
Self-organized Reuse of Software Engineering
Knowledge Supported by Semantic Wikis

Björn Decker1, Eric Ras1, Jörg Rech1, Bertin Klein2, Christian Hoecht3

1 Fraunhofer Institute for Experimental Software Engineering (IESE)
67663 Kaiserslautern, Germany

{bjoern.decker, eric.ras, joerg.rech}@iese.fraunhofer.de
2 German Research Institute for Artificial Intelligence (DFKI)

67663 Kaiserslautern, Germany
{bertin.klein }@dfki.de

3 Chair of Pedagogics, Technical University of Kaiserslautern
67663 Kaiserslautern, Germany

{hoecht }@ rhrk.uni-kl.de

Abstract. Self-organized reuse of artifacts from software and system
development, using the lightweight Wiki-Technology, promises a sustainable
preservation and availability of business-critical information. However, due to
the organic, sometimes chaotic growth of content inside a Wiki, additional
support for structuring the knowledge and finding interrelated useful content is
needed. The enhancement of Wiki content with ontologies – named semantic
Wikis - can solve these problems. The application of such semantic Wikis and
the development of reasoning mechanisms for software engineering is subject
of the project RISE (Reuse in Software Engineering).

1 Introduction

The successful, methodic reuse of software artifacts was first motivated by Dough
McIllroy on the 1968 NATO conference of Software Engineering. Despite this long
tradition, systematic reuse is still facing several challenges. These challenges are
caused by insufficient support for the reuse steps [2] search, evaluation, and
adaptation. Concerning search, people do not find existing artifacts or do not even
start to search due to the effort related with it. Evaluation challenges are mostly
caused by either lengthy or insufficient documentation of the artifact found. This
leads often to bad understanding and thus difficulties in evaluating the retrieved
artifacts. Finally, adaptation refers to the (perceived) effort to understand and adapt
the artifact in contrast to the effort to its first creation. Key to support all three steps is
the identification of potential reuse candidates according to their similarity of the
artifact to be created [26]. Determining this similarity is a complex task, since
multiple criteria (e.g., project characteristics, technologies, desired non-functional
requirements) need to be taken into account.

2 Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Höcht

Reuse requires that the reused artifacts are “fit for reuse”, i.e., that the developed
artifacts are represented in an understandable way and that they are useful to other
people who did not create these artifacts. Therefore, reuse implies an intra-
organizational, cross-project coordination of development activities. Most of the reuse
approaches ([1], [2]) address this issue by suggesting certain dedicated organizational
structures. In order to reduce the effort for such dedicated organizational structures,
self organization of the community could be done by lightweight communication
platforms and the usage of agile development approaches. Self-organized reuse means
that the community does not only provide the artifacts to be reused, but also cares
about how to organize them. However, this self-organized reuse implies to distribute
the effort for the “development of artifacts for reuse” within the community.
Otherwise, it would just replicate the dedicated structures to the communication
platforms. Therefore, to support self-organized reuse, the effort for annotating
artifacts needs to be done as a work that is directly beneficial to the developing
projects and their creators.

This paper addresses self-organized reuse in the domain of software development
and presents an approach where artifacts are captured and reused by means of
semantic Wikis. The objectives of this paper are:
• to show the necessity and usefulness of semantics in Wikis in general,
• to introduce a new paradigm of Wikitology, i.e., where the Wiki itself act as the

ontology,
• and to present an implementation of a Wikitology in the domain of software

engineering.

Before semantic Wikis are introduced and motivated for self-organized reuse of
software artifacts, the next section elaborates shortly the advantages of Wikis and
provides examples of Wikis in software engineering. Section 3 describes the lack of
semantics in Wikis and motivates how ontologies could help to address this problem.
Section 4 introduces the new paradigm of Wikitology and provides a concrete
application example for gathering and exchanging artifacts during the requirement
phase of software development.

