Pineal-Specific Expression of Green Fluorescent Protein Under the Control of the Serotonin-N-Acetyltransferase Gene Regulatory Regions in Transgenic Zebrafish

YOAV GOTHILF,¹ REIKO TOYAMA,² STEVEN L. COON,³ SHAO-JUN DU,⁴ IGOR B. DAWID,² and DAVID C. KLEIN^{3*}

¹Department of Zoology, George S. Wise Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel

²Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland

³Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland

⁴Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland

ABSTRACT Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissuespecific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with *mindbomb* and *floating head* mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.*

Key words: pineal gland; zebrafish embryo; serotonin-N-acetyltransferase; transgenic fish; green fluorescent protein; *mindbomb*; *floating head*

INTRODUCTION

The pineal gland (epiphysis) is an unpaired brain structure, located above the third ventricle. It transduces photoperiodic information into physiological changes through rhythmic production and secretion of melatonin. In all cases, high levels of melatonin occur at night, making melatonin "the hormone of the night" (Arendt, 1995). This night/day signal is thought to synchronize other circadian rhythms and to modulate photoperiodic regulation of seasonal physiological rhythms (Arendt, 1995). Another site of melatonin production is the retina, where melatonin is thought to play a local paracrine role.

The daily rhythm in melatonin production is generated by serotonin-N-acetyltransferase (AANAT). The increased production of melatonin during the night reflects increased AANAT activity; rapid cessation of melatonin production by light is due to proteasomal degradation of the enzyme (Gastel et al., 1998; Falcon et al., 2001). In addition to this highly conserved posttranslational mode of regulation, transcriptional regulation occurs in some species, in which AANAT mRNA levels increase 10- to >100-fold at night (Roseboom et al., 1996; Klein et al., 1997). In rodents, this process is driven by the circadian clock in the suprachiasmatic nucleus. In fish, and other nonmammalian vertebrates, the rhythm in AANAT mRNA is driven by a circadian clock located within the photoreceptor cells of the pineal gland (Bernard et al., 1997; Bégay et al., 1998). Studies in the chicken indicate this involves an E-box regulatory site (Chong et al., 2000), which is known to mediate expression of clock-controlled genes (Reppert and Weaver, 2001).

Drs. Gothilf and Toyama have contributed equally to this study. The nucleotide sequence reported in this article has been submitted to GenBank with accession no. AF494081.

^{*}Correspondence to: David C. Klein, Section on Neuroendocrinology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health 49/5A38, 49 Convent Drive, Bethesda, Maryland 20892-4480. E-mail: klein@helix.nih.gov

Received 13 May 2002; Accepted 24 July 2002 DOI 10.1002/dvdy.10152

AANAT is encoded by a single gene in most vertebrates. However, fish contain two AANAT genes, AANAT-1 and AANAT-2, which are differentially expressed in the retina and pineal gland, respectively (Coon et al., 1999; Benyassi et al., 2000). Developmental studies in the zebrafish (Danio rerio, zf) embryo indicate that zfAANAT-2 mRNA is first detected in the pineal gland (epiphysis) 22 hours postfertilization (hpf). A clockcontrolled, circadian rhythm in zfAANAT-2 mRNA levels begins 2 days postfertilization (dpf; Gothilf et al., 1999; Gamse et al., 2002). During the third day of development, zfAANAT-2 mRNA expression in the primordium of the parapineal can be transiently detected rostral to the pineal (Gothilf et al., 1999). At the fourth day of development, this structure disappears and a new zfAANAT-2 and opsin expression domain is situated unilaterally to the pineal (Concha et al., 2000; Gamse et al., 2002). This pattern of development of the pineal complex was first described in a salmonid more than 100 years ago (Hill, 1891) and was found in other fish species (McNutly, 1984). In contrast to the developmental pattern of expression in the pineal complex, retinal zfAANAT-2 mRNA expression is first detected on day 3 postfertilization, apparently in association with retinal photoreceptor development. These tissuespecific and temporal patterns of zfAANAT-2 expression make it an attractive model for studying the molecular basis of these characteristics of gene expression.

