

Measurement of Dissolved Oxygen with a Luminescence-based Oxygen Quenching Sensor

By Cary B. Jackson, Ph.D. Edward C. Craig, Ph.D. May 18, 2004

Measurement of Dissolved Oxygen

• Introduction

- The measurement of DO is essential in assessing it's effects on natural waters, process streams, and control of sewage treatment
- When used to report DO in discharges and to derive the biochemical oxygen demand from wastewater, it become a regulatory tool
- Therefore, precision and accuracy is a critical issue of interest in estimating the degree of water quality or purification, and calculating the industrial discharge loading costs

Dissolved Oxygen Determinants

- Current Regulatory Approved Methodologies
 - Winkler Titration Procedure
 - EPA Method 360.2
 - ASTM Standard D888-92 (Method A)
 - Membrane Probe (Clark-type Electrodes)
 - EPA Method 360.1
 - ASTM Standard D888-92 (Method B)
- Future Methodologies
 - Luminescence
 - Proposed EPA method 360.3
 - ASTM D19.05 subcommittee approval for Standard D888-04 (Method C)

Principle of Operation

- Winkler Titration
 - Destructive chemical oxidation-reduction reaction

- Limitations

- Subject to numerous interferences
 - Oxidizing and reducing agents
 - Nitrate and nitrite ion
 - Ferris and ferric ion
 - Suspended solids and organic matter
 - Field use impractical
 - Labor Intensive

Luminescence-Based Oxygen Sensors

- Membrane Electrode
 - Oxygen consumptive reduction from an electrolyte and two metallic electrodes
 - Oxygen must diffuse through a membrane to be reduced at a cathode
 - Limitations
 - Requires high flow across membrane
 - Narrow linearity range
 - Electrolyte and electrode degradation
 - Membrane fouling

Luminescence-Based Oxygen Sensors

- Luminescence-Based Oxygen Sensors
 - Measures the light emission characteristics of a luminescent reaction
 - In the presence of oxygen the luminescence is quantitatively reduced or quenched
 - Dissolved oxygen concentration is inversely proportional to the luminescence lifetime of the light emitted by the photo-luminescence process
 - The lower the DO concentration, the greater the signal to noise ratio
 - Limitations
 - Only one known interferent (chlorine dioxide)

Luminophore Structure

Comparative Accuracy of DO Determinants

Comparative Precision and Accuracy of DO Determinants

EPA Quality Assurance Acceptance Criteria for Precision and Recovery

- Theoretical [DO] 1.71 ppm
- Mean
 - 99.3%
- 95% Confidence Interval
 - 0.024
- % Lower Limit
 - 96.9%
- % Upper Limit
 - 101.8%

Luminescence Dissolved Oxygen IPR Study

EPA Quality Assurance Acceptance Criteria for Precision and Recovery

- Theoretical [DO] 7.31 ppm
- Mean
 - 100.7%
- 95% Confidence Interval
 - 0.003
- % Lower Limit
 - 101.1%
- % Upper Limit
 - 101.4%

Luminescence Dissolved Oxygen IPR Study

QC Acceptance Criteria for Recovery

EPA Quality Assurance Acceptance Criteria for Method Detection and Method Limit

- Method Statistics
 - Single laboratory
 - 9 different instruments
 - 7 replicates
 - Theoretical [DO] = 0.07 ppm
- Mean Recovery
 - 98%
- Method Detection Limit
 - 0.02 mg/L
- Method Limit
 - 0.06 mg/L

Standard Methods Quality Control Results for Biochemical Oxygen Demand

Standard Methods Quality Control Results for Biochemical Oxygen Demand

Determinant

80

70

60

50