2 Wikis for Software Engineering

In order to realize the self-organized reuse in software engineering – in particular
when performed under the agile software development paradigm [14] – Wikis [4] can
be seen as a lightweight platform for exchanging reusable artifacts between and
within software projects. From our perspective a Wiki system can be considered as
lightweight Organizational Memory [7] or Experience Factory [11]. Wikis facilitate
the communication by a basic set of features and delegate the actual way of
coordination to the people who are using the Wiki. From the authors’ point of view,
these basic features are: one place publishing, meaning that there is only one version
of a document available that is regarded as the current version; simple and safe
collaboration refers to versioning and locking mechanisms that most Wikis provide;
easy linking means that documents within a Wiki can be linked by their title using a

Self-organized Reuse of Software Engineering Knowledge Supported by Semantic Wikis 3

simple markup; description on demand means that links can be defined to pages that
are not created yet, but might be filled with content in the future.

In summary, using a Wiki is like working in an “open source” knowledge
repository, where content can be edited collectively using a web browser. In
particular, this allows us to set up software development infrastructures that have a
low technical barrier for usage.

Wikis were initially used in a software engineering setting, namely the portland
pattern repository [4]. Furthermore, they are often used to support software
development, in particular in the area of Open Source Software. The Wikis of the
Apache Foundation [27] are a prominent example of this application scenario. Some
examples of Wikis offer specific functionality for software engineering:
• Trac [16] is a Wiki written in python that integrates an issue tracker, allowing

relate Wikis pages to issues and vice versa. Furthermore, the python code of a
project can be integrated as read-only documents.

• MASE [17][18] is an extension to the JSP Wiki that offers plug-ins for agile
software development, in particular for iteration planning and integration of
automated measurement results.

• SnipSnap [21][41] is implemented in Java and allows a read only integration of
code documentation. Furthermore, it offers support for the integration of Wiki
entries into the integrated development environment eclipse.

• Subwiki [28] is a Wiki implementation that uses the versioning system subversion
as a data repository. Since subversion allows to attach metadata to files, the
resulting Wiki is supposed to have the same features. However, this project has
not released a stable version yet.

• WikiDoc [24] is a conceptual work that supports to add java code documentation
via a Wiki interface. This allows non-programmers to participate in the creation
of code documentation.

All those examples show that Wikis are increasingly be used as a platform for
software development. However, “regular” Wikis (see [19] for an overview of most
of the Wikis currently available) as well as software engineering-oriented Wikis build
upon the fact that the relation between documents and further metadata are
maintained by the users of those Wikis. This lack of explicit semantic information is
addressed by an extension to the regular Wiki functionality that is developed in the
RISE project. These so-called semantic Wikis are elaborated in the next section.

3 Semantic Wikis

One way to organize the organic growth of Wiki content is to add structure by
enriching Wiki-pages with additional metadata. But current standard Wikis are
lacking machine-understandable semantics. By this lack of semantics, structuring the
Wiki content by machine reasoning is very difficult. Furthermore, when a common
semantic is missing, the sensible integration of similar content from other Wikis needs
human intervention– which is often not done due to time constraints. However, the

4 Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Höcht

emergent standards in the area of ontologies (like RDF and OWL) provide the
techniques to express the semantics in a machine-understandable format.

First, for the practitioner, it is often enough to conceive the proposed “semantic
approach” as: extend your Wiki with RDF (i.e., features that support to enter metadata
according to the RDF standard). Second, to provide a brief idea of the term semantics
in the current context, one can say that it is about the different meaning of a word or
statements to one person, to another person, or to a computer program. Only humans
are able to read and understand the texts contained in the Wiki encyclopedia – for
machines, without sophisticated processing the only thing visible of the knowledge
contained within the Wiki is a large number of text pages which link to each other.
Third, as a rule of thumb, an “absence of semantics” is close to “an absence of
structure”, and typically leads to what people call information overload when they are
searching for specific information due to the lack of filtering based on these
semantics.

The next section motivates ontologies for enhancing Wikis with semantics and
illustrates the usefulness of the semantic dimension of the pyramid of ontology use.
Examples of semantic Wikis are provided.

3.1 Usage of Ontologies

From the viewpoint of Artificial Intelligence, knowledge engineering, ontologies, and
semantic web technology are very closely related, if not identical. From the viewpoint
of software engineering, the corresponding modeling approaches are also closely
related. All aim to capture the meaningful aspects of real world aspects and express it
with a varying degree of formality. Recently a survey of ontology use and its further
potential has been published [25]. In particular, they present a framework to
characterize and structure the field of ontology applicability. From this framework,
we adopt the semantic dimension (what the semantics stored with ontologies can be
used for). As depicted below, the three levels of the semantic framework are:
Communication, Integration, and Reasoning.