Here, we describe transgenic zebrafish lines that exhibit pineal gland-specific green fluorescent protein (GFP) expression under the control of the zfAANAT-2 gene regulatory regions. We demonstrate that these lines have potential utility in studying the development of pineal photoreceptor cells and identifying mutations that alter pineal development.

RESULTS

Organization of the Zebrafish AANAT-2 Gene

Two λ clones, zf6 and zf7B, were isolated from a zebrafish genomic library. Restriction enzyme mapping and nucleotide sequence analysis indicate that the two clones code for the zfAANAT-2 gene. Clone zf6 contains 1.65 kb of 5'-flanking region, the entire coding region, composed of three exons and two introns, and approximately 9 kb of 3'-flanking region. Clone zf7B contains approximately 7 kb of 5'-flanking region, the first two exons and part of the second intron (Fig. 1).

The organization of the AANAT genes isolated from chicken and mammals is conserved (Klein et al., 1997). These genes are composed of four exons and three introns. The first intron is within the 5' untranslated region (UTR) and the other two introns interrupt the coding region at conserved locations. The zfAANAT-2 gene is composed of three exons and two introns that interrupt the coding region at the conserved sites but does not have an intron in the 5' UTR. The absence of this intron may characterize fish AANAT genes (Coon et al., 1999).

Fig. 1. Organization of zfAANAT-2 genomic clones and promoterreporter constructs. Lines represent introns or flanking regions, white bars and black bars represent untranslated regions and coding regions, respectively. Gray boxes represent green fluorescent protein (GFP) coding regions. Dotted lines represent deletions. Clones and constructs are shown from top to bottom in the order they appear in the Results section. The plus and minus symbols on the right indicate whether the construct did (+) or did not (-) drive pineal-specific expression of the reporter.

Promoter Region

By using 5' rapid amplification of cDNA ends (RACE), RNAse protection assay and primer extension, the transcription start site was determined to be adenosine, situated 123 bp upstream of the first ATG start codon. The zfAANAT-2 gene has a TATA-less promoter, and the transcription start site with its surrounding bases are similar to the Initiator element (Inr; Chalkley and Verrijzer, 1999) (Fig. 2). The area -215 to -15 is characteristic of a CpG island. Computer analysis of the 5'-flanking region (Fig. 2) revealed the presence of numerous sequence elements in close proximity to the start site that may bind known transcription factors and stabilize or destabilize transcription initiation. Of particular interest are the E-box centered at position -87 from the transcription start site and an adjacent DeltaE binding site centered at -94 (Yasui et al., 1998). Computer analysis also identified two binding sites for the rod cone and orthodenticle homeobox proteins (CRX/OTX) (Li et al., 1998) at positions -283 and -353 and for the ubiquitous zinc finger transcription factor SP1 (Kadonaga et al., 1987) centered at position -60. Interestingly, a novel stretch of 18 bp at position -9 to -26 is also present in the chicken AANAT promoter, upstream on the opposite strand. More distal, an imperfect cAMP-responsive element (Benbrook and Jones, 1994) is located at position -1405.

Transient Expression of Promoter-Reporter Constructs

DNA of λ clones zf6 and zf7B and mouse AANAT λ clone (Roseboom et al., 1998), as a control, were microinjected into the cytoplasm of one- or two-cell stage zebrafish embryos. Embryos were collected at 36 hpf and zfAANAT-2 mRNA was detected by whole-mount in situ hybridization (ISH). A very strong and specific

