DRUG DISCOVERY

Edward A. Sausville, M.D., Ph.D. Associate Director for Clinical Research Greenebaum Cancer Center University of Maryland at Baltimore

March 20, 2008

OUTLINE OF PRESENTATION

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Leads for Transition to Early Trials

DRUG DISCOVERY: WHERE HAS IT WORKED?

Majority of Drug Targets:	% Top Sales
- G-Protein Coupled Receptors	18
- Nuclear (Hormone) Receptors	10
- Ion Channels	16
- Enzymes	~50

Problem:

How to choose target likely to succeed especially if directed at new target (e.g. protein-protein interactions)?

Nature 384 suppl 11:5, 1996

DRUG DISCOVERY: A SUCCESSION OF STYLES

Antiquity to 1960s:

Mixtures of natural products vs. bioassays (e.g., digitalis, rauwolfia, penicillins, anthracyclines, vinca, taxol, camptothecins)

1930s to present:

Pure compounds vs. bioassays

(e.g., sulfas, diuretics, hypoglycemics, antiHBP)

1960s to present:

Pure compounds vs. pure enzymes (e.g., ACE inhibitors, cholesterol-lowering statins, RT and protease inhibitors)

1980s to present:

Combinatorial methods to bring mixtures of compounds vs. many targets

WHY COMPOUNDS FAIL AND SLOW DOWN IN DEVELOPMENT

Reasons for failure

- * Toxicity, 22%
- * Lack of efficacy, 31%
- * Market reasons, 6%
- * Poor biopharmaceutical properties, 41%

Reasons for slowdown

- * Synthetic complexity
- * Low potency
- * Ambiguous toxicity finding
- * Inherently time-intensive target indication
- * Poor biopharmaceutical properties

Modern Drug Discovery January/February 1999 *Modern Drug Discovery*, **1999**, 2 *(1)*, 55-60. Copyright © 1999 by the American Chemical Society

TRADITIONAL PHARMACEUTICAL R&D Suffers High Attrition*

* Tufts CSDD, H&Q 1998; The Pfizer Journal, 1/2000

TRADITIONAL PHARMACEUTICAL R&D Costly* and Time Consuming**

* Lehman Brothers, 1997; ** Tufts CSDD

OUTLINE OF PRESENTATION

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Lead for Transition to Early Trials

TWO CONTRASTING DRUG-DISCOVERY "PHILOSOPHIES"

 * "EMPIRICAL": Recognize initial drug lead by functionally useful effect

 -E.g. : penicillin (anti-bacterial effect) rauwolfia (anti-hypertensive) taxol (anti-tumor) digoxin (cardiotonic / antiarrythmic)

 * "RATIONAL": Recognize drug by design or screen against biochemical target's function

 -E.g.: HIV-protease inhibitor (anti-infection) metoprolol (anti-hypertensive) methotrexate (anti-tumor)

PROBLEMS WITH EMPIRICAL MODELS

- * Lead optimization difficult without known biochemical target--How to optimize?
- * Value of screen depend on predictive value of screening model with biology of disease
 -E.g.: acid hypo-secretion or H2 receptor binding assay HIGHLY correlate with useful anti-ulcer Rx
 -Counter E.g.: anitumor activity in > 33% mouse models of cancer have at best 50% chance of >1 P2 trial for non=targeted cancer Rx's
- * Divorced from mechanism: an intriguing lead must be "deconvolutedh

EFFECT OF KRN5500 ON COLO-205 ATHYMIC MOUSE XENOGRAFTS

KRN5500 PLASMA CONCENTRATIONS ON EFFECTIVE SCHEDULE(20 MG/KG/D) IN MICE

SUMMARY OF KRN-5500 PHASE I

- * 26 patients as IV once per day over 5 days
- * Dose limiting toxicity = interstitial pneumonitis
- * $MTD = 2.9 \text{ mg/M}^2/\text{d x 5}$
- * Achieve only 0.75 1 μ M at 3.7 mg/M²/d x 5
- * 4/6 patients with >25% incr C_{max} have grade 4 toxicity

