[Code of Federal Regulations]
[Title 40, Volume 5]
[Revised as of July 1, 2007]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR53.23]

[Page 25-39]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 53_AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS--Table of 
 
    Subpart B_Procedures for Testing Performance Characteristics of 
 
Sec. 53.23  Test procedures.

    (a) Range--(1) Technical definition. Nominal minimum and maximum 
concentrations which a method is capable of measuring.

    Note: The nominal range is specified at the lower and upper range 
limits in concentration units, for example, 0-0.5 p/m.

    (2) Test procedure. Submit a suitable calibration curve, as 
specified in Sec. 53.21(b), showing the test analyzer's response over 
at least 95 percent of the required range.

    Note: A single calibration curve will normally suffice.

    (b) Noise--(1) Technical definition. Spontaneous, short duration 
deviations in output, about the mean output, which are not caused by 
input concentration changes. Noise is determined as the standard 
deviation about the mean and is expressed in concentration units.
    (2) Test procedure. (i) Allow sufficient time for the test analyzer 
to warm up and stabilize. Determine at two concentrations, first using 
zero air and then a pollutant test gas concentration as indicated below. 
The noise specification in table B-1 shall apply to both of these tests.
    (ii) Connect an integrating-type digital meter (DM) suitable for the 
test analyzer's output and accurate to three significant digits, to 
measure the analyzer's output signal.

    Note: Use of a chart recorder in addition to the DM is optional.

    (iii) Measure zero air for 60 minutes. During this 60-minute 
interval, record twenty-five (25) readings at 2-minute intervals. (See 
Figure B-2 in appendix A.)
    (iv) Convert each DM reading to concentration units (p/m) by 
reference to the test analyzer's calibration curve as determined in 
Sec. 53.21(b). Label the converted DM readings r1, 
r2, r3 . . . ri . . . 
r25.
    (v) Calculate the standard deviation, S, as follows:
    
    
where i indicates the i-th DM reading in ppm.

    (vi) Let S at 0 ppm be identified as So; compare 
So to the noise specification given in table B-1.
    (vii) Repeat steps (iii) through (vi) of this section using a 
pollutant test atmosphere concentration of 805 
percent of the upper range limit (URL) instead of zero gas, and let S at 
80 percent of the URL be identified as S80. 
Compare S80 to the noise specification given in 
table B-1.
    (viii) Both S0 and S80 must be less 
than or equal to the specification for noise to pass the test for the 
noise parameter.
    (c) Lower detectable limit--(1) Technical definition. The minimum 
pollutant concentration which produces a signal of twice the noise 
level.
    (2) Test procedure. (i) Allow sufficient time for the test analyzer 
to warm up and stabilize. Measure zero air and record the stable reading 
in ppm as BZ. (See Figure B-3 in appendix A.)
    (ii) Generate and measure a pollutant test atmosphere concentration 
equal to the value for the lower detectable limit specified in table B-
1.

    Note: If necessary, the test atmosphere concentration may be 
generated or verified at a higher concentration, then accurately

[[Page 26]]

diluted with zero air to the final required concentration.

    (iii) Record the test analyzer's stable indicated reading, in ppm, 
as BL.
    (iv) Determine the Lower Detectable Limit (LDL) as LDL = 
BL-BZ. Compare this LDL value with the noise 
level, S0, determined in Sec. 53.23(b), for 0 concentration 
test atmosphere. LDL must be equal to or higher than 2S0 to 
pass this test.
    (d) Interference equivalent--(1) Technical definition. Positive or 
negative response caused by a substance other than the one being 
measured.
    (2) Test procedure. The test analyzer shall be tested for all 
substances likely to cause a detectable response. The test analyzer 
shall be challenged, in turn, with each interfering agent specified in 
table B-3. In the event that there are substances likely to cause a 
significant interference which have not been specified in table B-3, 
these substances shall be tested at a concentration substantially higher 
than that normally found in the ambient air. The interference may be 
either positive or negative, depending on whether the test analyzer's 
response is increased or decreased by the presence of the interferent. 
Interference equivalents shall be determined by mixing each interferent, 
one at a time, with the pollutant at the concentrations specified in 
table B-3, and comparing the test analyzer's response to the response 
caused by the pollutant alone. Known gas-phase reactions that might 
occur between an interferent and the pollutant are designated by 
footnote 3 in table B-3. In these cases, the interference equivalent 
shall be determined in the absence of the pollutant.
    (i) Allow sufficient time for warm-up and stabilization of the test 
analyzer.
    (ii) For a candidate method using a prefilter or scrubber based upon 
a chemical reaction to derive part of its specificity, and which 
requires periodic service or maintenance, the test analyzer shall be 
``conditioned'' prior to each interference test as follows:

[[Page 27]]



                                                                 Table B-3--Interferant Test Concentration,\1\ Parts Per Million
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                        Hydrochloric           Hydrogen   Sulfur   Nitrogen   Nitric   Carbon                         M-      Water    Carbon
        Pollutant               Analyzer type \2\           acid      Ammonia   sulfide   dioxide   dioxide   oxide    dioxide  Ethylene   Ozone    xylene    vapor   monoxide  Methane   Ethane
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SO2.....................  Flame photometric (FPD).....  ............  .......       0.1  \1\ 0.14  ........  .......       750  ........  .......  .......       \3\        50  .......  .......
                                                                                                                                                              20,000
SO2.....................  Gas chromatography (FPD)....  ............  .......        .1    \4\.14  ........  .......       750  ........  .......  .......       \3\        50  .......  .......
                                                                                                                                                              20,000
SO2.....................  Spectrophotometric-wet               0.2    \3\ 0.1        .1    \4\.14       0.5  .......       750  ........      0.5  .......  ........  ........  .......  .......
                           chemical (pararosaniline
                           reaction).
SO2.....................  Electrochemical.............          .2      \3\.1        .1    \4\.14        .5      0.5  ........       0.2       .5  .......       \3\  ........  .......  .......
                                                                                                                                                              20,000
SO2.....................  Conductivity................          .2      \3\.1  ........    \4\.14        .5  .......       750  ........  .......  .......  ........  ........  .......  .......
SO2.....................  Spectrophotometric-gas phase  ............  .......  ........    \4\.14        .5       .5  ........  ........       .5      0.2  ........  ........  .......  .......
O3......................  Chemiluminescent............  ............  .......     \3\.1  ........  ........  .......       750  ........   \4\.08  .......       \3\  ........  .......  .......
                                                                                                                                                              20,000
O3......................  Electrochemical.............  ............    \3\.1  ........        .5        .5  .......  ........  ........   \4\.08  .......       \3\  ........  .......  .......
                                                                                                                                                              20,000
O3......................  Spectrophotometric-wet        ............    \3\.1  ........        .5        .5    \3\.5  ........  ........   \4\.08  .......  ........  ........  .......  .......
                           chemical (potassium iodide
                           reaction).
O3......................  Spectrophotometric-gas phase  ............  .......  ........        .5        .5    \3\.5  ........  ........   \4\.08  .......  ........  ........  .......  .......
CO......................  Infrared....................  ............  .......  ........  ........  ........  .......       750  ........  .......  .......    20,000    \4\ 10  .......  .......
CO......................  Gas chromatography with       ............  .......  ........  ........  ........  .......  ........  ........  .......  .......    20,000    \4\ 10  .......      0.5
                           flame ionization detector.
CO......................  Electrochemical.............  ............  .......  ........  ........  ........       .5  ........        .2  .......  .......    20,000    \4\ 10  .......  .......
CO......................  Catalytic combustion-thermal  ............       .1  ........  ........  ........  .......       750        .2  .......  .......    20,000    \4\ 10      5.0       .5
                           detection.
CO......................  IR fluorescence.............  ............  .......  ........  ........  ........  .......       750  ........  .......  .......    20,000    \4\ 10  .......       .5
CO......................  Mercury replacement UV        ............  .......  ........  ........  ........  .......  ........        .2  .......  .......  ........    \4\ 10  .......       .5
                           photometric.
NO2.....................  Chemiluminescent............  ............    \3\.1  ........        .5     \4\.1       .5  ........  ........  .......  .......    20,000  ........  .......  .......
NO2.....................  Spectrophotometric-wet        ............  .......  ........        .5     \4\.1       .5       750  ........       .5  .......  ........  ........  .......  .......
                           chemical (azo-dye reaction).
NO2.....................  Electrochemical.............         0.2      \3\.1  ........        .5     \4\.1       .5       750  ........       .5  .......    20,000        50  .......  .......
NO2.....................  Spectrophotometric-gas phase  ............    \3\.1  ........        .5     \4\.1       .5  ........  ........       .5  .......    20,000        50  .......  .......
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Concentrations of interferant listed must be prepared and controlled to 10 percent of the state value.
\2\ Analyzer types not listed will be considered by the administrator as special cases.
\3\ Do not mix with pollutant.
\4\ Concentration of pollutant used for test. These pollutant concentrations must be prepared to 10 percent of the stated value.