AGTTCGTTAA TTGAGGATGC TGGGCTGCCT GCAAACAGAT CATTAGAGTA -1551 GTCCAGCCTA GAAGTCATAA AAGTATTGAC TAACTTGGAG CACCATCGCC -1051 TGTTAAAATC TATCCTAGAG TGCCACGGCC TGTTAAAAAC TGGCATAGCC -1451 TAGAGCGCCA TCTGCTGTTA AAAGCTAGCC TAGATAGCC TTTTTGTTA -1401 AAAACTAGCC TATCCACACA TCTGCTGGTA AAACTAAAC TGGCATAGAC -1301 TAAGGTAGCC CAGAACCACA TCTGCTGTAA AAACTAGCC -1011 GGATTGCCAT CTGCTGTTAA AAACTAGGC ACGACACTGC -1011 GGATTGCCAT CTGCTGTAA AAACCAAGGT TAGCAAGAGC -1011 GGATTGCCAT CTGCTGTAA AAACCAAGGT TGGCCAGAGC -1011 GGATTGCCAT CTGCTGTAA AAACCAAGGT TGCCAGAGC ACAAAGTACC -1011 GGATTGCCAT TGGCTGGTA AAACCAAGGT TGCCAGAGC ACACAAGGT -1011 TGGATAAAAC TAGAGTAGCC TAGAGCACAG TGCCAGAGC ACACAAGT -1011 TCGGTAAAAC TAGAGCAGCA TGGCCAGG GCACAAGAGT	ATTTTCTAGA	CCTGGTAAGA	ACTCTGGCAG	CTGCATTTTG	TACTAATTGA	-1601	
GTCCAGCCTA GAAGTCATAA AAGTATTGAC TAACTTGGAG CACCATCTGC -1501 TGTTAAAAAC TATCCTAGAG TGCCACGTGC TGTTAAAAAC TGGCATAGCC -1401 AAAACTAGCC TAATGCACCA TCTGCTAGTA AAACTAGCC TAGCTAGAA -1351 CACCATCTGG TGGTAAAAAC TAACCTAGAC TGCCACGTG TGTTAAAAAC -1301 AAACTAGCC TAAGCTAGCA TCTGCTGTA AAACTAGCCA -1201 AAGGTAGCC TAGCTAGAC TGCCACGTG GGCATGCACA -1201 GGATGCCAT CGGCTGGTA AAACTAGCCA TCGCCAGACC -1201 GGATAGCCAT CGGCTGGTA AAACTAGCCA -1001 GGATGCCAT CGGCTGGTAA AAACTAACCA -1011 GGATGCCAT CGGCTGGTAA AAACTAACCA -1011 GGATGCCAT CGGCTGGTAA AAACTAACCA -1011 TGGATAAAAC TAGGAGCCAT TGCCAGAGC ACACAAGTC -1011 TGGATAAAAC TAGGAGACCCA TGCCCTGCAT AAAACTAACC -1011 TGGATAAAAC TAGGAGACCCA TGCCCTGCTGT AAAACTAACC -901 CCTGGATAGC <td>AGTTCGTTAA</td> <td>TTGAGGATGC</td> <td>TGGGCTGCCT</td> <td>GCAAACAGAT</td> <td>CATTAGAGTA</td> <td>-1551</td>	AGTTCGTTAA	TTGAGGATGC	TGGGCTGCCT	GCAAACAGAT	CATTAGAGTA	-1551	
TGTTAAAAAC TATCCTAGAG TGCCACGTGC TGTTAAAAAC TGGCATAGCC -1451 TAGAGCGCCA TCTGCTGTTA AAAGCTAGCC TAGATGCACA TTTGTTTGTT -1401 AAAACTAGCC TAATGCACCA TCTGCTAGTA AAAACTAAGG TAGCCTAGAA -1351 CACCATCTGG TGGTAAAAAC TAACTAGCACA TCTGGTGGTA AAACTATAGC TGCCACTTG TGTAAAAAC -1201 TAAGGTAGCC CAGAACGCCA TCTGGTGGTA AAACTAAGCT TAGGCATAAAC -1201 GGATTGCCAT CTGCTGTTAA AAACTATGGT GGCCAGGCA ACCGCGCATCTGCCGTTA AAACTAACCT -1101 GGATTGCCAT CTGCTGTTAA AAACTAGCG TAGCCAAGCA -0101 TTGGTAAAAC -001 TTGGTAAAAC -001 TTGGTAAAAC -001 TTGGTAAAAC AACTAGCGCA CCTGCTGT AAAACTAACC -001 TGGATAGCC AGGTAGCCA TGGCTGGTT AAACAAGGTA CCTGGTGTA AAAACTAACC -851 TGGTAAAAA ACTAGGTAGC TAGAGCACAG TGTGCTGATA AAACTAACCA -701 CTGGTGAAAA ACTAGAGTAGC TAGAGCCAGC CTTGCTGTA AAAACTAACC -801 <t< td=""><td>GTCCAGCCTA</td><td>GAAGTCATAA</td><td>AAGTATTGAC</td><td>TAACTTGGAG</td><td>CACCATCTGC</td><td>-1501</td></t<>	GTCCAGCCTA	GAAGTCATAA	AAGTATTGAC	TAACTTGGAG	CACCATCTGC	-1501	
CREBP1 TAGAGCGCCA TCTGCTGTTA AAAGCTAGC TAGACACA TTT <u>TTATGTTA</u> -1401 AAAACTAGCC TAATGCACCA TCTGCTGAGTA AAAACTAAG TAGCCTAGAA -1351 CACCATCTGG TGGTAAAAAC TAGCTAGAC TCGCCAGTA AAACTAACG TGGTAAAAAC -1301 TAAGGTAGCC CAGAACGCCA TCTGGTGGTA AAACTAACT TGAAAACCA -1251 TTTCTGTTA AAACTAGTC AGAGCACCAT CTGCCAGTAA AAACTAACCT -1201 GGATTGCCAT CTGCTGTTAA AAACTAAGGT GGCCTAGAGC ACCAAGTTC -1151 GGATAGCCAT CTGCTGTTAA AAACCAAGTG TGGCCATAGAC CACAAGTTC -1101 GGATTGCCAT CTGCTGTTAA AAACCAGGT GTAGCCTAGAGC CACAAGTC -1001 TGGGAAAAAC TAGAGAGTAG CAGAGGCG AGCCAAGGT GTGAGCCTAG AGCAACAAGT -951 TCTGGATAAA CTAGAGTGAC TAGAGCCCCA TCTGCTGTA AAAACTAAC -001 TGGGAAAAAC TAGAGATAG CAGAGTG TAAAAACCAG TGGCCAGAG GCAACAAGT -551 TGGGAATAAC CAGAGTAG CACAGGCG ATCTGCTGTA AAAACTAAC -801 TGGAAAAAC TAGAGTAG CATAGAGCG CATCGCGTA TAAAACTAAC -701 CTGGATTGCC ATCTGCTGTT AAAACCAGT GTAGCCTAGA GCAACAAGT -551 TGGGATAGCC ATCTGCTGTT AAAAACCAG TGTGAGCTAG AGCAACAAGT -501 AGGACCAAAT CAGAGTAG CCTAGAGCC CATCTGCTGT AAAAACTAAC -701 CTGGATAGC AACTAGAGTAG CCTAGAGCA CACTGCTGT AAAAACTAAC -501 AGCTCAGAGTAG CATCGAGGAG CCTAGAGCA CCACTCGCGTG TAAAAACTAA -501 AGCTACAGATG CATCGCGTGT TAAAAACCAA GTGATGCCTA TAGAGTGTTC -401 CCTGGATGC CATCTGCTGCTG TAAAACCAG TCGCGCGGTGAAAACTA -501 AGCTACAGAGTAG CATGAGGAG CATAGAGCA CCACTCGCGG TGAAAACTA - 5	TGTTAAAATC	TATCCTAGAG	TGCCACGTGC	TGTTAAAAAC	TGGCATAGCC	-1451	