Data of J. P. Eder, DFCI

"RATIONAL" DRUG DISCOVERY

bcr-abl AS TARGET: RATIONALE

- * Apparently pathogenetic in t9:Q22 (Ph+) CML/ALL
- * Absence in normal tissues
- * Modulate signal transduction events downstream

Maintenance of chronic phase Adjunct to bone marrow transplantation

bcr-abl FUSION PROTEIN

Phosphorylation of other substances

McWhirter JR, EMBO *12:1533, 1993*

EXAMPLE OF "RATIONAL" APPROACH: bcr-abl directed agents

STI571: An oral in vivo bcr-abl kinase inhibitor

Tyr phosphorylation *in vivo*

Antitumor activity in vivo

le Coutre et al, JNCI 91:163, 1999

EFFICACY AND SAFETY OF A SPECIFIC INHIBITOR OF THE BCR-ABL TYROSINE KINASE IN CHRONIC MYELOID LEUKEMIA

BRIAN J.DRUKER, M.D., MOSHE TALPAZ, M.D., DEBRA J.RESTA, R.N., BIN PENG, PH.D., ELISABETH BUCHDUNGER, PH.D., JOHN M.FORD, M.D., NICHOLAS B.LYDON, PH.D., HAGOP KANTARJIAN, M.D.,

RENAUD CAPDEVILLE, M.D., SAYURI OHNO-JONES, B.S., AND CHARLES L.SAWYERS, M.D.

NEJM 344: 1031, 2001

MOLECULAR TARGET DEFINITION - HOW TO?

• BIOLOGY:

- * Cytogenetics ------ Breakpoints ------ Molecules (bcr-abl)
- * "Positive" selection from tumor DNA → Active oncogenes (signal transduction)
- * Tumor gene expression profiling (CGAP)

"RETROFIT" ACTIVE MOLECULES:

- * Binding partners (geldanamycin, rapamycin, fumagillin)
- * Computational algorithm (molecule + target)
 - COMPARE
 - Cluster analysis

"CLASSICAL:"

- * Cell metabolism / Biochemistry
- * Suggest single targets ----- Inefficient; Medicinal Chemistry possible

CHEMICAL GENETICS:

* Libraries of molecules and precisely defined organisms

Gene Expression: The Cell's Fingerprint

Establishing for a cell the repertoire of genes expressed, together with the amount of gene products produced for each, yields a powerful "fingerprint". Comparing the fingerprints of a normal versus a cancer cell will highlight genes that by their suspicious absence or presence (such as Gene H) deserve further scientific scrutiny to determine whether such suspects play a role in cancer, or can be exploited in a test for early detection.

http://cgap.nci.nih.gov

http://cgap.nci.nih.gov

Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling

Alizadeh et al, Nature 403: 503, 2000

GELDANAMYCIN: EXAMPLE OF BINDING PARTNER DEFINING TARGET

BENZOQUINOID ANSAMYCINS INITIAL CELL PHARMACOLOGY - I

- * "Reverse" transformed phenotype of src-transformed rat kidney cell line
 - decrease tyrosine phosphorylation of pp60src
 - not inhibit pp60 immune complex kinase directly but these were inhibited from drug treated with 6: 2198, 1986)
 - thus alter "intracellular environment" of src
- * Decrease steady state phosphorylation levels to 10% of control
 - decrease steady state level of pp60src by 30%
 - accelerate turnover of pp60src

(Uehara et al, Cancer Res 49: 780, 1989)

GELDANAMYCIN BEADS IDENTIFY HSP90 AS BINDING PARTNER

R. Lysate

1 2 3 4

1) Bead-Geld 3) Bead-Geld + Geldampicin

2) Bead-Geld + Geld 4) Bead

Neckers et al, PNAS 91:8324, 1994

OUTLINE OF PRESENTATION

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Lead for Transition to Early Trials

Diversity

It is estimated that there are 10^{40} compounds in all of "chemical space". Since the Big Bang, there have only been 10^{17} seconds.

