Atmospheric Aerosols from Biogenic Hydrocarbon Oxidation

Atmospheric Science Progress Review Meeting

June 21-22, 2007

Jana Milford

Department of Mechanical Engineering University of Colorado, Boulder

Acknowledgments

- Tanarit Sakulyanontvittaya,* CU-Boulder, Mechanical Engineering
- Detlev Helmig,* Tiffany Duhl, Ryan Daly, John Ortega, David Tanner, CU-Boulder, Institute for Arctic and Alpine Research
- Christine Wiedinmyer,* Alex Guenther,* Peter Harley,* John Orlando, Louisa Emmons, Sou Matsunaka, National Center for Atmospheric Research
- Bob Arnts, Chris Geron, Jeff Herrick, J. Harvey, U.S. Environmental Protection Agency
- Mark Potosnak, Desert Research Institute
- Bill Stockwell, Howard University
- Greg Yarwood, Environ
- Raoul Zavari, Pacific Northwest National Laboratory
- Ted Russell, Helena Park, Georgia Tech
- Gail Tonneson, University of California at Riverside
- NSF, Atmospheric Chemistry Program (ATM #0304704) and the U.S. EPA (#RD-83107901-0).
- * Coauthor

Outline

Background

 Biogenic hydrocarbon emissions and secondary organic aerosol (SOA) formation

- Sesquiterpenes (SQTs) and monoterpenes (MTs)
- Project objectives
- Methods
 - Chemical transport modeling
 - Measurements
 - Emissions modeling
- Results
 - Emissions comparisons
- Conclusions

Sesquiterpene (SQT) and Monoterpene (MT) Emissions from Vegetation

Monoterpenes Sesquiterpenes $C_{10}H_{16}$ $C_{15}H_{24}$

- Significant emissions
 - North America total Monoterpene emissions 17.9 Tg C yr⁻¹ (Guenther et al., 2000)
 - Sesquiterpene emissions?
- Highly reactive
- Oxidation products can partition to the aerosol phase

Aerosol yields for biogenic MTs and SQTs

Parent terpenoid	Aerosol Yield (%)	
Δ^3 -Carene	2.3 – 10.9	
β-Caryophyllene	17.2 – 62.5	
α -Humulene	20.0 – 66.7	
Limonene	6.1 – 22.8	
Myrcene	7.6 – 12.7	
α-Pinene	2.4 – 7.8	
β-Pinene	4.2 – 13.0	
Sabinene	4.7 – 10.6	

Griffin et al., 1999

Key Questions

What are the regional landscape fluxes of MTs and SQTs?

- Environmental controls
- Spatial and temporal variations
- What is the contribution of BVOC oxidation to SOA formation in the eastern U.S.?
 - Diurnal and seasonal trends
 - Differences in the contributions from MTs and SQTs
- How sensitive is secondary aerosol formation from BVOC to anticipated changes in:
 - Process model assumptions?
 - Emissions of nitrogen oxides?
 - Land cover?

Regional Chemical Transport Modeling

- MM5/CMAQ
- Domain Resolution
 - Horizontal: 36 km x 36 km
 - Vertical layers: 9
- Chemical Mechanism
 - SAPRC99 with 3rd generation aerosol model and aqueous chemistry

Episodes

- July 2001
- January 2002

CMAQ Modifications

CMAQ Inputs

Initial Conditions

Last hour output

Boundary Conditions

•MOZART2.2 output Louisa Emmons

Meteorological Data – MM5

•July 2001 •January 2002

T. Russell and Sun-Kyoung Park (GA. Tech)

Anthropogenic Emissions Data
SMOKE 2.0 (U.S.) - NEI 1999
Area, Point, Mobile, Nonroad, and Point sources
• July 2001T. Russell and Sun-Kyoung Park
(GA. Tech)

SMOKE 2.1 - Mexico (1999), Canada (1996)Area, Point, Mobile, Nonroad, and Point sourcesJuly 2001 • January 2002

Model Evaluation: Focus on Eastern U.S.

Supersites

- Atlanta, Baltimore, NY, Pittsburgh, St. Louis
- intensive periods

July 2001, January 2002

IMPROVE

- = 24 h avg PM2.5, $SO_4^{=}$, NO_3^{-} , OC, EC
- SEARCH
 - urban/rural pairs in AL, FL, GA, MI
 - C-14 data at three sites
- TVA C-14 data (Look Rock, TN)

Biogenic Emissions Inventory Development

Measurement of SQT and MT emissions

- Bag and cuvette enclosure systems
- Calibration system
 - Helmig et al, 2003
- Cartridge and on-line sampling
- GC-MS, GC-PTRMS, GC-FID
- Laboratory and field measurements

Branch enclosure measurements at Duke Forest (summer – fall 2004)

Loblolly pine

 Four FEB Teflon film branch enclosure systems operated simultaneously

Two tower

Two ground-level
Double ozone scrubbing in all experiments
Aromatic doping used to test recoveries
Possible 5-10% wall loss for SQT

Chromatogram (plotted as the flame ionization detector (FID) response) from a ponderosa pine emission sample. Monoterpene retention times 7.2–14.7 min; sesquiterpene retention times 18.9-22.5 min. Shaded peaks are the aromatic compounds from the reference standard.