Communication

Integration

Reasoning

Figure 1: Pyramid of Ontology Use (Semantic Dimension) According to [25]

Self-organized Reuse of Software Engineering Knowledge Supported by Semantic Wikis 5

Communication: Since ontologies represent an explicit statement of relevant
concepts in a certain domain, they allow to discuss those concepts and in order to
reach a shared understanding of these concepts. Furthermore, by referring to concepts
in an ontology, used concepts do not need to be explained during regular
communication and ambiguities are reduced.

Integration: The next level in the semantic framework is to relate the concepts to
each other. These relations allow to navigate and to search through the domain. This
improves understanding.

Reasoning: According to the degree of formalization, inference about concepts and
relations can be performed. Inference builds the most advanced application for
ontologies. As denoted by the name of this level, this use of ontologies allows to
reason why concepts are related and what the implications of those relations are.

For analyzing ontologies, this framework offers two opportunities. First, it acts as a
maturity model for the actual use of an ontology or parts of it. Second, it can be used
as an analysis tool for determining the potential of an ontology.

Furthermore, the maturity model implied by the framework provides a strategy to
build up an ontology. First, the understanding of the concepts within a community
needs to be clarified. Second, the interrelations of these concepts need to be
discussed. Finally, reasoning about the ontology supports the coordination of the
community. These three steps do not need to be performed in sequence: Extensions to
the ontology that are demanded by the community could be added iteratively.

3.2 Why using a semantic Wiki?

Annotating the Wiki content with additional information can be beneficial to support
reuse across projects. The shared ontology allows locating relevant information from
further projects. However, providing this information requires additional effort from
the content’s creator. In most cases, adding this additional information provides no
additional benefits to the creator. In addition, the creator carries the additional burden
to classify the content. Therefore, it is naive way to motivate this additional effort by
that this information can be found easier, and thus, that the contribution of the creator
is visible to a broader audience. While SE Wikis should also support this meritocratic
approach, the additional ontology should provide a direct benefit to the creator.
Within RISE, two main direct benefits are identified to motivate the addition of
ontological information to Wiki content: First, by providing an ontological
classification, further relevant Wiki content an be identified that can support the work
of the creator. Second, automatic reasoning support the creator to find inconsistencies
regarding the ontology.

Since the benefits are “just” an application of reasoning mechanism to the
ontological information, they are crucial to motivate users to actually provide this
information. An example of how semantic Wikis could be applied to support self-
organized reuse is presented in the following section.

6 Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Höcht

3.3 Examples of Semantic Wikis

In this section, we present further examples of semantic Wikis. Most of these
examples are taken from the overviews presented in [33] and [34]. Those examples
show that a) even “regular” Wikis offer some support for structuring their content and
b) that semantic, RDF-based Wikis can be implemented. Most of those examples are
general purpose Wikis that do not focus on Software Engineering in particular.
• The most common way to categorize within Wikis is the usage of the backlink

function of a Wiki [32]. Basically, a page is created that represents a certain
category. Pages belonging to this category have a reference to this page. The
backlink function lists all of these references. However, this approach has a major
disadvantage: Pages that are used to navigate to the category entry (and thus are
not semantically belonging to this category) are also included in the backlink list.

• Some Wikis offer additional support for structuring content. For example
TikiWiki [35] allows assigning pages to structures (table of contents) and
categories (taxonomy style classification). XWiki [36] offers forms (templates)
that contain metadata, which are instantiated in documents derived from this
form.

• From the area of SE-specific Wikis, TRAC [16] offers a labeling feature for pages
(smart tags) that could be used for a facetted presentation of the pages annotated
with those tags. SnipSnap allows to determine the template of a document and
offers RDF export.

• Platypus [15], SHAWN [32], and Wiki.Ont [20] allow to add RDF annotations for
each page. Pages within Platypus represent a concept. While viewing a page, the
RDF-triples are displayed that have the current page as object (in particular pages
that reference this page) and as subject (in particular, metadata about a page).
SHAWN also offers navigation support based on the ontology information added
to a page. Wiki.Ont is still in preliminary version.