- Peter Wipf

SOURCES OF DIVERSITY

- * "Natural Products" = entities derived from plants, animals, bacteria, etc. May have "ethnopharmacognosy" to suggest use
 - "pure compound" collections
 - extracts: aqueous/organic
 - genetically altered producer organisms
- * Target non-selected chemical compound libraries

 -peptide / protein
 -non-peptide
- * Target-directed chemical compound libraries
 - "classical" medicinal chemistry / bona fide crystal structure - derived
 - "docked" lead structures into model

Natural Products: Unique arrays of the four "elements" which make a really useful drug

Sources of "Modern Drugs"

If one looks at the current drug scene from a chemical perspective (data from

1981 - 2002) then the following slides show reasonable approximations of the

sources of drugs currently approved, World-wide, by the FDA or equivalent body.

Codes are:

N	Natural Product
ND	Natural Product Derivative
S*	Natural Product Pharmacophore
5	Synthetic Compound
B/V	Biological / Vaccine
(NM)	Natural Product Mimic as a subdivision

Sources of Drugs (1981-2002); Extended Subdivisions n = 1031

Newman et al, J. Nat. Prod., 2003, 66, 1027-1037
EXAMPLES OF NP LEAD GENERATION OF NOVEL SCAFFOLDS

GUIDED BY NATURE A compound library developed around nakijiquinones, which are natural inhibitors of the receptor tyrosine kinase called Her-2/Neu, produced analogs that inhibit two other receptor tyrosine kinases, VEGFR-3 and Tie-2.

NATURE LEADS

Galanthamine, an antidementia drug

... turns up a new compound with a different activity

Secramine, a galanthamine-based molecule that blocks protein trafficking

INSECT CHEMISTRY Nasute termites ...

... are rich in trinervitane compounds

CSIRO PHOTO

Discovery of Lidocaine

* Central Asian camels refused to eat a certain type of reed

* Characterization of gramine as the antifeedant principle led to the synthesis of isogramine

* Taste-test: numbness; therefore, lead for anesthetic agent development

Courtesy of N. R. Farnsworth

Natural Product Isolation Tree

"You are what you eat"

Dolabella auricularia Dolastatins come from a *Symploca* species that they graze on

"Non-culturable" versus "Cultured" microbes

- * The microbial World has only just been scratched.
 - Much less than 1% of the available organisms have even been seen, let alone identified.
- * In soil, there are estimates of > 1000 species per gram
 - very few can be cultured
 - these may not be representative of the "Soil meta-Genome"
- * Over 1000 microbes per mL of seawater can be seen and only
 1% can be cultured using current methods.

SOURCES OF DIVERSITY

- * "Natural Products" = entities derived from plants, animals, bacteria, etc. May have "ethnopharmacognosy" to suggest use
 - "pure compound" collections
 - extracts: aqueous/organic
 - genetically altered producer organisms
- * Target non-selected chemical compound libraries
 -peptide / protein
 -non-peptide
- * Target-directed chemical compound libraries
 - "classical" medicinal chemistry / bona fide crystal structure - derived
 - "docked" lead structures into model

TRIPEPTIDE COMBINATORIAL LIBRARY

X X X

Four amino acids in each position $4^3 = 64$

A = AlanineR = ArginineT = ThreonineW = Tryptophan

after R. Houghten, 1999

NUMBER OF PEPTIDES POSSIBLE WITH INCREASING LENGTH

Length	Peptide	Number
2	$Ac - OO - NH_2$	400
3	Ac – 000 – NH ₂	8,000
4	Ac – 0000 – NH ₂	160,000
5	Ac – 00000 – NH ₂	3,200,000
6	Ac – 000000 – NH ₂	64,000,000
7	Ac – 0000000 – NH ₂	1,280,000,000
8	Ac – 0000000 – NH ₂	25,600,000,000

