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FAQ:  “Forward Looking” Laboratory?

Bob suggested a great title:  “The Lab of the Future”

Unfortunately, we’ve been scooped by Rhodia:

C'est la vie, mais…

Sacrebleu!

Laissez les bons temps rouler!
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Les bons temps ce matin*

Introduction to NIST
Notes from a “forward looking” laboratory

An brief overview of the ideas that drive the 
NIST Combinatorial Methods Center (NCMC)

*French text translation courtesy of Google; poor pronunciation courtesy of Mike Fasolka
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NIST Mission

NIST assets include:
• 3,000 employees
• 1,600 guest researchers
• $858 million FY 2005 operating budget

The NIST Laboratories
• Measurement methods research in a wide 

range of physical chemical, and engineering 
disciplines

• Respond to measurement needs of industry 
to continually improve products and 
services

National Institute of Standards and Technology

Promote U.S. innovation and industrial competitiveness by advancing 
measurement science, standards, and technology.
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Highly leveraged measurement and research capabilities that 
support trillions of dollars in industry products and services

NIST Laboratories

Works with industry, standards bodies, universities, and 
other government laboratories, to improve the nation's 
measurements and standards infrastructure for materials
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Challenges to Innovation in Materials

New materials:
Highly Tailored

Exact chemistry, microstructure, 
surface properties, biocompatibility 

etc, to meet specific applications 

Huge, complex variable spaces
Discovery and optimization of new materials is 

difficult, costly and time consuming

Highly 
Formulated

Many hierarchical 
component with 

complex processing

Complex Structure 
and Behavior

Difficult to measure, 
governed by a 

plethora of factors
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NIST Combinatorial Methods Center

Focus Areas
• Polymer Formulations
• Polymer Coatings and Thin Films
• Adhesion and Mechanical Properties 
• Polymer Nanomaterials and Nanometrology

Philosophy
• Lower implementation barriers to C&HT methods
• Present alternatives to existing C&HT paradigms
• Publish everything we do

Tailored

Formulated Complex

Mission
Advanced measurement methods that 
accelerate the discovery and optimization 
of new materials

Combinatorial and High-Throughput (C&HT) 
measurement methods for materials 
research 

New
Materials
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Notes from a “forward  looking” laboratory

Note #1

Spaces not Points

As a matter of general practice, NCMC researchers 
approach problems from a combi perspective.
How can we make this measurement combi?

How can we make it more rapid?  
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Combinatorial Library Fabrication

Multivariate libraries are the foundation of the combi approach

C&HT approaches to materials hinges on the ability to create 
appropriate libraries

• Express a large number of materials and/or processing factors…
•…for the system of interest
•Amenable to HT analysis

C

NCMC Researchers think about these issues a lot.

HT
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Continuous Gradient Libraries

Property 2

Pr
op

er
ty

 1

Single specimens that cover large parameter space

• Excellent for behavior or structural mapping
• Property optimization
• Critical phenomenon
• Thin geometry – Films and Coatings
• Easy to implement
• Low-cost infrastructure

Challenges
• Fabrication in soft materials, organic coatings
• Reproducibility
• Well behaved for quantitative studies
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The “accelerated source” method

• A single motion stage with computer control
• A source of material, light, etc. 

Film Thickness Gradient Surface Energy “Hydrophobicity” Gradient

Similar approaches for x-link density, film composition, U.V. 
curing, roughness and modulus gradients. 
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Powerful Mapping in a Single Specimen

Polymer film wetting and stability
Blend phase behavior
Self Assembly and Nanomaterials
Polymer crystallization kinetics
Biocompatibility and cell assays
Photoresist development
More…

Gradient Hot StageBiocompatibility Blend Phase Mapping

Surface Energy

Th
ic

kn
es

s

Block Copolymer Film Assembly
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More advanced gradient libraries

Combining micropatterning and gradient design
Calibrated gradient in “Chemical Contrast” (Δγ)

Hydrophilic

HydrophilicHydrophobic

Matrix 
Calibration field 

Gradient 
calibration field 

Gradient 
micropattern

HydrophilicHydrophobicvariable γ

static γ

Julthongpiput, D.; Fasolka, M. J.; Zhang, W.; Nguyen, T.; Amis, E. J.; Nano Lett. 2005, 5(8): 1535. 

A library of chemical heterogeneity “strength”
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Example: PS Film Dewetting vs “Chemical Contrast” 
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Channel Template Methods

Substrate
PDMS mold

When the channel is removed, a 
gradient library is left on the 
substrate.

Removable channels (elastomer or glass) deliver specimen to a 
substrate in a controlled manner. 

