Magnetism Studies with Microfocused X-rays

George Srajer, Sector 4 (Polarization Studies Group)

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Three Examples

(1) ~ 10 μ m resolution

Imaging of Spiral Magnetic Domains

Scanning microscopy - diffraction contrast

(2) ~ 1.0 μ m resolution

Biquadratic Exchange in SmCo/Fe Bilayer

Scanning microscopy - absorption contrast

(3) ~ 0.1 μ m resolution

Imaging of Co Nanodot Arrays

Full field microscopy - absorption contrast

Common Features

• In Sector 4

• All experiments performed with circularly polarized x-rays

4-ID-C: Circularly polarized undulator

4-ID-D: Phase retarder

1. Imaging of Spiral Domains

Φ : turn angle between atomic layers

Left handed or right handed spiral

polarized beam to measure *chirality* of domains at a particular τ

Linear Undulator

Spiral Domains in Holmium

Pioneering Science and Technology

Temperature Dependence of Ho Domains

Domains freeze in; not many changes

Imaging of Dysprosium Spiral Domains

T=90K cooling

J.C. Lang, D. McWhan, D. Haskel, D. Lee and G. Srajer,

in preparation

Warming from ferro phase yields many smaller domains which merge with larger domain upon heating.

2. Biquadratic Exchange in Sm/Co Bilayer

(G. Srajer, D. Haskel)

Microfocusing on 4-ID-D

Experimental Setup

J.C. Lang et al. SPIE Proc. 4499, 1 (2001)

Office of Science U.S. Department of Energy

J. Pollmann et al. J. Appl.Phys. 89, 7165 (2001)

Sm Remanent Hysteresis Loop

Goal is to determine the field at which SmCo layer is demagnetized

If Fe domains large, Fe magnetization direction frustrated!

H = -3.4 kOe

Fe Domains for Demagnetized SmCo Layer

-3

-4

Field (kOe)

-2

-

0

Fe-remanent

-5

CP-xrav

-6

Fe Remanence @ 90 deg. 30 0.001 25 - 0.001 20 **Two large** - 0.003 domains! 15 2 10 - 0.005 5 0 0.007 20 30 10 15 25 0 5 average value: -0.00105 ± 0.00002 , contour interval: 0.002

-0.004

-0.006

-0.008

-7

G. Srajer, D. Haskel, J.C. Lang, C. Kmety-Stevenson, S. Jiang and S. Bader, **Office of Science U.S. Department** in preparation

13

3. Imaging of Co Nanodot Arrays

Chemical and Magnetic Image

Chemical contrast:

- Self-assembled systems
- Segregation
- Local electronic structure
- Buried layers (~5 nm)

Magnetic map (I*-I⁻)

Vortex domains

1x1x0.015µm Co

Magnetic contrast:

- Domain imaging
- Ground states on nanoscales
- Interactions in particle arrays
- Finite size effects

Rectangular Cobalt Arrays

Technology

of Energy

16

Micromagnetics Calculations

500 x 1000 nm dots

Two configurations:

 M_s =1350 emu/cm³; A=3.05 µerg/cm

- Chirality and temperature dependence of spiral and conical domains in *single crystals*
- Direct evidence of biquadratic coupling in a Fe/SmCo *bilayer*
- Length scales of magnetic interactions in Co patterned arrays