[[Page 28]]

    (A) Service or perform the indicated maintenance on the scrubber or 
prefilter as directed in the manual referred to in Sec. 53.4(b)(3).
    (B) Before testing for each interferent, allow the test analyzer to 
sample through the scrubber a test atmosphere containing the interferent 
at a concentration equal to the value specified in table B-3. Sampling 
shall be at the normal flow rate and shall be continued for 6 continuous 
hours prior to testing.
    (iii) Generate three test atmosphere streams as follows:
    (A) Test atmosphere P: Pollutant concentration.
    (B) Test atmosphere I: Interference concentration.
    (C) Test atmosphere Z: Zero air.
    (iv) Adjust the individual flow rates and the pollutant or 
interferent generators for the three test atmospheres as follows:
    (A) The flow rates of test atmospheres I and Z shall be identical.
    (B) The concentration of pollutant in test atmosphere P shall be 
adjusted such that when P is mixed (diluted) with either test atmosphere 
I or Z, the resulting concentration of pollutant shall be as specified 
in table B-3.
    (C) The concentration of interferent in test atmosphere I shall be 
adjusted such that when I is mixed (diluted) with test atmosphere P, the 
resulting concentration of interferent shall be equal to the value 
specified in table B-3.
    (D) To minimize concentration errors due to flow rate differences 
between I and Z, it is recommended that, when possible, the flow rate of 
P be from 10 to 20 times larger than the flow rates of I and Z.
    (v) Mix test atmospheres P and Z by passing the total flow of both 
atmospheres through a mixing flask.
    (vi) Sample and measure the mixture of test atmospheres P and Z with 
the test analyzer. Allow for a stable reading, and record the reading, 
in concentration units, as R (see Figure B-3).
    (vii) Mix test atmospheres P and I by passing the total flow of both 
atmospheres through a mixing flask.
    (viii) Sample and measure this mixture. Record the stable reading, 
in concentration units, as RI.
    (ix) Calculate the interference equivalent (IE) as:

IE = RI-R


IE must be equal to or less than the specification given in table B-1 
for each interferent to pass the test.
    (x) Follow steps (iii) through (ix) of this section, in turn, to 
determine the interference equivalent for each interferent.
    (xi) For those interferents which cannot be mixed with the 
pollutant, as indicated by footnote (3) in table B-3, adjust the 
concentration of test atmosphere I to the specified value without being 
mixed or diluted by the pollutant test atmosphere. Determine IE as 
follows:
    (A) Sample and measure test atmosphere Z (zero air). Allow for a 
stable reading and record the reading, in concentration units, as R.
    (B) Sample and measure the interferent test atmosphere I. If the 
test analyzer is not capable of negative readings, adjust the analyzer 
(not the recorder) to give an offset zero. Record the stable reading in 
concentration units as RI, extrapolating the calibration curve, if 
necessary, to represent negative readings.
    (C) Calculate IE=RI-R. IE must be equal to or less than 
the specification in table B-1 to pass the test.
    (xii) Sum the absolute value of all the individual interference 
equivalents. This sum must be equal to or less than the total 
interferent specification given in table B-1 to pass the test.
    (e) Zero drift, span drift, lag time, rise time, fall time, and 
precision--(1) Technical definitions--(i) Zero drift: The change in 
response to zero pollutant concentration, over 12- and 24-hour periods 
of continuous unadjusted operation.
    (ii) Span drift: The percent change in response to an up-scale 
pollutant concentration over a 24-hour period of continuous unadjusted 
operation.
    (iii) Lag time: The time interval between a step change in input 
concentration and the first observable corresponding change in response.
    (iv) Rise time: The time interval between initial response and 95 
percent of final response after a step increase in input concentration.