A series of elastomer channels

Epoxy Thickness Gradient Libraries
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Microchannel Confined Surface Polymerization

ATRP Initiator-
functionalized surface

Removable Microchannel
Monomer solution in syringe pump

Xu, Wu, Mei, Drain, Batteas, Beers Macromolecules 38 (1): 2005, 6-8.

MW Library

Monomer A

Monomer B

1)

2)

3)
Block Copolymer Gradient 

Library

Microfluidic static 
mixer

Monomer A

Monomer A

Xu, Wu, Beers et al, Advanced Materials 2006 (accepted).

Poly(A-stat-B) Gradient
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Screening Solvent Responsive BC Coatings

Xu, Wu, Fasolka, Beers

Hexane
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Fillled symbols:  After hexane
Open symbols:  After water

• Gradients illuminate narrow 
optimal response windows

• Long PDMAEMA blocks 
suppress switching behavior 

• Long PnBMA blocks enhance 
switching behavior

Xu, Wu, Batteas, Drain, Beers, Fasolka, 2005, Applied 
Surface Science (accepted).

Xu, et al., 2006, Macromolecules (accepted).
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Robotics has its place ☺

Static mixer
Syringe pumps

Library substrate

X-Y stage

When needed, we build them (you can too!)

Labview Control
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Discrete Library Fabrication

Epoxy formulations on a 
copper substrate

No. of deposition
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Mass calibration of 
library

Library validation and calibration is essential for quantitative studies.

Fiber Optic Raman 
Spectroscopy
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Example: Parallel Cloud Point Mapping
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Discrete Polystyrene/Polybutadiene Blend Libraries

Cabral et al Meas. Sci. and Tech. 2005; 16: 191)
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Notes from a “forward  looking” laboratory

Note #2

Leverage Emerging Technologies, 
Creatively

There are plenty of opportunities.
Proper adaptation is the key.
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Integrated Combi Factory for Formulations

• The NCMC is creating C&HT measurement framework for developing 
and optimizing formulated products

• Coatings and paints, personal care, food, fuels etc.
• Our platform leverages microfluidic technologies to fabricate, process 

and measure organic formulations on chip devices 

E. J. Amis, Nature Mat., 2004, 2, 83.
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In principle, ready made for C&HT formulations science…
• Small sample volume
• Complex processing / fluid handling

– Pumps, valves, in & outlets
– Flow control / mixing
– Microreactors: Library Fabrication

• Integrated Analysis
– Electrophoresis
– PCR
– Fluorescence analysis

However:
• Current microfluidic technology is built for biotechnology, i.e. water
• Channel materials (e.g. PDMS) are not stable in organic fluids

– Poor for industrial carrier solvents and monomers
• Current fabrication routes can be slow and expensive

– Poor for rapid prototyping and design testing

Microfluidic Technologies

Beebe

Locascio

Whitesides

Quake
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Proper adaptation is the key

• Enhanced solvent stability:  hexanes, benzene, toluene, monomers
• Rapid prototyping:  3 hours from design to device
• Inexpensive
• Meso-Scale Channels:  50mm wide, 50mm - 1mm deep
• Precise channel dimension control and structuring

Harrison, C.; Cabral, J. T.; Stafford, C. M.; Karim, A.; Amis, E. J. J. 
Micromech. Microeng. 2004, 14, 153-158

Glass slide

Thiolene 
resin

Spacer

365 nm light 
source

Laser 
printed 
mask

Solid front
propagating

Cabral et al, Langmuir 20, 
10020 (2004)

Thiolene-based device fabrication technology  (UV-curable optical adhesive)
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Controlled Radical Polymerization Chip

T. Wu, K. Beers

R X + Cu(I)LnX
Keq

R + Cu(II)LnX2

kp

+ M

Flow Control of Architecture:
• Flow rate :  residence time, 

conversion, molecular weight 
• Library scope determined by relative 

rates of input streams 
• Library is fabricated by ramping the 

flow rates

Hydroxyproplymethacrylate (HPMA)

[MBP]:[HPMA] = 37:1 in color lines
[MBP]:[HPMA] = 100:1 in black line

• Continuous polymer libraries in a 
single synthesis, with quality as 
good as in flask

• RT, solution polymerization
• Homopolymers, Graft Polymers 

and Block Copolymers

T. Wu et al, J. Am. Chem. Soc., 2004, 126, 9880.
Macromol. Rapid Commun., 2005, 26, 1037.

Atom Transfer Radical Polymerization 
(after K. Matyjaszewski)
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Droplets allow
• Individual, small volume samples
• Higher viscosity/ solid specimens
• Sophisticated sample sorting, 

mixing and handling

Lit examples: Pine, Ismagilov, others

Polymer droplet libraries on a chip

Our adaptation:  Droplets as combinatorial organic microreactors for 
creating libraries of solid polymer droplets

Bromination of styrene

Cygan, Z. T.; Cabral, J. T.; Beers, K. L.; Amis, E. J. Langmuir, 2005, 12, 3629-3634.