O = Individual Defined Amino Acid

IC₅₀ OF MIXTURES

COMBINATORIAL LIBRARIES: THE MIXTURE QUESTION

	Natural Product Extracts	Synthetic Combinatorial Mixtures
Direct screening of compound mixtures	Yes	Yes
Discovery of highly active compounds	Yes	Yes
Equal concentrations of compounds	No	Yes
Chemical structures known	No	Yes
Synthetic pathway known	No	Yes
Structure – activity relationship known	No	Yes

NON-PEPTIDE "COMBINATORIAL" STRATEGIES COMBINE "SCAFFOLDS" (OR "BACKBONES") WITH "FUNCTIONAL GROUPS"

The Chemical Generation of Molecular Diversity from *http://www.netsci.org/Science/Combichem/feature01.html*

THE RULE OF FIVE

An awareness tool for discovery chemists: Compounds with two or more of the following characteristics are flagged as likely to have poor oral absorption

- * More than 5 H-bond donors
- * Molecular weight >500
- * c log P > 5
- * Sum of N's and O's (a rough measure of H-bond acceptors) > 10

Modern Drug Discovery January/February 1999 *Modern Drug Discovery,* **1999**, 2 *(1)*, 55-60. Copyright © 1999 by the American Chemical Society

COMBINATORIAL LIBRARIES OF BICYCLIC GUANIDINES FROM REDUCED ACYLATED DIPEPTIDES

after R. Houghten, 1999

BIOASSAYS (READY APPLICATION OF SOLUBLE LIBRARIES)

- * Soluble Acceptors
 - antibodies
 - enzymes
- * Membrane-bound Receptors
 - tissue homogenate
 - functional cell based
- * Microorganisms: Disruption of Function
 - bacteria
 - fungi
 - virus
- * Differentiation
 - stem cells
- * In Vivo

POSITIONAL SCANNING BICYCLIC GUANIDINE LIBRARY (κ RECEPTOR)

after R. Houghten, 1999

OUTLINE OF PRESENTATION

-Structure based design

-Biochemical Screen

-Cell-based Screen

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Lead for Transition to Early Trials

NMR-BASED SCREENING

- Screen "fragment" like molecules with "leadlike" properties (MW <300; ClogP ~1.5)
- 2. Characterize *binding* and portion of molecule to which they bind
- 3. Ligands with weak affinities can be defined ($\sim K_D = 5 \text{mM}$)
- 4. Lead to high affinity binders through iterative screening
- Can label protein of interest with isotopes "sensitive" to ligand effects (e.g. N15) and utilize proton resonances of drug to simultaneously allow definition of ligand and receptor binding sites

Hajduk et al, J Med Chem 48: 2518, 2005

BLEOMYCIN METAL & DNA BINDING DOMAINS

Sausville et al; Biochem 17: 2740, 1978

NMR AS MEANS OF DEFINING BINDING SITES 322 ppm E.G., BLEOMYCIN BIMDING **TO DNA** Ę 1.45 ppm 2.31 ppm 5 3 G ppm

FIGURE 7: ¹H NMR spectra of bleomycin at 100-MHz resolution. Each spectrum is an average of 512 scans. (A) With 6 mM bleomycin in D_2O at pD 8.4; (B) 6 mM bleomycin and 3.5 mM calf thymus DNA in D_2O , pD 8.4.