[[Page 29]]

    (v) Fall time: The time interval between initial response and 95 
percent of final response after a step decrease in input concentration.
    (vi) Precision: Variation about the mean of repeated measurements of 
the same pollutant concentration, expressed as one standard deviation 
about the mean.
    (2) Tests for these performance parameters shall be accomplished 
over a period of seven (7) or more days. During this time, the line 
voltage supplied to the test analyzer and the ambient temperature 
surrounding the analyzer shall be varied from day to day. One test 
result for each performance parameter shall be obtained each test day, 
for seven (7) or fifteen (15) test days as necessary. The tests are 
performed sequentially in a single procedure.
    (3) The 24-hour test day may begin at any clock hour. The first 12 
hours out of each test day are required for testing 12-hour zero drift. 
Tests for the other parameters shall be conducted during the remaining 
12 hours.
    (4) Table B-4 specifies the line voltage and room temperature to be 
used for each test day. The line voltage and temperature shall be 
changed to the specified values at the start of each test day (i.e., at 
the start of the 12-hour zero test). Initial adjustments (day zero) 
shall be made at a line voltage of 115 volts (rms) and a room 
temperature of 25 [deg]C.
    (5) The tests shall be conducted in blocks consisting of 3 test days 
each until 7 or 15 test results have been obtained. (The final block may 
contain fewer than three test days.) If a test is interrupted by an 
occurrence other than a malfunction of the test analyzer, only the block 
during which the interruption occurred shall be repeated.
    (6) During each block, manual adjustments to the electronics, gas, 
or reagent flows or periodic maintenance shall not be permitted. 
Automatic adjustments which the test analyzer performs by itself are 
permitted at any time.
    (7) At least 4 hours prior to the start of the first test day of 
each block, the test analyzer may be adjusted and/or serviced according 
to the periodic maintenance procedures specified in the manual referred 
to in Sec. 53.4(b)(3). If a new block is to immediately follow a 
previous block, such adjustments or servicing may be done immediately 
after completion of the day's tests for the last day of the previous 
block and at the voltage and temperature specified for that day, but 
only on test days 3, 6, 9, and 12.

    Note: If necessary, the beginning of the test days succeeding such 
maintenance or adjustment may be delayed as necessary to complete the 
service or adjustment operation.

    (8) All response readings to be recorded shall first be converted to 
concentration units according to the calibration curve. Whenever a test 
atmosphere is to be measured but a stable reading is not required, the 
test atmosphere shall be measured long enough to cause a change in 
response of at least 10% of full scale. Identify all readings and other 
pertinent data on the strip chart. (See Figure B-1 illustrating the 
pattern of the required readings.)

      Table B-4--Line Voltage and Room Temperature Test Conditions
------------------------------------------------------------------------
                          Line           Room
      Test day        voltage,\1\  temperature,\2\        Comments
                          rms           [deg]C
------------------------------------------------------------------------
0...................          115             25    Initial set-up and
                                                     adjustments.
1...................          125             20
2...................          105             20
3...................          125             30    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
4...................          105             30
5...................          125             20
6...................          105             20    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
7...................          125             30    Examine test results
                                                     to ascertain if
                                                     further testing is
                                                     required.
8...................          105             30
9...................          125             20    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.
10..................          105             20
11..................          125             30
12..................          105             30    Adjustments and/or
                                                     periodic
                                                     maintenance
                                                     permitted at end of
                                                     tests.

[[Page 30]]


13..................          125             20
14..................          105             20
15..................          125             30
------------------------------------------------------------------------
\1\ Voltage specified shall be controlled to 1
  volt.
\2\ Temperature specified shall be controlled to 1
  [deg]C.


[[Page 31]]

[GRAPHIC] [TIFF OMITTED] TC01JY92.000

    (9) Test procedure. (i) Arrange to generate pollutant test 
atmospheres as follows:

------------------------------------------------------------------------
                                               Pollutant concentration
              Test atmosphere                         (percent)
------------------------------------------------------------------------
A0........................................  Zero air.
A20.......................................  205 of
                                             the upper range limit.
A30.......................................  305 of
                                             the upper range limit.

[[Page 32]]


A80.......................................  805 of
                                             the upper range limit.
A90.......................................  905 of
                                             the upper range limit.
------------------------------------------------------------------------