• Rhizome [37] and RDF-Wiki [38] are Wikis that provide their content in RDF,
thus allowing to reason about their context.

Only the Wikis mentioned under the last two bullets can be seen as “real” semantic

Wikis, since they allow to adapt their content to a RDF ontology. However, all of
them – at least in their current state – do not integrate their ontology into the Wiki,
e.g., they neither provide metadata-templates to be filled in based on an ontology nor
they check whether metadata entered is consistent with an ontology. Therefore, when
related to the semantic web layer cake [31], all of these semantic Wikis implement the
RDF and RDFS Layer. The vocabulary layer of these applications is not domain
specific, and thus does not allow to infer about domain specific relations.

4 Application Example of a Wikitology in Software Engineering

Ontologies are used to improve work with corpora of information. As the definition of
ontologies in computer science “an ontology is a specification of a conceptualization“
is very general, we use the term as describing the combination of concepts, instances

Self-organized Reuse of Software Engineering Knowledge Supported by Semantic Wikis 7

and relationships (between concepts). More precisely, with a focus on Riki - the Wiki
variant created in the RISE project - we label this as: an ontology is the frame to
”package“, to ”label“ and to “structure” the pages’ content. Throughout the last
decade, the notion of ontology has gained very practical importance for systems that
are supposed to host knowledge [7][8]. Other areas refer to such instrument
sometimes individually different, e.g., as a metadata schema in the Digital Library or
the e-learning areas [9]. Typically, ontologies are used for collections of content to
induce a structure over them. Such a content structure is a means for humans or
intelligent software, to retrieve wanted information out of the content, e.g., by
mediating problems to solutions.

4.1 The new Paradigm of Wikitology

The acquisition of the right ontology for a set of content is a current scientific issue
[8]. Further, due to the ontology being the skeleton for the knowledge assets that
reside in the system to be retrieved, the ontology is a major crystallization point in the
process of continually adapting the system, i.e., “its lifecycle” [10]. This leads to the
following new idea: the concepts that are important during daily work of the users,
belong to dedicated pages, and their meaningful relations will be links in the Riki.

With this new paradigm, Wikitology [39][40], it is possible to smartly and semi-
automatically derive an ontology needed for information retrieval from the pages in
the Riki itself. Such a Wikitology automatically updates “itself”, i.e., it reflects the
changes of contained knowledge, changed views of the users accounts, new projects,
customers, rules, trends, and ideas inside the Wiki. By considering the Riki as the
ontology, the ontology will be always collectively edited up-to-date and will
automatically reflect all changes.

The practical implementation of this Wikitology is as follows: The ontology used
by the community is edited via the Wiki itself. A set of naming conventions is used to
determine automatically the actual ontology from the Wiki content. For example,
document templates may start with “DocType”. This naming convention allows a user
to add new document templates just by creating a new document starting with
DocType (an alternative to this convention would be to use namespaces). Since those
templates contain a reference to themselves, an instance of this template is
automatically linked to the template. In addition, domain-ontology independent
information like the document type or the date of creation is derived from the Wiki
and included into the ontology. These conventions and automatic determination of
meta-data can be seen as an easily remindable, implicit meta-ontology.

Therefore, the main use of ontologies in RIKI is to support reuse. However, the
ontology itself is subject to reuse as a shared understanding of the concepts relevant to
their using community.

One implementation of RIKI is based on the Sekt Integration Platform (SIP). This
platform implements an RDF-based access to the ontology and supports the
integration of further reasoning tools. For the actual determination of similarity to
support the self-organized reuse, we use two techniques: Latent Semantic Analysis
[29] and Case Based Reasoning [30].

8 Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Höcht

4.2 Application Example for Requirement Engineering

This section presents an application example of new paradigm presented above in
scope of the RISE project. The core of the software engineering documents
considered in this example are adapted from the use case approach of Cockburn [22]
and the ready set template [23]. These use cases represent a textual representation of
the behavior of the system to be developed (these documents should not be confused
with the graphical oriented approach suggested by the UML). We augmented those
use cases with additional documents that capture further software engineering
knowledge. In Fig. 2, the document ontology (i.e., the document types and their
relationships) is presented. Besides this ontology of the documents, each document
possesses a set of metadata. A more detailed presentation of the metadata set would
be out of scope of this paper.