TAGAGCGCCA TCTGCTGTTA AAAGCTAGCC TAGAATGCCA TTTTTGTTA -1401 AAAACTAGCC TAATGCACCA TCTGCTAGTA AAAACTAAAG TAGCCTAGAA -1301 TAAGGTAGCC TAGGTAGTA TAACCTAGAC TGCCACCTG TGTTAAAAAC -1301 TAAGGTAGTC CAGAACGCCA TCTGGTGGTA AAACTAACT TGGAATCTCA -1251 TTTTCTGTTA AAACTAGCT AGAGCACCAT CTGCCAGTAA AAACTAACCT -1001 GGATTGCCAT CTGCTGTTAA AAACTAGGT GGCCTAGAGC ACCAAGTTC -1011 GGATAGCAT CTGCTGTTAA AAACCAAGTG TAGCCTAGAG CAACAAGTC -1001 GGATAGCCA TCTGCTGTTAA AAACCAAGTG TGCCCTAGAG CAACAAGTC -1011 GGATTGCCAT CTGCTGTTAA AAACCAAGTG TGCCCTAGA GCAACAAGTC -1011 TGGATAAAAC TAGAGTAGCC TAGAGCGCA TCTGCTGTT AAAAACTAAC -001 TCTGGTAAAAA CTAGAGTAG CCTAGAGCGC ATGCGCTAG AGCAACAGT -951 TCTGGTAAAAA CTAGAGTAGC TAGAGCGCC ATCTGCTGT TAAAAACTAA -901 CCTGGATTGC CATCTGCTGT TAAAAACCAG TGGCCTAGA GCAACAAGT -851 TGGGATAGCC ATCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGT -751 CTGGTAAAAA CTAGAGTAGC CTAGAGCGC ATCTGCTGT TAAAAACTAA -901 CTGGTAAAAA CTAGAGTAG CCTAGAGCG ACTCTGCTGT TAAAAACTAA -701 CTGGATAGCA ATCTGCTGTTA AAAACCAAG TGTAGCCAA GACAAGAT -751 CTGGTAAAAA CTAGAGTAG CCTAGAGCGC ATCTGCTGT TAAAAACTAA -601 CCTGGATGCC ATCTGCTGTTA AAAACCAAG TGTAGCCAA GACAAGAT -501					CREBP1		
AAAACTAGCC TAATGCACCA TCTGCTAGTA AAAACTAAAG TAGCTAGAA -1351 CACCATCTGG TGGTAAAAAC TAACCTAGAC TGCCACCTG TGTTAAAAAC -1301 TAAGGTAGTC CAGAAGCGCA TCTGGTGGTA AAACTAACT TGTTAAAAACTA CTGGTAGTA CAGGTAGTC AGAGCACCAT CTGCCAGTA AAACTAACCT -1201 GGATTGCCAT CTGCTGTTAA AAACTAGGT GGCCTAGAGC ACCAAGTTCT -1151 GGTAAAAACT AGAGTAGCC AGAGCGCCAT CTGCCTGTAA AAACTAACCT -1101 GGATTGCCAT CTGCTGTTAA AAACCAAGTG TAGCCTAGAG CACAAGTTC -1001 TTGGATAGCC ATGTCGTGTTAA AAACCAAGGT TAGCCTAGAG CACAAGTTC -1001 TTGGATAGCC ATGTCGTGTT AAAACCAAGT GTGAGCCTAG AGCAACAAGT -901 CCTGGATAGC CATGTGCTGT TAAAAACCAAG TGTGGCTGT TAAAAACTAAC -901 CCTGGATAGC CATGTGCTGT TAAAAACCAG TGTGCCTGT TAAAAACTAAC -901 CCTGGATAGC CATGTGCTGT TAAAAACCAG TGTGCCTAGA GCAACAAGT -951 TGGGTAAAAAC TAGAGTAGC TAGAGCGCC ATCTGCTGTT AAAACTAAC -901 CCGGGATTGC CATCTGCTGTT AAAAACCAG TGTGGCTAGA GCAACAAGT -551 TGGGTAAAAAC TAGAGTAGC CTAGAGCGCC ATCTGCTGTT AAAAACTAAC -701 CGGGATTGCC ATCTGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -551 TCTGGTAAAA CTAGAGTAG CCTAGAGCGC CATCTGCTGT TAAAAACTAA -601 CCTGGATTGCC ATCTGCTGT TAAAAACCAAG TGTAGCCTAG AGCAACAAGT -551 TCTGGTAAAA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATTGC CATCTGCTGT TAAAAACCAAG TGTAGCCTAG AGCAACAAGT -551 AGCTCAGAAT CAATGAGTAG GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 AGCTCAGAAT CAATGCAGTG GACAAGAGA GTGTAGCCTA GAGCAACAAGT -501 AGCTCAGAAT CAATGCAGTG GACTAGGGA CCATCTGCTG TAAAAACTAA -501 AGCTCAGAAT CAATGCAAGTA GCTACAGCA CCATCTGCTG TAAAAACTAA -501 AGCTCAGAAT CAATGTAGAT GCTATAGGA CTATTGTCC AGACTAGC -451 AGAAGCAATT CTCAAATGT GTATTTGCC ACAGCTACA TGGCAACAAGG -551 TTCTGGTAAA AACTAAGATT GCATAGGGA CTATAACACT TCTGTTAATT -401 AGCTCAGGAAT CAATGCAGG GACTGCTTA ACCAGCGCA AGCTTTCTC -201 GGCTGGACAA AAGCTTTCG GTAGGTGGA CATGACATG TGGAACTGC -251 AGAAGCAAGA CAAGGTTT CAGCTGCACA ACCTTCTCT -201 GGCTGGACAA AAGCATTCC GTAGGTGCTT ACCAGCGCAA AGCTTTCTCT -201 GGCTGGACAA AAGCATTCC GGTAAGGCT AGCCGGGACGGA AGCTTCCT -101 DeltaE E-Box SP-1 TCTT <u>CACCTG GCACCTTCA CCCCCCCACGA AGCTTCCTC -101</u>	TAGAGCGCCA	TCTGCTGTTA	AAAGCTAGCC	TAGAATGCCA	TTTTATGTTA	-1401	
CACCATCTGG TGGTAAAAC TAACCTAGAC TGCCACCTTG TGTTAAAAC -1301 TAAGGTAGTC CAGAACGCCA TCTGGTGGTA AAACCTAGTC TAGAATCTAAC -1201 GGATTGCCAT CTGCTGTTAA AAACTATGGT GGCCTAGAGC ACCAAGTTCT -1101 GGATTGCCAT CTGCTGTTAA AAACTATGGT GGCCTAGAGC ACCAAGTTCT -1101 GGATTGCCAT CTGCTGTTAA AAACTATGGT GGCCTAGAGC ACCAAGTTCT -1101 GGATTGCCAT CTGCTGTTAA AAACCAAGTG TAGCCTAGAG CAACAAGTTC -1001 TGGTAAAACT TAGAGTAGCC TAGAGCGCCA TGCCCTGCT AAAACTAACCT -1001 TTGGTAAAAAC TAGAGTAGCC TAGAGCGCC ATGCCCTGCT AAAACTAACC -001 TTGGTAAAAAC TAGAGTAGCC TAGAGCGCC CATCTGCTGT TAAAAACTAAC -901 CCTGGATGCC ATGTGCTGTT AAAACCAGG TGTAGCCTAGA GCAACAAGTT -851 TGGTAAAAAC TAGAGTAGC TAGAGCGCC ATCTGCTGTT AAAAACTAAC -801 TGGATAGCC ATGTGCTGT TAAAAACCAG TGTAGCCTAGA GCAACAAGT -751 CTGGTAAAA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTT AAAAACTAAC -801 TGGATTGCC ATCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGT -751 CTGGATAGC ATCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGT -751 CTGGATAAA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAAC -701 CTGGATTGC CATCTGCTGT TAAAAACCAAG TGTAGCCTAG AGCAACAAGT -551 CCTGGATAAA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAAC -601 CCTGGATTGC CATCTGCTGT TAAAAACCAAG TGTAGCCTAG AGCAACAAGT -501 AGCTCAGAAT CAATTCAAGA GAGCAGTTG ATATTTTCA GAAGTACA -501 AGCTCAGAAT