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What Is Experimental Math?

The computer has in turn changed the very nature of 
mathematical experience, suggesting for the first time 
that mathematics, like physics, may yet become an 
empirical discipline, a place where things are 
discovered because they are seen.

David Berlinski, 1997

If mathematics describes an objective world just like 
physics, there is no reason why inductive methods 
should not be applied in mathematics just the same 
as in physics.

Kurt Godel, 1951



The Experimental Methodology

Gaining insight and intuition.
Discovering new patterns and relationships.
Using graphical displays to suggest underlying 
mathematical principles.
Testing and especially falsifying conjectures.
Exploring a possible result to see if it is worth formal 
proof.
Suggesting approaches for formal proof.
Replacing lengthy hand derivations with computer-
based derivations.
Confirming analytically derived results.



Experimental Math in Action

In 1988, Joseph Roy North observed that Gregory's series,

π 4(1/ 3 1/ 5 1/ 7 1/ 9 1/11 1/13 1/15 )= − + − + − +

when truncated to 5,000,000 terms, gives a value that differs
strangely from the true value of pi:

3.14159245358979323846464338327950278419716939938730582097494182230781640...
3.14159265358979323846264338327950288419716939937510582097494459230781640...

2            -2            10          -122          2770

Sloane’s Encyclopedia of Integer Sequences, available at
http://www.research.att.com/~njas/sequences,

recognizes these integers as Euler numbers E_n.  The 
above phenomenon is an artifact of the fact that 5,000,000 is 
one-half of a large power of ten.



The PSLQ Integer Relation 
Algorithm

Let (xn) be a vector of real numbers.  An integer relation 
algorithm finds integers (an) such that 

At the present time, the PSLQ algorithm of Helaman
Ferguson is the most efficient algorithm for integer 
relation detection.
PSLQ was named one of 10 “algorithms of the 
century” by Computing in Science and Engineering.
High precision arithmetic software is required:
At least d x n digits, where d is the size (in digits) of 
the largest of the integers ak.

1 1 2 2 ... 0n na x a x a x+ + + =



Ferguson’s “Eight-Fold Way” 
Sculpture



The PSLQ Algorithm

Initialize:  For j := 1 to n: for i := 1 to n: if i = j then set A_{i j} := 1 and B_{i j} 
:= 1 else set A_{i j} := 0 and B_{i j} := 0; endfor; endfor.  For k := 1 to n: set 
s_k := sqrt {sum_{j=k}^n x_j^2}; endfor.  Set t := 1 / s_1.  For k := 1 to n: set y_k 
:= t x_k; s_k := t s_k; endfor.

Initial H:  For j := 1 to n-1: for i := 1 to j-1: set H_{i j} := 0; endfor; set H_{j j}
:= s_{j+1}/s_j; for i := j+1 to n: set H_{i j} := - y_i y_j / (s_j s_{j+1}); endfor; 
endfor.

Reduce H:  For i := 2 to n: for j := i-1 to 1 step -1: set t := nint (H_{i j} / H_{j j}); 
and y_j := y_j + t y_i; for k := 1 to j: set H_{i k} := H_{i k} - t H_{j k}; endfor; 
for k := 1 to n: set A_{i k} := A_{i k} - t A_{j k} and B_{k j} := B_{k j}          
+ t B_{k i}; endfor; endfor; endfor.

Iterate:
Select m such that gamma^i |H_{i i}| is maximal when i = m.  Exchange the entries of y 

indexed m and m + 1, the corresponding rows of A and H, and the corresponding columns 
of B.

Remove corner on H diagonal:  If m <= n-2 then set t_0 := sqrt{H_{m m}^2 + H_{m,m+1}^2}, 
t_1 := H_{m m} / t_0 and t_2 := H_{m,m+1} / t_0; for i := m to n: set t_3 := H_{i m}, 
t_4 := H_{i, m+1}, H_{i m} := t_1 t_3 + t_2 t_4 and H_{i, m+1} := - t_2 t_3 + t_1 
t_4; endfor; endif.

Reduce H: For i := m+1 to n: for j := min(i-1, m+1) to 1 step -1: set t := nint (H_{i j}
/ H_{j j}) and y_j := y_j + t y_i; for k := 1 to j: set H_{i k} := H_{i k}
- t H_{j k}; endfor; for k := 1 to n: set A_{i k} := A_{i k} - t A_{j k} and B_{k j}
:= B_{k j} + t B_{k i}; endfor; endfor; endfor.

Termination test:  If some y_i < epsilon, then a relation has been detected and is given 
in the corresponding column of B.



LBNL’s Arbitrary Precision 
Computation (ARPREC) Package

Written entirely in C++.
C++ and F-90 translation modules permit this software to be 
used in programs with only minor changes to ordinary code.
Double-double (32 digits), quad-double, (64 digits) and arbitrary 
precision (>64 digits) versions are available.
Special routines for extra-high precision (>1000 digits).
Includes common math functions:  sqrt, cos, exp, log, etc.
Includes PSLQ, root finding and numerical integration programs.