Helmig et al., ES&T, 41:1545, 2007

Prominent Sesquiterpenes in Recent Measurements

Helmig et al., in progress

Atkinson and Arey, 2003, Griffin et al., 1999

Sesquiterpene (SQT) emission rate (ER) data from an enclosure experiment on a loblolly pine tree at Duke Forest showing total SQT emission rates plotted against the mean needle temperature inside the enclosure. Helmig et al., ES&T, 41:1545, 2007

BVOC Emissions Modeling: MEGAN

- Model of Emissions of Gases and Aerosols from Nature: MEGAN
 - 1 km resolution
 - Improved evaluation of LAI and Land Cover inputs
 - Available through the NCAR Community Data Portal

$$EM = \varepsilon \bullet \gamma_{CE} \bullet \gamma_{age} \bullet \gamma_{SM} \bullet \rho$$

$$\gamma_{CE} = \gamma_{LAI} \bullet \gamma_P \bullet \gamma_T$$

EM: Emission (μ g m⁻² hr⁻¹) ϵ : Emission Factor (μ g m⁻² hr⁻¹) ρ : Loss and Production within plant canopy γ_{CE} : Canopy Factor γ_{age} : Leaf Age Factor γ_{SM} : Soil Moisture Factor γ_{LAI} : Leaf Area Index Factor γ_P : PPFD Emission Activity Factor (light-dependence) γ_T : Temperature Response Factor

Guenther, 2006

Emissions Data

MEGAN v. BEIS3

- Additional emission activity algorithms
 - Sensible heat flux, leaf age, long term effects of temperature and PAR
- Simplified canopy model to account for leaf temperature and canopy light extinction
- Updated emissions factors
 - Includes speciated SQT and MT emissions from measurements
 - EF for individual chemical species vary spatially
- Multiple options for landcover inputs including high resolution satellite data (MODIS, SPOT)

Basal SQT and MT Emissions Rates for Needle Leaf Trees

SQT and MT Emissions Rates Summer 2006

Helmig and Daly, 2007

NCAR SQT Measurement Comparison, April 30 - May 4, 2007

Participants	Affiliation	Sample Collection	Analysis
Detlev Helmig	CU/INSTAAR	On-line On-line Tenax adsorbent	GC-MS GC-FID GC-FID
Peter Harley	NCAR	Tenax adsorbent	GC-FID
Alex Guenther	NCAR	On-line	GC-MS
Thomas Karl	NCAR	On-line	PTR-MS
Jim Greenberg	NCAR	On-line	O3 Reactivity
Sou Matsunaga	NCAR	Super Q	GC-FID
Tiffany Duhl	NCAR	Super Q	GC-FID
Monica Madronich	NCAR	Super Q	GC-FID
Nicole Bouvier-Brown	UC Berkeley	SPME Fibers	GC-MS
Rei Rasmussen	Oregon Health & Science Univ.	Tenax adsorbent Canisters	GC-MS GC-MS; GC-FID
Chris Geron Bob Arnts	USEPA	Tenax adsorbent	GC-MS
Hannele Hakola	Finnish Meteor. Institute	Tenax adsorbent	GC-FID

Courtesy of P. Harley

Comparison of SQT Emission Factors from Recent Measurements v. Prior Literature

SQT and MT Emission Factors by Plant Functional Type

Recent data

Literature through 2004

Recent data

Emissions Modeling Results -- JanuaryBEIS 3.0MEGAN2.0-06bMEGAN2.0-L

Emissions Modeling Results

SOA Precursor Speciation

for SAPRC99-S, July Average Emissions - CMAQ Domain

Conclusions

- SQT emissions are highly variable
 - Emissions likely dependent on leaf age and other environmental variables
 - Seasonal dependence is uncertain but maybe important
- Measured SQTs appear to have stronger temperature dependency than MT emissions
- Light-dependency observed in some MTs and SQTs
- Some crops appear to be strong SQT emitters need more measurements
- MEGAN provides an easily adaptable framework for BVOC emissions estimation
- Speciation schemes available for most popular chemical mechanisms
- SQT estimated to contribute 7 16% of SOA precursor emissions (anthropogenic and biogenic, excluding isoprene) for continental U.S. in July
- SQT estimated to contribute 1 2% of SOA precursor emissions in January
- SOA contributions to be determined!

Disclaimer

Although the research described in this presentation has been funded in part by the United States Environmental Protection Agency, it has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.