Horwitz et al, Biochemistry 16: 3641, 1977

BUILDING A DRUG LEAD

Successive iterations "build" more potent K_d

AFFINITIES OF

SELECTED BIARYL COMPOUNDS FOR BCL-XL

No.StructureNMR Kd (μ M)No.Structure1 $F \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc H$ 300 ± 30 11 $\bigcirc \bigcirc \bigcirc \bigcirc \to \bigcirc H$ 2 $\bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \oplus H$ 1200 ± 530 12 $H \circ \bigcirc \bigcirc \oplus H$	NMR K_d (μ M)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2	4300 ± 1600
	13000 ± 7000
3	5000 ± 2000
4 $\bigcirc - \bigcirc $	2000 + 440
5 С > 5000	2000 ± 440
	11000 ± 4800
$\begin{array}{c c} 6 \\ \hline & \hline & \hline \\ \hline \\$	13000 ± 4500
7 ⊘6 ^H 1990 ± 990 0H	9000 + 2000
8 $H_3C - C - C + C + C + C + C + C + C + C + $	9000 ± 2000
9 CHC CHC 238 + 110	4000 ± 2050
19 но-СС	6000 ± 1970
10 С С С 250 ± 139 20 С С он	6000 ±2000

Petros et al, J Med Chem 49: 656, 2006

SECTION FROM A 15N HSQC SPECTRUM OF BCL-XL IN THE PRESENCE AND

ABSENCE OF COMPOUND

alone (white) 2 mM biaryl acid 1 (cyan) 2 mM biaryl acid 1 and 5 mM naphthol derivative 11 (pink)

Petros et al, J Med Chem 49: 656, 2006

SUPERPOSITION OF SEVEN LOW-ENERGY STRUCTURES CALCULATED FOR

BCL-XL COMPLEXED TO 1 AND 11

Petros et al, J Med Chem 49: 656, 2006

THREE DIMENSIONAL VIEW OF GELDANAMYCIN BINDING POCKET IN AMINO TERMINUS OF HSP90

Stebbins et al, Cell 89:239, 1997

17-AAG BINDS TO HSP90 & SHARES IMPORTANT BIOLOGIC ACTIVITIES WITH GELDANAMYCIN

Schulte & Neckers, Cancer Chemother Pharmacol 42: 273, 1998

OUTLINE OF PRESENTATION

-Structure based design -*Biochemical Screen* -Cell-based Screen

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Lead for Transition to Early Trials

Cell cycle regulation by Cdc25 phosphatases

Regulation of Cell Cycle Progression by Cdc25: Cdk Activation

CDC25 Phosphatases and Cancer

- * CDC25A and B overexpressed in many cultured cancer cell lines.
- * Cdc25A suppresses apoptosis.
- * Overexpression of CDC25A or B has been detected in human breast, head and neck, cervical, skin, lymph, lung and gastric cancers.
- * Human CDC25A & B cooperated with Ha-Ras^{G12V} and CDC25A cooperated with Rb^{-/-} in the oncogenic focus transformation of mouse embryonic fibroblasts and tumor formation in nude mice. Thus, Cdc25A & B may be human oncogenes.

Method for identifying Cdc25 phosphatase inhibitors

GST-Cdc25 in assay buffer Fluorescein diphosphate Incubate 1h RT Read product (fluorescein monophosphate) on cytoflour II

Chemical Screening Approach

* Targeted Array Libraries* Diverse Chemical Libraries

MALDI-TOF ANALYSES Compound 5 binds tightly to the catalytic domain of Cdc25A

Lixia Pu

Compound Validation

- * Cellular: Cell Cycle
- * Biochemical: Substrate phosphorylation
- * Genetic: Chemical complementation

tsFT210 Cell System

Functional Cdk1

No functional Cdk1
Compound 5 causes G2/M arrest

OUTLINE OF PRESENTATION

-Structure based design

-Biochemical Screen

-Cell-based Screen

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Lead for Transition to Early Trials

C/EBP [alpha] AS A TARGET FOR DEVELOPMENT OF NOVEL CANCER THERAPEUTICS

* The transcription factor C/EBP α plays key roles in regulation of differentation of various cell lineages (adipocytes, keratinocytes, etc.)

