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ABSTRACT

A general formalism of quantised charge transfer polarisation waves has been developed. The

nature of possible superconductive pairing, between oxygen holes is discussed. Unlike optical
phonons these polarisation fields will give rise to dielectric bipolarons or bipolaron bubbles. In the
weak coupling limit a new class of superconductivity is to be expected.

INTRODUCTION

The relevance of charge transfer excitation to superconductivity was first pointed out by

Varrna (1) et al. The idea of such a local short range interaction has since been extended to a variety of

charge transfer excitations (2) in the high Tc oxides. This paper has its inspiration in the idea of

polarisation waves that goes back to Hopfield (3) and revived recently by Aschcroft (4) with respect to

the high Tc oxides. The basic notion of long range, dipole-dipole interaction giving rise to a collective
and quantised charge transfer wave is the key ingredient. Some of the detailed calculations are

presented elsewhere (5).

A - POLARISATION WAVE FORMALISM

We want to make essential points clear. In the Hartree-Fock approximation, the state of an
Unit Cell of CuO2 square is a Slater determinant of the occupied lowest energy orbital states.

Consider an excitation ¢xcorresponding to moving one electron from a ground state to an excited state

orbital costing an energy a. Figure 1 gives the relevant energy levels (6) ; figure la shows the charge

transfer insulator gap energy Eg for zero-doping, while the arrows in figure lb indicate the charge

transfer excitation energy cog to the Fermi level on p-type doping (1 signifying a ligand hole or 2p 5

configuration).
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Figure 1a. Energy band--updoped material

Figure lb. Energy band--doped material
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+ theoperatortodescribethisexcitation,whichcanbewrittenin termsof theWedefinebyba

operator an of the electronic state

+ + (1)
b a = am an

We approximate Hamiltonian of a single cell by

+

H = E s + _E_ coa betba (2)
a

Eg : ground state energy

Define a dipole matrix element

f .I.t (a) = d3 r *m (r) x 0n (r) (3)

differ by one unit of angular momentum. Introduce theWhere the two orbitals On and 0m

polarisation operator in the vector direction x for the unit cell by

,,F

Px = e_E_l'tx(C0 Coet + bet) (4)
et

This operator has the units of polarisation, which is charge times length - analogous to the
1

displacement operator for a harmonic oscillator, which has the unit of length- (2m-_) _. we use the

symbol Gxy (ico) to denote the denote the retarded correlation function of the P operator with itself by

0 fore i_a'_ (T x Px('¢) Py(O)_ dx (5)Gxy(iO)) = -

It is easily evaluated for the non interacting Hamiltonian (2).

G°(ico) = _E_2e2
P.xl_y _et
2 2 (6)

et (ico) - coet

The quantity -G O (ico)isactuallythe polarisabilityct0(ico)of the unitcell.

Assuming isotropy
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2

a(ico) = 2e 2 _ p (a)coa
2 2 (7)

a coa- (i co)

So far our discussion has been confined to the properties of a single unit cell CuO2. However
when one excites dipoles in a cell i, it has long.range dipole.dipole interaction with dipoles of
the cell j, given by

H'= X i . ¢_(a i - Rj). Xj (8)

Vv'here :

8x.....2y3 R x Ry (8a)

¢_y(R) = R 3 R3

Defining a Fourier transform

_'_0 Z*xy (RI) exp i k . R I
Txy(k) = 4_ I

(8b)

We get the resultant Hamiltonian in the k-space as

H=Es+Zcoab:kbak+_ " Z Va_ + b+

a.k k.al3

wh_e:

4_e2 Zpx(a) Txy(k ) }.ty (_)
Vals(k)= f_--'-_,_y

(9b)

Thus the Dyson equation for the correlation funcdon is the matrix equation

0 4g Z G0xx, (k, i co) Tx.y. (k) Gy y. (k, i co)
Gxy(k, i CO)= Gxy(k, i(O) +'_'0 x'y'

(10)

Solution of this equation will give us the c011ective excitation wave, that we have called charge
transfer polarisation waves. In a cubic symmetry, it is solved to give

4_a ]

Gxy - a Spy "_0 kxky. (11)

X'"_oa (l+_..oa) k2 J
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0
The quantity-Gxy is the static polarisability of the solid, just as - Gxy is the static

polarisability of the unit cell. This gives us the dielectric function at long wave-length which has the
Lorentz-Lorentz form

e (o_) --

8g
I + _ a (k,_)

_s_0

4x (12)
1 - -- ¢_(k,00)

3f2o

The pole and zero of the dielectric function gives us the transverse and longitudinal charge
transfer polarisation waves respectively.

f.0t --- _-

2
(13)

B - THE GAP EQUATION

Interaction between two carriers due to the longitudinal charge transfer waves is given by

4 _ e 2 (14)
V (q,(0) = q2 _(q,o3)

Where e(q,o)) is the dielec_c constant as shown in fig (2), for a finite value of o_.

k.J

_J

E( LJ )i_

Fig. (2) - Long wave length
diezectric constant E(w)

/ I
I

!
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We see immediately that excitations up to co = cot has repulsive interactions between

two carriers and is attractive between cot and col. A B.C.S. like gap nonetheless appears at the
Fermi Surface. The gap equation is given by

A (_) =
(15)

We can mimic the repulsive interaction at frequencies 0 < co < cot and an attractive interaction

between cot < co < col, by two piecewise constant Kernels

k(_,_') = Xx 0 < L_'< coi

= - X2 col < _,_' < co2 (16)

We also assume two energy gaps

?` (_) = ?`1 0 < _ < col

=?`2 C-Ol< _ < 0>2

The gap equation is easily solved to give these two gaps ?'I and ?`2.

