50

 

Bright Low Persistance Scintillator for Radionuclide/X-Ray Imaging—Radiation Monitoring Devices, Inc., 44 Hunt Street, Watertown, MA  02472-4699; 617-668-6800, www.rmdinc.com 

Dr. Gerald Entine, Principal Investigator, GEntine@RMDInc.com

Dr. Gerald Entine, Business Official, GEntine@RMDInc.com

DOE Grant No. DE-FG02-06ER84434

Amount:  $100,000 

 

Due to its excellent properties, CsI:Tl has become the scintillator of choice for a wide variety of applications; however, it has not been widely used in radionuclide imaging in the medical field.  The primary reason for this is the presence of a strong afterglow component in its scintillation decay, which reduces the energy resolution.  Also, thick pixelated scintillator structures – which could overcome the traditional tradeoff between detection efficiency and spatial resolution, in order to realize full potential of current functional imaging modalities such as SPECT – do not currently exist.  This project will address these issues by using co-dopants capable of suppressing the afterglow of CsI:Tl and by developing thick microcolumnar scintillator structures.  The presence of co-dopants is expected to minimize the afterglow, even when exposed to the high levels of radiation typically used in tomographic applications, without sacrificing any of its excellent scintillation properties.  The microcolumnar structure will allow thick, high-efficiency films to be fabricated while maintaining a very high spatial resolution.  Phase I will demonstrate feasibility by optimizing the dopant concentrations; developing vapor deposition protocols to produce stoichiometrically balanced, thick, microcolumnar films; and characterizing the resulting structures.

 

Commercial Applications and Other Benefirs as described by the awardee:   The modified scintillator should have widespread use in small animal/human SPECT/CT imaging systems in particular, and nuclear medicine systems in general.  Additionally, the readout sensor should have applications in the area of high-speed and ultra high-speed x-ray imaging, nondestructive testing, and homeland security.