* Mutations in CEBPA (the gene coding for C/EBP α) are associated with development of AML [t(8;21) - subtypes M1 and M2]

* CEBPA knock-out mice show no mature neutrophils

* Conditional expression of CEBPA is sufficient to trigger neutrophilic differentiation

* Pharmacologic modulators of CEBPA could act as differentiation inducers and thus limit proliferation of AML cells

CEBP Reporter Construct*

*Host cell for this construct is U-937

CEBPA Assay Timeline

*Sister plates processed for Alamar blue toxicity assay

C/EBPa Training Set: 1st Run compared to 2nd Run % Induction

Correlation Coefficient = .9265

C/EBP α Training Set 1 uM Results

^{*}Data averaged from two independent assays

C/EBPa Screen: % Concentration Response Graphs % Induction (relative to .625 uM retinoic acid induction) for seven select compounds

C/EBPa % Induction Dose Response Curves

NCI IN VITRO DRUG SCREEN

1985 Hypothesis:

- * Cell type specific agents
- * Activity in solid tumors

Emerging Realities:

* Unique patterns of activity, cut across cell types AND

- * Cell type selective patterns found
- * Correlations of compound activity
 - relate to molecular "target" expression
 - generate hypothesis re: molecular target

NCI IN VITRO CANCER CELL LINE SCREEN

60 cell lines

(8 breast, 2 prostate, 8 renal, 6 ovary, 7 colon, 6 brain, 9 lung, 8 melanoma, 6 hematopoietic)

48 hr exposure; protein stain O.D.

Log₁₀ of Sample Concentration (Molar)

PATTERN RECOGNITION ALGORITHM: COMPARE

- * Goal: COMPARE degree of similarity of a new
- * Calculate mean GI_{50} , TGI or LC_{50}
- * Display behavior of particular cell line as deflection

* Calculate Pearson correlation coefficient:

1 = identity; 0 = no correlation

AGENTS WITH SIMILAR MECHANISMS HAVE SIMILAR MEAN GRAPHS

THE COMPARE ALGORITHM Seed: Rubidazone

164011	1.000	Rubidazone
82151	0.921	Daunomycin
123127	0.915	Adriamycin
665934	0.891	Epipodophyllotoxin analogue
Discreet	0.880	Gyrase-To-TOPO analogue
Discreet	0.867	AMSA analogue
267469	0.865	Deoxydoxorubicin
305884	0.865	Acodazole HCL
665935	0.864	Epipodophyllotoxin analogue
668380	0.861	Azatoxin analogue
639659	0.854	Adriamycin analogue
644946	0.850	Epipodophyllotoxin analogue
254681	0.848	Daunomycin analogue
Discreet	0.847	Epipodophyllotoxin analogue
Discreet	0.843	Epipodophyllotoxin analogue
180510	0.842	Daunomycin analogue
Discreet	0.837	Epipodophyllotoxin analogue
Discreet	0.833	Gyrase-To-TOPO analogue

RELATIVE EGF RECEPTOR mRNA EXPRESSION

COMPARE ANALYSIS: EGF RECEPTOR

RANK	CORRELATION	CHEMICAL NAME
1	0.71	TGFα-PE40
2	0.66	Toxin-∆53L, MW=43K
7	0.57	EGFR Tyrosine Kinase Inhibitor
88	0.43	EGFR Tyrosine Kinase Inhibitor

40,421 COMPOUNDS IN THE NCI DATABASE

DRUG TARGET CLUSTERINGS REVEAL CLUES TO MECHANISM

L-Asparaginase/ASNS

Nature Genetics 24: 236, 2000; http://dtp.nci.nih.gov

WHAT TO DO AFTER THE LEAD COMPOUND IS IDENTIFIED?