Co-monomer composition libraries
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Integrated analysis of polymer droplets

Monomer droplet library formation

Organic 
reaction 

components

Water and surfactant
Photopolymerization Fiber optic Raman 

spectroscopy

Cygan, ZT; Barnes, SE et al. Submitted

Barnes, Beers, CyganExample: Methacrylic Dental Composite Formulations
benzyl methacrylate and dimethacrylate crosslinker, 1 mol % Irgacure 819 photoinitiator

Vol % BZMA
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n 300 μm
Key Engineering 
Criteria
• % Conversion
• Shrinkage

Optical
Microscopy

Shrinkage after UV
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A Microfluidic Interfacial Tensiometer

A B
A

B Interface σ (mN/m) σ (lit)

Ppms500/pdms1000 2.52 ±0.27

Surf. solution/pdms1000 12.7 ±0.4

Air/pdms1000 23.8 ±1.0 21.2

Air/pdms10000 22.9 ±1.5; 22.6 ±2.1 21.5

20.8 ±1.5

H2O/pdms1000 41.2 ±1.1; 41.5 ±1.6 41.4

41.0 ±2.8; 41.7 ±3.0

Air/ppms500 24.2 ±1.3 28.5

Air/glycerol 59.8 ±2.5; 58.5 ±2.7 59.2

Husdon et al, Appl. Phys. Lett., 2005, 87, 081905.
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Microfluidic Small Angle Light Scattering
• Rapid analysis of dispersed particles, droplets 

and emulsion structure
• Systematic, continuous composition changes 
• Temperature control in progress

• Validation:  mixtures of Polystyrene 
microbeads

• Future work: polyelectrolytes, emulsions, 
micelles and particle dispersions
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Notes from a “forward  looking” laboratory

Note #3

“To measure is to know.”*

The greatest potential of C&HT is 
accelerated knowledge generation.  

NCMC researchers strive to develop
techniques that are both rapid and 

quantitative.

*Lord Kelvin, 1883
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HT Measurements of film modulus

Idea:  leverage a buckling instability in laminates to assess modulus

M.A. Biot, J. Applied Mechanics 4 (1937) A1.
A.L. Volynskii, et al., J. Material Science 25 (2000) 547.
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Validation of buckling metrology

Stafford, et al., Nat. Mater. 2004, 3(8), 545.
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Knowledge generation in challenging systems

Ultrathin polymer films
Integral part of emerging 
nanotechnologies 
(MEMS, NEMS, NIL)

Nanoporous low-K  films
• critical for sub-100 nm electronics 

applications
• Mechanical properties determine 

resilience to CMP/planarization
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Extension to “reverse” metrology
Known “sensor” film is used to measure modulus of unknown substrate
A new HT metrology for ultra-soft materials:  elastomers, gels, hydrogels…
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Summary

The notes from a “forward looking” 
laboratory

• Spaces not points
• Leverage emerging technology
• To measure is to know
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Thanks to the NCMC Members
Currently 18 institutions from industry and academia
A broad cross section of the materials research sector

NCMC Alumni

http://www.honeywell.com/index.html
http://www.pg.com/main.jhtml
http://www.airproducts.com/index.asp
http://www.akzonobel.com/index.asp
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Contacts and the NCMC Team

For more information on the NIST Combinatorial Methods Center,
contact Mike Fasolka at mfasolka@nist.gov, or combi@nist.gov.
Ask for a CD!
Or visit our website at www.nist.gov/combi.

NCMC Development Team:
Mike Fasolka, Kathryn Beers, Chris Stafford, Alamgir Karim, Eric J. Amis

Polymer Formulations Team:
Kathryn Beers, Tao Wu, Zuzanna Cygan, Chang Xu, João Cabral, Steve Hudson, 
Wenhua Zhang, Chang Xu, Ying Mei, Tony Bur, Thomas Chastek, Alex Norman

Adhesion and Mechanical properties Team:
Chris Stafford, Shu Guo, Heqing Huang, Xuesong Hu, Martin Chiang, Patty McGuiggan

Nanomaterials and Nanometrology:
Mike Fasolka, Mai Julthongpiput, Kirt Page, Thomas Epps

"The people of NCMC are viewed as "clever folks" who are developing elegant 
innovative screens. Its a good outfit to be hooked up with. I think we're getting 

more than our money's worth.“ –M. S. Vratsanos, Air Products, NCMC member
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