Test atmospheres A0, A20, and 
A80 shall be consistent during the tests and from 
day to day.
    (ii) For steps (xxv) through (xxxi) of this section, a chart speed 
of at least 10 centimeters per hour shall be used. The actual chart 
speed, chart speed changes, and time checks shall be clearly marked on 
the chart.
    (iii) Allow sufficient time for test analyzer to warm up and 
stabilize at a line voltage of 115 volts and a room temperature of 25 
[deg]C. Recalibrate, if necessary, and adjust the zero baseline to 5 
percent of chart. No further adjustments shall be made to the analyzer 
until the end of the tests on the third day.
    (iv) Measure test atmosphere A0 until a stable reading is 
obtained, and record this reading (in ppm) as Z'n, where n = 
0 (see Figure B-4 in appendix A).
    (v) Measure test atmosphere A20. Allow for a 
stable reading and record it as M'n, where n = 0.
    (vi) Measure test atmosphere A80. Allow for a 
stable reading and record it as S'n, where n = 0.
    (vii) The above readings for Z'0, M'0, and 
S'0 should be taken at least four (4) hours prior to the 
beginning of test day 1.
    (viii) At the beginning of each test day, adjust the line voltage 
and room temperature to the values given in table B-4.
    (ix) Measure test atmosphere A0 continuously for at least 
twelve (12) continuous hours during each test day.
    (x) After the 12-hour zero drift test (step ix), sample test 
atmosphere A0. A stable reading is not required.
    (xi) Measure test atmosphere A20 and record the stable 
reading (in ppm) as P1. (See Figure B-4 in appendix A.)
    (xii) Sample test atmosphere A30; a stable 
reading is not required.
    (xiii) Measure test atmosphere A20 and record 
the stable reading as P2.
    (xiv) Sample test atmosphere A0; a stable reading is not 
required.
    (xv) Measure test atmosphere A20 and record 
the stable reading as P3.
    (xvi) Sample test atmosphere A30; a stable reading is not 
required.
    (xvii) Measure test atmosphere A20 and record the stable 
reading as P4.
    (xviii) Sample test atmosphere A0; a stable reading is 
not required.
    (xix) Measure test atmosphere A20 and record 
the stable reading as P5.
    (xx) Sample test atmosphere A30; a stable 
reading is not required.
    (xxi) Measure test atmosphere A20 and record 
the stable reading as P6.
    (xxii) Measure test atmosphere A30 and record 
the stable reading as P7.
    (xxiii) Sample test atmosphere A90; a stable 
reading is not required.
    (xxiv) Measure test atmosphere A80 and record the stable 
reading as P8. Increase chart speed to at least 10 
centimeters per hour.
    (xxv) Measure test atmosphere A0. Record the stable 
reading as L1.
    (xxvi) Quickly switch the test analyzer to measure test atmosphere 
A80 and mark the recorder chart to show the exact time when 
the switch occurred.
    (xxvii) Measure test atmosphere A90 and record 
the stable reading as P80.
    (xxviii) Sample test atmosphere A90; a stable 
reading is not required.
    (xxix) Measure test atmosphere A80 and record the stable 
reading as P10.
    (xxx) Measure test atmosphere A0 and record the stable 
reading as L2.
    (xxxi) Measure test atmosphere A80 and record the stable 
reading as P11.
    (xxxii) Sample test atmosphere A90; a stable 
reading is not required.
    (xxxiii) Measure test atmosphere A80 and record the 
stable reading as P12.
    (xxxiv) Repeat steps (viii) through (xxxiii) of this section, each 
test day.
    (xxxv) If zero and span adjustments are made after the readings are 
taken on test days 3, 6, 9, or 12, complete all adjustments; then 
measure test atmospheres A0, A80, and 
A20. Allow for a stable reading on each, and 
record the readings as Z'nS'n, and Mn 
respectively, where n = the test day number.
    (10) Determine the results of each day's tests as follows. Mark the 
recorder chart to show readings and determinations.
    (i) Zero drift. (A) 12-hour. Examine the strip chart pertaining to 
the 12-

[[Page 33]]

hour continuous zero air test. Determine the minimum (Cmin.) and maximum 
(Cmax.) readings (in p/m) during this period of 12 consecutive hours, 
extrapolating the calibration curve to negative concentration units if 
necessary. Determine the 12-hour zero drift (12ZD) as 12ZD = C\max.\-
C\min.\. (See Figure B-5 in appendix A.)
    (B) Calculate the 24-hour zero drift (24ZD) for the n-th test day as 
24ZDn = Zn-Zn-1, or 24ZDn = 
Zn-Z'n-1 if zero adjustment was made on the 
previous day, where Zn = \1/2\(L1+L2) 
for L1 and L2 taken on the n-th test day.
    (C) Compare 12ZD and 24ZD to the zero drift specification in table 
B-1. Both 12ZD and 24ZD must be equal to or less than the specified 
value to pass the test for zero drift.
    (ii) Span drift. (A) Span drift at 20 percent of URL (MSD)
    [GRAPHIC] [TIFF OMITTED] TC09NO91.000
    