- * If "empirical" lead, OPTIMIZE: schedule; formulation vs. biological effect after identifying a "predictive" model; ideally bring series of close analogs through pharmacology and perhaps early toxicology
- * If "*rational*" lead, capitalize on target-directed effects in optimizing process
- * IN EITHER CASE, KEY TASKS ARE: ACTIVITY; PHARMACOLOGY; FORMULATION; SAFETY TESTING

OUTLINE OF PRESENTATION

- * General Introduction
- * Definition of Drug Targets
- * Generating Diversity
- * Definition of Lead Structures
- * Qualifying Lead for Transition to Early Trials

GOALS OF PRECLINICAL DRUG STUDIES

Regulatory framework

- * IND = "Investigational New Drug" application = approval by FDA to conduct human studies; main criterion : SAFETY AND LIKELY REVERSIBLE TOXICITY = allows *start* of Phase I trials
- * NDA = "New Drug Application" = basis for sale to public; main criteria: SAFETY AND SOME MEASURE OF EFFICACY = result of Phase II/III trials

COMPONENTS OF AN IND

The goal of the pre-clinical process

- * "Form 1571"
- * Table of Contents
- * Intro Statement / Plan
- * Investigator Brochure
- * Clinical Protocol
- * Chemistry, Manufacture, Control

- * Pharmacology/ Toxicology
- * Prior Human Experience
- * Additional Info Data monitoring, Quality Assurance

OBJECTIVES OF PRECLINICAL PHARMACOLOGY STUDIES FOR ANTI-NEOPLASTIC DRUGS

- Development of Sensitive Analytical Methods for Drugs in Biological Fluids & Tissues
- * Determine In Vitro Stability and Protein Binding
- * Determine Pharmacokinetics in Rodents (& Dogs)
- * Identification and Analysis of Metabolites
- * Define Optimal Dose Schedule and Blood Sampling Times
- * Define C_P and/or AUC with Efficacy, Safety & Toxicity
- * Analog Evaluation Determine Optimal Development Candidate

OBJECTIVES OF PRECLINICAL TOXICOLOGY STUDIES

- * DETERMINE IN APPROPRIATE ANIMAL MODELS:
 - The Maximum Tolerated Dose (MTD)
 - Dose Limiting Toxicities (DLT)
 - Schedule-Dependent Toxicity
 - Reversibility of Adverse Effects
 - A Safe Clinical Starting Dose

FDA PRECLINICAL PHARMACOLOGY & TOXICOLOGY REQUIREMENTS: ONCOLOGY RX

* DRUGS

- Two Species Rodent & Non-rodent
- Clinical Route & Schedule
 - Follow NCI Guidelines
- Pharmacokinetics Optional

* **BIOLOGICALS**

- Most Relevant Species
- Clinical Route & Schedule

CORRELATION BETWEEN 20S PROTEASOME INHIBITORY POTENCY & GROWTH INHIBITION FOR 13 DIPEPTIDE BORONIC ACIDS

Adams et al, Cancer Res 59:2615, 1999

EFFECT OF PS-341 ON PC-3 TUMOR GROWTH IN MICE

Adams et al, Cancer Res 59:2615, 1999

EFFECT OF PS-341 ON 20S PROTEASOME ACTIVITY

Mouse WBC

PC-3

Adams et al, Cancer Res 59:2615, 1999

PS-341: INTERSPECIES DOSE RELATIONSHIP

Q:	Is	the	'safe'	dose	in	animals	in	the	efficacy
range for man?									

Species	Dose (mg/kg)	Dose (mg/m²)	% 20S Proteasome Inhibition*
Mouse	1.0	3.0	80
Rat	0.25	1.5	80
NHP	0.067	0.8	70

*In white blood cells at 1.0 h, post

Ref: Adams, et al, Cancer Res <u>59</u>:2615, 1999

Ex Vivo Proteasome Activity: 1 Hour Post Treatment

ACKNOWLEDGEMENTS

NCI

J. Tomaszewski M. Alley M. Hollingshead / S. Stinson J. Johnson A. Monks / N. Scudiero S. Bates D. Zaharevitz / R. Gussio S. Decker R. Shoemaker / M. Currens

J. Adams *Millenium* J. Lazo *U. Pittsburgh*