Figure 2: Example of a Document Ontology

To facilitate the representation, we focus on five different types of documents: 1)
The main part of this ontology refers to requirement documents: instances of Actor
contain descriptions of persons or entities interacting with the system like users or
other system components, instances of User Story contain narrative descriptions of
interactions between system and Actor, and instances of Use Case contain semi-
formal representations of these interactions; 2) Templates define the structure,
content, and allowed interrelations of these documents; 3) How To documents give
information on how to create and use requirement documents. By relating them to a
certain template, instances of How To documents could be created based on the
related template; 4) support for structuring the whole set of documents is provided by
Navigation documents, i.e., overviews that group the requirements documents

Self-organized Reuse of Software Engineering Knowledge Supported by Semantic Wikis 9

according to the document ontology or the metadata contained in the document; 5)
Finally, Context documents contain information about the project or the authors of
documents (like personal skills).

This ontology can be extended according to the needs of the project or the policies
of the whole organization. An example of such an extension could be a document
template describing certain states of the system (e.g., user logged in) that are linked
by different Use Cases.

In the remainder of the section, we describe how this ontology is used in different
scenarios to support the management and reuse of software engineering documents.

Offering relevant documents: Since the allowed links between different document
types are defined in the templates, suggestions for links to instances of those related
document types can be offered. For example, while creating a Use Case, the titles that
are instances of the template Actor are presented together with a summary of their
content. A user can directly integrate these titles (and thus, the link to this document)
in the current Use Case.

Consistency checks: The semantic annotation allows also to define and execute
consistency checks. For example, the part-of relationships imply that each Actor
should be part in at least one Use Case. The “refined-in” relation defines a temporal
order. Therefore, if the User Story has a more recent date than the refined Use Cases,
these refined Use Cases need to be checked at least whether they are consistent with
the updated User Story.

Figure 3: Application Example: Cross-project Offering of Similar Documents

Cross-project offering of similar documents: Fig. 3 illustrates how a user is
creating a new user story. Via (indirect) linking to the project and user’s homepage,
context information can be derived (e.g., the expertise level of the user and type of the
system to be developed). Furthermore, by linking to the document template, the type

Eric Ras
linking?

10 Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Höcht

of the document can be derived. This allows to find documents of the same type
created within other projects. However, the set of those potential candidates can be
rather large. By comparing the context information derived in the first step, this initial
set can be restricted to documents from similar context, which offer a probable higher
reuse potential. In RISE, we use Case-based reasoning for the retrieval of similar
documents.

5 Summary and Outlook

This paper has presented an approach to support self-organized reuse by using
augmented semantic Wikis. Augmenting Wikis with domain-specific ontologies (e.g.,
for requirements) provides a means to manage the organic growth implied by the
Wiki approach. The introduction of a new paradigm called Wikitology enable us to
embed semantics into the Wiki itself. This way of adding semantics supports the
communication of used concepts within the Wiki and by performing reasoning,
inconsistencies within pages and amongst different pages of the same document types
can be found. Besides the empirical evaluation of the project results, the next steps of
the RISE project focus on integrating engineering information beyond the documents
captured in the Wiki. In particular, code developed by the projects should be
integrated into the Wiki to allow traceability of requirements and support reuse also
on code level. In the long run, the ontological information represented in a semantic
Wiki could be used for model driven software development.

Acknowledgements

Our work is part of the project RISE (Reuse in Software Engineering), funded by the
German Ministry of education and science (BMBF) grant number 01ISC13D.

Furthermore, we would like to thank our project partners Volker Haas from
Brainbot and Ralf Traphöner from empolis (the “inventor” of the concept of
Wikitology).

References

1. Mili, H.; Mili, A.; Yacoub, S.; Addy, E.: Reuse-Based Software Engineering – Techniques,
Organization and Measurement, John Wiley and Sons (1995)

2. Karlsson, E.-A.(Ed.): Software Reuse – a holistic approach, John Wiley and Sons (1995)
3. Zand, M.; Arango, G.; Davis, M.; Johnson, R.; Poulin, J.;Watson, A.: Reuse R&D: Is it on the right

Track. In: Proceedings of the 1997 Symposium on Software Reusability, Boston, USA, Mai 1997,
S. 212-216

4. Leuf, B.; Cunningham, W.: The Wiki Way, Addison-Wesley Professional, (2001)
5. Arnold, P.; Smith, J.: Adding connectivity and losing context with ICT: contrasting learning

situations from a community of practice perspective. In: Huysman, M.; Wenger, E.; Wulf, V.