    [GRAPHIC] [TIFF OMITTED] TC09NO91.001
    

If span adjustment was made on the previous day, where
[GRAPHIC] [TIFF OMITTED] TC09NO91.002


n indicates the n-th test day, and i indicates the i-th reading on the 
n-th day.
    (B) Span drift at 80 percent of URL (USD):
    [GRAPHIC] [TIFF OMITTED] TC09NO91.003
    

or
[GRAPHIC] [TIFF OMITTED] TC09NO91.004


If span adjustment was made on the previous day, where
[GRAPHIC] [TIFF OMITTED] TC09NO91.005


n indicates the n-th test day, and i indicates the i-th reading on the 
n-th test day.
    (C) Both USD and MSD must be equal to or less than the respective 
specifications given in table B-1 to pass the test for span draft.
    (iii) Lag time. Determine, from the strip chart, the elapsed time in 
minutes between the mark made in step (xxvi) and the first observable 
(two times the noise level) response. This time must be equal to or less 
than the time specified in table B-1 to pass the test for lag time.
    (iv) Rise time. Calculate 95 percent of reading P9 and 
determine from the recorder chart, the elapsed time between the first 
observable (two times noise level) response and a response equal to 95 
percent of the P9 reading. This time must be equal to or less 
than the rise time specified in table B-1 to pass the test for rise 
time.
    (v) Fall time. Calculate five percent of (P10-
L2) and determine, from the strip chart, the elapsed time in 
minutes between the first observable decrease in response following 
reading P10 and a response equal to five percent of 
(P10-L2). This time must be equal to or less than 
the fall time specification in table B-1 to pass the test for fall time.
    (vi) Precision. Calculate precision (P20 and 
P80) for each day's test as follows:
    (A)
    [GRAPHIC] [TIFF OMITTED] TC09NO91.006
    
    (B)
    [GRAPHIC] [TIFF OMITTED] TC09NO91.007
    
    (C) Both P20 and P80 
must be equal to or less than the specification given in table B-1 to 
pass the test for precision.

[40 FR 7049, Feb. 18, 1975, as amended at 41 FR 52694, Dec. 1, 1976]

[[Page 34]]

 Appendix A to Subpart B of Part 53--Optional Forms for Reporting Test 
                                 Results

                  Table B-5--Symbols and Abbreviations



BL............................  Analyzer reading at specified LDL
                                 concentration.
Bz............................  Analyzer reading at 0 concentration for
                                 LDL test.
DM............................  Digital meter.
Cmax..........................  Maximum analyzer reading during 12ZD
                                 test.
Cmin..........................  Minimum analyzer reading during 12ZD
                                 test.
i.............................  Subscript indicating the i-th quantity
                                 in a series.
IE............................  Interference equivalent.
L1............................  First analyzer zero reading for 24ZD
                                 test.
L2............................  Second analyzer zero reading for 24ZD
                                 test.
Mn............................  Average of P1 . . . P6 for the n-th test
                                 day.
M'n...........................  Adjusted span reading at 20 percent of
                                 URL on the n-th test day.
MSD...........................  Span drift at 20 percent of URL.
n.............................  Subscript indicating the test day
                                 number.
P.............................  Analyzer reading for precision test.
Pi............................  The i-th analyzer reading for precision
                                 test.
P20...........................  Precision at 20 percent of URL.
P80...........................  Precision at 80 percent of URL.
R.............................  Analyzer reading of pollutant alone for
                                 IE test.
RI............................  Analyzer reading with interferent added
                                 for IE test.
ri............................  The i-th DM reading for noise test.
S.............................  Standard deviation of noise readings.
S0............................  Noise value (S) measured at 0
                                 concentration.
S80...........................  Noise value (S) measured at 80 percent
                                 of URL.
Sn............................  Average of P7 . . . P12 for the n-th
                                 test day.
S'n...........................  Adjusted span reading at 80 percent of
                                 URL on the n-th test day.
URL...........................  Upper range limit.
USD...........................  Span drift at 80 percent o
Z.............................  Average of L1 and L2.
Zn............................  Average of L1 and L2 on the n-th test
                                 day.
Z'n...........................  Adjusted zero reading on the n-th test
                                 day.
ZD............................  Zero drift.
12ZD..........................  12-hour zero drift.
24ZD..........................  24-hour zero drift.



[[Page 35]]




[[Page 36]]




[[Page 37]]




[[Page 38]]




[[Page 39]]

[GRAPHIC] [TIFF OMITTED] TC09NO91.031


[40 FR 7049, Feb. 18, 1975, as amended at 40 FR 18169, Apr. 25, 1975]