Authors:  Brandon Thompson (UCB), Sherry Li (LBNL) Yozo Hida
(UCB) and DHB.

An “Experimental Mathematician’s Toolkit” (an interactive tool 
performing the above) is also available.

Available at:  http://www.expmath.info



Identifying Algebraic 
Numbers Using PSLQ

Problem:  Is a given real number α algebraic of degree n
or less?  I.e., is α the root of an algebraic equation with 
integer coefficients of degree n or less?

Solution:  Compute the set of numbers 
2(1, α , α , ..., α )n

to high precision, and then apply the PSLQ algorithm.

Example (using Mathematician’s Toolkit):
alpha = 3^0.25 – 2^0.25
pslq[table[alpha^k], {k, 0, 16}]  

finds the following degree-16 polynomial:
4 8 12 160 1 3860 666 20t t t t= − − − +



Bifurcation Points in Chaos 
Theory

B3 = 3.54409035955… is third bifurcation point of the 
logistic iteration of chaos theory:

i.e., B3 is the smallest r such that the iteration exhibits 8-
way periodicity instead of 4-way periodicity.

PSLQ can determine that B3 satisfies

Recently B4 was identified as the root of a 256-degree 
polynomial (a much more challenging computation).

These results have subsequently been proven formally.

1 (1 )n n nx rx x+ = −

2 3 4 5 6 7 8

9 10 11 12

0 4913 2108 604 977 8 44 392 193
40 48 12

t t t t t t t
t t t t

= + − − + + + −

− + − +



Fascination With Pi

Newton (1670): 
“I am ashamed to tell you to 
how many figures I carried 
these computations, having no 
other business at the time.”

Carl Sagan (1986):  
In his book “Contact,”  the lead 
scientist (played by Jodie 
Foster in the movie) looked for 
patterns in the digits of pi.



Fax from “The Simpsons” Show



Peter Borwein’s Observation

In 1996, Peter Borwein (Simon Fraser Univ., Canada) 
observed that a well-known formula leads to a simple 
scheme for computing arbitrary binary digits of log 2.
(In the following, {} denotes fractional part):

{ }
1

1 1

1 1

1log 2 0.69314718055994530...
2
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Fast Exponentiation

The exponentiation (2d-n mod n) in this formula can be 
evaluated very rapidly by means of the binary algorithm 
for exponentiation, performed modulo n.

Example:
317 = (((32)2)2)2 x 3 = 129140163

In a similar way, we can evaluate:
317 mod 10 = ((((32 mod 10)2 mod 10)2 mod 10)2 mod 10) x 3 mod 10
32 mod 10 = 9
92 mod 10 = 1
12 mod 10 = 1
12 mod 10 = 1
1 x 3 = 3             Thus 317 mod 10 = 3.

Note: we never have to deal with integers larger than  81.



Is There an Arbitrary Digit 
Calculation Formula for Pi?

The same trick can be used for any mathematical 
constant given by a formula of the form

1

( )α
( )2nn

p n
q n

∞

=

=∑

where p and q are polynomials with integer coefficients 
(or any constant given by a sum of such formulas). 

Is there a formula of this type for pi?  Until recently, 
none was known in mathematical literature.



The BBP Formula for Pi

In 1996, a PSLQ program discovered this formula for pi:  

This formula permits one to directly calculate the n-th
binary or hexadecimal (base 16) digit of pi, without 
needing to calculate any of the first n-1 digits.

So simple!  Why wasn’t it found hundreds of years ago?

0

1 4 2 1 1π
16 8 1 8 4 8 5 8 6k

k k k k k

∞

=

 = − − − + + + + 
∑



Proof of the BBP Formula
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Algorithm for Computing the 
n-th Hexadecimal Digit of Pi

{ }

1

1

1
0 0 1

Let  be the first of the four sums in the formula for π.  Then the hex expansion
of  beginning at position 1 is:

16 16 1616
8 1 8 1 8 1
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where {} denotes fractional part.  The numerator of the first summation can be
evaluated very rapidly by means of the binary algorithm for exponentiation, where
eac

n kn

k k nk k
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h multiplication is followed by reduction modulo 8 1.  Only a few terms of
the second summation need be evaluated, since it quickly converges.  This
computation is repeated for , , , .

The entire a

k

S S S S

+

lgorithm may be performed in ordinary 64-bit or 128-bit floating
point arithmetic.



