. 11:30 AM local time

IKONOS Image of Lunar Lake

Stennis Space Center

JACIE WORKSHOP Greenbelt, MD

TOA Radiance Estimation

Stennis Space Center

Top of Atmosphere Radiance

Radiosonde Data

JACIE WORKSHOP Greenbelt, MD

June 10th Reagan Sun Photometer Data

Stennis Space Center

Provided by University of Arizona

BAND	WAVELENGTH (microns)	AVG. TOTAL OPTICAL DEPTH	ONE STD DEV.	# POINTS
1	0.3794	0.4876	0.0028	20
2	0.4003	0.4240	0.0030	20
3	0.4401	0.3125	0.0027	20
4	0.5187	0.2131	0.0023	20
5	0.6106	0.1809	0.0017	20
6	0.6712	0.1203	0.0018	20
7	0.7811	0.0943	0.0013	20
8	0.8697	0.0717	0.0013	20
9	0.9394	0.8033	0.0159	20
10	1.0300	0.0662	0.0013	20

924.0000	9.9999	Average pressure and standard deviation (milibar)
2.8409	0.0199	Average Junge Par and standard deviation
0.0938	0.0017	Average Ref. OD and standard deviation
0.3617	0.0165	Average Ozone and standard deviation
1.0909	0.0433	Average Column H ₂ O and standard deviation
20.0000	9.9999	Average temperature and standard deviation °C

June 7th Spectroradiometer Data

Stennis Space Center

Spectral range: 350 - 2500 nm

- **Sensors:** One 512 element photodiode array and two thermoelectrically cooled, extended range InGaAs photodiodes
- **Sampling interval:** 1.4 nm between 350-1000 nm, 2 nm between 1000-2500 nm.
- **Spectral resolution:** 3 nm@700 nm, 10 nm@1500 nm, and 10 nm@2100 nm.

Number of channels: 512 channels prior to interpolation

Wavelength accuracy: +/-1 nm

Sensor linearity: +/-1%

Fiber length: 1 meter.

Scan time: A new spectrum is generated every 0.1 seconds for the entire spectral range.

IKONOS In-Band Soil Reflectance

Stennis Space Center

Lunar Lake IKONOS Radiometric Assessment

Stennis Space Center

Lunar Lake, NV June 7th, 2000 Using Soil Reflectance Measurements

	Band (nm)	NASA Estimate (W/m ² sr)	IKONOS Measurement* (W/m ² sr)	% Difference
1	445 - 516	12.560	12.991	3.43%
2	506 - 595	16.987	20.515	20.77%
3	632 - 698	13.531	17.711	30.90%
4	757 - 853	14.153	21.536	52.16%

Percent difference is calculated by: abs(1 - IKONOS/NASA)

* using initial Space Imaging calibration coefficients

Lunar Lake IKONOS Radiometric Assessment

Stennis Space Center

Lunar Lake, NV June 10th, 2000 Using Soil Reflectance Measurements

	Band (nm)	NASA Estimate (W/m ² sr)	IKONOS Measurement* (W/m ² sr)	% Difference
1	445 - 516	12.841	12.029	6.32%
2	506 - 595	17.280	19.075	10.39%
3	632 - 698	13.642	16.712	22.50%
4	757 - 853	14.053	20.442	45.46%

Percent difference is calculated by: abs(1 - IKONOS/NASA)

* using initial Space Imaging calibration coefficients

IKONOS Blue Band Calibration Summary

Stennis Space Center

IKONOS Green Band Calibration Summary

Stennis Space Center

IKONOS Red Band Calibration Summary

Stennis Space Center

IKONOS NIR Band Calibration Summary

Stennis Space Center

NASA Radiometric Characterization Summary

Stennis Space Center

Band	NASA Gain	Initial Space Imaging Gain	<u>NASA Gain</u> SI Initial Gain
1	63.3	63.7	0.99
2	64.9	57.3	1.13
3	84.0	66.3	1.27
4	74.6	50.3	1.48

Units of Gain = [W / (m² sr)] /DN

Summary

Stennis Space Center

- Original Space Imaging provided calibration coefficients in the Red and NIR bands disagree significantly with NASA derived coefficients
 - Three different NASA teams using complimentary methods show similar discrepancies
 - Present assessment based upon several measurements taken over a short time period. Difficulties in tasking with ground teams have hampered a long term systematic assessment
 - This level of error may have significant implications for the science community

Summary

Stennis Space Center

- As a result of this discrepancy, Space Imaging is re-evaluating their on-orbit stellar calibration method/results
 - Expect SI to release updated calibration coefficients in near future
- NASA Team will continue to evaluate IKONOS radiometry
 - Periodic calibrations required to ascertain stability
 - Reflectance-based vicarious calibration approach
 - Radiance based approach utilizing uniform stable sites and existing well calibrated satellites (L7)
 - Work to resolve radiometric calibration differences between NASA Team and Space Imaging