Self-organized Reuse of Software Engineering Knowledge Supported by Semantic Wikis 11

(Eds.): Proceedings of the International Conference on Communities and Technologies (C&T
2003), Kluwer, Dordrecht 2003. (2003)

6. Clark, H. H.; Brennan, S. E.: Grounding in communication. In : Resnick, L.; Levine, J. M.; Teasly,
S. D. (Eds.): Perspectives on socially shared cognition. Washington D.C.: American Psychological
Association, P. 127-149. (1991)

7. Abecker, A..; Bernardi, A. ; Hinkelmann, K.; Kühn, O.; Sintek, M.: Towards a Technology for
Organizational Memories. IEEE Intelligent Systems, 13(3), May/June 1998. (1998)

8. Maeche, A. Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent Systems, 13,
(2001)

9. Apostolou, D., Georgolios, P.-P., Klein, B., Franz, J., Maass, W., Abecker, A., Kafentzis, K.,
Mentzas, G.: Towards provision of knowledge-intensive products and services over the Web. In:
22nd IASTED International Multi-Conference on Applied Informatics, February 2004, Innsbruck,
Austria.

10. Klein, B., Traphöner, R..: A Practical Application of Ontologies for Knowledge Sharing and
Trading, In: FGWM 2004 - Workshop on Knowledge and Experience Management, October 2004.

11. Basili, V. R.,; Caldiera, G.; Rombach, H. D., Experience Factory in Encyclopedia of Software
Engineering, vol. 1, J. J. Marciniak, Ed. New York: John Wiley & Sons, 2001, pp. 511-518.

12. Ras E., Weibelzahl S.,: Embedding Experiences in Micro-didactical Arrangements, in Proc. of 6th
International Workshop on Advances in Learning Software Organisations (LSO 2004), Springer
LNCS, Banff, Canada, 2004, pp. 55-66

13. Wenger, E.: Communities of practice. Learning, meaning, and identity. Cambridge University
Press.

14. Agile Manifesto: www.agilemanifesto.org, last visited 29.9.05
15. Platypus Wiki Homepage: http://platypuswiki.sourceforge.net/, last visited 29.9.05
16. Trac Wiki: http://www.edgewall.com/trac/, last visited 29.9.05
17. MASE Homepage: http://ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?page=

Root.DeployMASEOnProduction, , last visited 29.9.05
18. Maurer, F.: Supporting Distributed Extreme Programming, XP Agile Universe 2002

http://ebe.cpsc.ucalgary.ca/ebe/attach?page=Root.PublicationList%2FMaurer2002.pdf, , last visited
29.9.05

19. List of Wiki Clones: c2.com/w4/wikibase/?LongListOfWikiClones, last visited 17.5.2005
20. WikiOnt: http://boole.cs.iastate.edu:9090/wikiont/, last visited 17.5.2005
21. SnipSnap: snipSnap.org, last visited 17.5.2005
22. Cockburn, A.: Writing effective Use Cases, Addison Wesley Professional (2000)
23. Readyset Requirements Engineering Template: readyset.tigris.org,, last visited 29.9.05
24. Oezbek, C.:WikiDoc, http://www.inf.fu-berlin.de/~oezbek/, last visited 29.9.05
25. Mika, P. Akkermans, H.. Towards a new synthesis of ontology technology and knowledge

management. Technical Report IR-BI-001, Free University of Amsterdam, March 2004.
26. Basili V. R., and Rombach H. D., Support for comprehensive reuse. Journral of Software

Engineering, Vol 6, Issue 5, (1991)
27. Apache Foundation Wiki: http://wiki.apache.org/general/, last visited 29.9.05
28. Subwiki Homepage: http://subwiki.tigris.org, last visited 29.9.05
29. Latent Semantic Analysis: http://en.wikipedia.org/w/index.php?title=