Calculations Using the BBP 
Algorithm

Position Hex Digits of Pi Starting at Position
106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25 x 1012 07E45733CC790B [1]
2.5 x 1014 E6216B069CB6C1 [2]

[1] Babrice Bellard, France, 1999
[2] Colin Percival, Canada, 2000



Some Other New Math 
Identities Found Using PSLQ
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An Arctan Formula
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A Numerical Integration 
Solution

Using a high-precision numerical integration program, 
together with PSLQ, we found that if

then

where G is Catalan’s constant.  General formulas 
have now been established.
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Evaluation of Ten Constants 
from Quantum Field Theory
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PSLQ and Sculpture

The complement of the figure-eight knot, when
viewed in hyperbolic space, has finite volume

  2.029883212819307250042...
Recently David Broadhurst found, using a PSLQ
program, that  is given by a BBP-t

V

V

=

2 2 2
0

2 2

ype formula:

3 ( 1) 18 18 24
9 27 (6 1) (6 2) (6 3)

6 2                           -
(6 4) (6 5)

Thus Ferguson's PSLQ algorithm solves Ferguson's
sculpture!
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Some Supercomputer-Class 
PSLQ Solutions

Identification of B4, the fourth bifurcation point of the 
logistic iteration. 

Integer relation of size 121;  10,000 digit arithmetic.
Identification of Apery sums.

15 integer relation problems, with size up to 118, 
requiring up to 5,000 digit arithmetic.

Identification of Euler-zeta sums.
Hundreds of integer relation problems, each of size 145 
and requiring 5,000 digit arithmetic.
Run on IBM SP parallel system.

Finding relation involving root of Lehmer’s polynomial.
Integer relation of size 125;  50,000 digit arithmetic.   
Utilizes 3-level, multi-pair parallel PSLQ program.
Run on IBM SP using ARPEC; 16 hours on 64 CPUs.



A Cautionary Example
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Cautionary Example II

00

cos(2 ) cos( / )

0.39269908169872415480783042290993786052464543418723...
π
8
0.39269908169872415480783042290993786052464617492189...
These two constants agree to 42 digits, but are NOT equ

n

x x n dx
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=
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al.



Normal Numbers

A number is normal base b if every string of m digits 
in the base-b expansion appears with frequency b-m. 
Using measure theory, it is easy to show that almost 
all real numbers are normal base b, for any b.
Widely believed to be normal base b, for any b:

π = 3.1415926535…
e = 2.7182818284…
Sqrt(2) = 1.4142135623…
Log(2) = 0.6931471805…
Irrational roots of integer algebraic equations

But to date there have been NO proofs for any of these. 
Proofs are only known for a handful of contrived 
examples, such as 0.12345678910111213…



A Connection Between BBP 
Formulas and Normality

In 2001 Richard Crandall and I found a connection 
between BBP-type formulas and a class of iterative 
sequences.  In particular, we found:

A mathematical constant given by a BBP-type formula 
is normal base b if and only if an associated iterative 
sequence is equidistributed in the unit interval.

This result relies crucially on the BBP formula for pi and 
some other similar formulas discovered using PSLQ 
computations.



Example:  Loge 2

{ }
0

1

Consider the sequence ( ) given by 0, and
2 1/

where {} denotes fractional part as before.  Successive values of ( )
appear to dance about randomly in the interval (0,1):
0.0000, 0.5000, 0.33

n

n n

n

x x
x x n

x
−

=

= +

33, 0.9167, 0.0333, 0.2333, 0.6095, 0.3440,
0.7992, 0.6984, 0.4877, 0.0588, 0.1945, 0.4605, 0.9876, 0.0378,
0.1344, 0.3243, 0.7012, 0.4524, 0.9524, 0.9502, 0.9439, 0.9295, ...

If it can be proven that (x ) is equidistributed in the unit interval, then
this would suffice to prove that log 2 is normal base 2.

n



The Iterative Sequence for Pi

0

2

1 4 3 2

The iterative sequence associated π with is 0,

120 89 1616
512 1024 712 206 21

If it can be proven that the sequence ( ) is equidistributed in the unit
interval, then this woul

n n
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d suffice to prove that π is normal base 16, and
hence base 2 also.

Curious Fact:
Define the sequence ( ) by 16 .  Then ( ) appears to
perfectly generate the hexadecimal expansion of π.  We have ver

n n n ny y x y=

ified
this by computer to over 1,000,000 digits.



A Class of Provably Normal 
Constants

2,3 3
1

Crandall and I have now shown (unconditionally) that an infinite class of
mathematical constants, including

1α
3 2

0.0418836808315029850712528... (decimal)
0.0AB8E38F684BDA12F684... (hexadecim

kk
k

∞

=

=

=
=

∑

2,3

2,3

al)
is normal.  In particular, α  is normal base 2.

Note:  α  was proven normal base 2 by Stoneham in 1973, but our
results cover a much larger class.



An Unsolved Question of 
Experimental Mathematics

This is a plot of the 
complex roots of all 
polynomials up to 
degree 18 with 
coefficients in the 
set {-1, 0, 1}.

The bands, clearly 
visible in this plot, 
are unexplained.



Two New Books on Experimental 
Mathematics

Vol. 1: Mathematics by Experiment: 
Plausible Reasoning in the 21st 
Century

Vol. 2: Experiments in Mathematics: 
Computational Paths to 
Discovery

Authors: Jonathan M Borwein and 
David H Bailey, with Roland 
Girgensohn for Vol. 2.  

Publisher: A. K. Peters, Nov. 1993.

A “Reader’s Digest” condensed version is available FREE at
http://www.expmath.info
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