We have
1

kTc = 1.14 col exp - _--

1 x2g- 1
where _-- =

7t D

(17)

(17a)

With g = In co'2
col

andD= _,I " _2 g

For _-- = 6, _.1 = 0.5, _.2 = 0.76 and hO)l = 0.5 eV, we obtain a Tc "--300 ° k.
o)1 _.1

The same formalism will apply for optical phonons. Using h COl = 0.1 eV,

c.o2"__2.25 (corresponding to e0 = 5), _-1 = 0.3, _-2= 0.7 gives a _ = 0.6 and a zero temperature gap
col Eoo

?`1 = 36 m eV. We thus see that a dipole lattice or a Lorentz lattice in general can give rise to a
B.C.S. kind of pairing and an energy gap at the Fermi surface, inspite of a net repulsive interaction in
the small frequency range, and the most general solution admits at least more than one energy gap (A2
> AI).
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C - DIELETRIC POLARONS AND BIPOLARONS

The interaction of the carriers with the longitudianl polarisation field gives rise to polarons

(Feynmann (73). Will it give rise to bipolarons ? The literature is quite scarce on the subject. While the
answer is quite affirmative with the acoustic bipolarons, it seems to be less so with its optical
counterpart. Early (8) calculations seemed to indicate that for a favorable range of the dielectric

constant ratios (tO N 10 - 20) we may be able to have a dielectric bipolaron. More recent path (9)

integral calculations put this ratio even higher. What is certain (10) is that if the carrier behaves like a
localized classical charge (i.e its interaction with polarisation field is recoil less), the phonon-mediated

e2
interaction will at best reduce the coulomb repulsion between the two charges form _ to e2 but

Eoo r E0 r

does not lead to any attraction. We can see from figure lb, that as the p-type doping is increased,

there is an increasing component of low energy excitation COg(COggoing down with _F) such that we

expect COt --> O, at some critical doping value xc, given by equation (13). With the longitudinal

frequency COl_ 4_ tip and because of the collapse of the Lorentz lattice, we can have the whole

frequency range up to COlwhere the dielectric constant is negative. This low frequency attraction will
give instantaneous local interaction between carriers, giving rise to (fig. 4b) dielectric
bipolarons or bipolaron bubble (if its energy is embedded in the continuum of 1-particle states).
We can model the effective Hamiltonian by

+ + +

Heft = _ £k Ck Ck " V _ Ckc Ck, c, Ck,cr, Cko (18)

This Hamiltonian is strikingly different form the B.C.S Hamiltonian in not having the co-cut

off and its general behavior pattern has been indicated (11). In the usual weak-coupling approximation

and when the dielectric bipolaron interaction energy V << EF, the superconductivity gap equation has

been solved (5) to give

EF
A = 8CF exp --- (19)

ec

Where ec is an energy cut-off.

It is necessary to recall the essential ingredients leading to the equation (18) signifying

an instantaneous attractive interaction V between two carriers.

We can define two key dimensionless parameters in the pairing scenarios.

- The dimensionless coupling constant

_. = V (20a)
EF

- Antiadiabaticity parameter

"_co

= "_F (20b)
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Signifyingratioof bosonfrequencytotheFermienergy.

Thereareseveralinterestingdifferencesof theelectronicpropertiesin thenormalstate
betweentheadiabatic(y<< I) andtheantiadiabatic(7>> 1)regime.Thesedifferences(12)are

shownschematicallyin figure(3a)and(3b),aswellasin fig.(4a)and(4b).

m

(a) The effective mass ratio _ is exponentially large (Holstein factor) around

7 = 1 (_. < 1) but is completely unrenormalised in the antiadiabatic limit (5) (fig. 3a).

(b) The electron life time x at the Fermi surface is quite different in the two regimes, In the
i T 2

adiabatic regime - << kT ~ El:--'which gives the usual metallic conductivity. In the

1
antiadiabatic regime - >> kT (fig. 3b) and is conjectured to be _ T, if it behaves as a marginal

Fermi liquid (13).

(c) In the adiabatic regime, the usual electron-phonon interaction (fig. 4a) gives the

retarded non local attraction between electron-pairs. In the antiadiabatic regime the attraction

is expected to be instantaneous and local (fig. 4b), forming a real-space electron-pair or a

dielectric blpolaron bubble. The resulfirlg normal and superconducting properties are

bound to be different from the classical B.C.S. behavior.

In the B.C.S. behavior

kTc 1
E"_" = _t exp - _ (21a)

In the other limit, y >> 1

kTc _ exp 1
EF - _- (21 b)

In summary, we can say that presence of high frequency bosons ('ho > El:) will lead to

quasiparticules which are dielectric polarons with properties in the normal and superconducting

states quite different from usual metals.
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Fig. 3a
Fig. (3a) - Effective mass of carriers as function of _ = ____W

EF

or antiadiabaticity.
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Fig. 3b

Fig. (3b) - A carrier life tlmeTas function of temperature
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Fig. 4a
Fig, (4a) - Electron-electron interaction in the adiabatic regime
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Fig. (4b) - Electron-electron interaction in the antiadiabatic regime
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