Latent_semantic_analysis&oldid=24255335, last visited 29.9.05
30. Aamodt, A. Plaza, E..: CBR Foundational Issues, Methodological, Variations and System

Approaches. AI Communications Vol. 7, No. 1, 39-59 (1994)
31. Berners-Lee, Tim, Semantic Web Layer Cake, Semantic Web - XML2000,

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html, last visited 29.9.05
32. Aumüller, D.: SHAWN: Structure Helps A Wiki Navigate,

http://the.navigable.info/2005/aumueller05shawn.pdf, last visited 29.9.05

http://www.agilemanifesto.org/
http://platypuswiki.sourceforge.net/
http://www.edgewall.com/trac/
http://ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?page= Root.DeployMASEOnProduction
http://ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?page= Root.DeployMASEOnProduction
http://ebe.cpsc.ucalgary.ca/ebe/attach?page=Root.PublicationList%2FMaurer2002.pdf
http://c2.com/w4/wikibase/?LongListOfWikiClones
http://boole.cs.iastate.edu:9090/wikiont/
http://www.inf.fu-berlin.de/~oezbek/
http://wiki.apache.org/general/
http://subwiki.tigris.org/
http://en.wikipedia.org/w/index.php?title= Latent_semantic_analysis&oldid=24255335
http://en.wikipedia.org/w/index.php?title= Latent_semantic_analysis&oldid=24255335
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://the.navigable.info/2005/aumueller05shawn.pdf

12 Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, and Christian Höcht

33. Dahl, I.; Eisenbach M.: Anwendung: Semantic Wikis, Seminal Thesis AIFB Karlsruhe,
http://www.aifb.uni-karlsruhe.de/Lehre/Sommer2005/SemTech/stuff/semwiki.pdf, last visited
29.9.05

34. Semantic Wiki Overview: http://c2.com/cgi/wiki?SemanticWikiWikiWeb, last visited 29.9.05
35. Tiki Wiki Homepage: http://tikiwiki.org/, last visited 29.9.05
36. XWiki Homepage: http://www.xwiki.org/xwiki/bin/view/Main/WebHome, last visited 29.9.05
37. Rhizome Homepage: http://rx4rdf.liminalzone.org/, last visited 29.9.05
38. RDF Wiki: http://infomesh.net/2001/05/sw/#rdfwiki, last visited 29..05
39. Decker, B.; Ras, E.; Rech, J.; Klein, B.; Reuschling, C.; Höcht, C.; Kilian, L.; Traphöner, R.; Haas,

V.: A Framework for Agile Reuse in Software Engineering using Wiki Technology, Workshop on
Knowledge Management for distributes agile Processes KMDAP, WM2005. Conference
Professional Knowledge Management - Experiences and Visions. Proceedings, p 411-414 (2005)

40. Klein, B.; Höcht, C.; Decker, B.: Beyond Capturing and Maintaining Software Engineering
Knowledge - "Wikitology" as Shared Semantics, Workshop on Knowledge Engineering and
Software Engineering, at conference of Artificial Intelligence 2005, Koblenz (2005)

41. John, M. Linking the customer's needs to developer tasks, in Knowledge-based Software
Engineering, vol. 108, Frontiers in Artificial Intelligence and Applications, V. S. a. K. Kaijiri, Ed.,
1st Edition ed: IOS Press, 2004, pp. 49-58. (2004)

http://www.aifb.uni-karlsruhe.de/Lehre/Sommer2005/SemTech/stuff/semwiki.pdf
http://c2.com/cgi/wiki?SemanticWikiWikiWeb
http://tikiwiki.org/
http://www.xwiki.org/xwiki/bin/view/Main/WebHome
http://rx4rdf.liminalzone.org/
http://fhgonline.fhg.de/cgi-bin/starfinder/6248/iese.txt?action=toyectRbQzxEL8P4GpCg4YzKSGa4uORw5_wOrVsIm31eKwqhdzUr
http://fhgonline.fhg.de/cgi-bin/starfinder/6248/iese.txt?action=toyectRbQzxEL8P4GpCg4YzKSGa4uORw5_wOrVsIm31eKwqhdzUr

	Usage of Ontologies
	Why using a semantic Wiki?
	Examples of Semantic Wikis
	The new Paradigm of Wikitology
	Application Example for Requirement Engineering