CAATTCAAGA GAGCAGTTG ATATTTTCA GAAGTAGC -451 AGAAGCAATT CCTCAATGT GTATTTGCC ACAGCTCAT AGAGTGTCT -401 CRX/0TX ATTTTTTGGA GCTTCATTCC GAAGTTAGGA CTATAACACT TCTGT[AAT] -351 GACCTGTG GTTTTATTTA TCATCTGACA ATCTCACCA TGCCCATGA -301 CRX/0TX CTAGTTCCA CTGTCT[AAT] TCCTCGCGCC TTGAGCAAT TGGAAACTGC -251 AGAAGCAAGAA ACAGCTTCC GTAAGTGTTT GGAAACTGC -251 AGAAGCAAGAA ACAGCTTCC GTAAGTGTTT GGAAGCTGC -251 AGAAGCAAGAA ACAGCTTCC GTAAGTGCTT ACCAGCGCAA AGCTTTCCC -201 GGCTGACAA ACAGCTTCC GTAAGTGCTT ACCAGCGCAA AGCTTTCCC -201 GGCTGGACAA ACAGCTTCC GTAAGTGTT GGCACCAA AGCTTCCC -201 GGCTGGACAA ACAGCTTCC GTAAGTGCTT ACCAGCGCAA AGCTTTCCC -201 GGCTGGACAA ACAGCTTCC GCGCCCTAA ACCAGCGGGACGG GTGAAGGTT -101 DeltaE E-Box SP-1 TCTT <u>GCACCT</u> <u>GCACCTGCG CCCCTTAGGG AGCGGGCGGGCGGGCGGGCGGAA -51</u>	AAAACTAGCC	TAATGCACCA	TCTGCTAGTA	AAAACTAAAG	TAGCCTAGAA	-1351	
TAAGGTAGTC CAGAACGCCA TCTGGTGGTA AAACCTAGTC TAGAATCTCA -1251 TTTTCTCTTTA AAACTAGTCT ACAGCACCAT CTGCCAGTAA AAACTAACCT -1201 GGATTGCCAT CTGCTGTTAA AAACTAGGT CGCCTAGAG ACCAAGTTCT -151 GGTAAAAACT AGAGTAGCCT ACAGCGCCAT CTGCCTGTAA AAACTAACCT -1101 GGATAGCCAT CTGCTGTTAA AAACCAAGTG TAGCCTAGAG CAACAAGTTC -1051 TGGATAGCCA TCTGCTGTTAA AAACCAAGTG TAGCCTAGAG CAACAAGTC -1051 TGGATACCC ATGTGCCTGT AAAACCCAG TGCCCCTGCT AAAAACTAAC -1001 TGGATTGCC ATGTGCTGT TAAAAACCAG TGCCCCTGGT TAAAAACTAA -901 CCTGGGATGC CATCGCGTGT TAAAAACCAG TAGCCTAGAG CAACAAGTT -551 TGGATTGCC ATCTGCTGTT AAAACCAGG TAGGCCTAGAG CCAACAAGTT -751 CGGGATGCC ATCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGAT -651 CCTGGATACC ATCTGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -651 CCTGGATAGC CATCGAGTAG CCTAGAGCGC CTCTGCTGT TAAAAACTAA -601 CCTGGATAGC CATCGAGTAG CCTAGAGCGC CTCTGCTGT TAAAAACTAA -601 CCTGGATAGA ACTAGAGTAG CCTAGAGCG CCTTGTGCTGT TAAAAACTAA -601 CCTGGATAA ACTAGAGTAG CCTAGAGCG CCTTGTGCTGT TAAAAACTAA -601 CCTGGATAA AACTAGAGTA GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 CCTGGTAAAA ACTAGAGTAG GCCTAGAGCA CCATCTGCT AGAGCAACAAG -551 TCTGGTAAAA ACTAGAGTAG GCCTAGAGCA CCATCTGCT GTAAAAACTAA -601 CCTGGATAAA AACTAGAGTA GCCTAGAGCA CCATCTGCT TAAAAACTAA -501 AGCCACAGAAT CAATCAAGA GCCTAGAGCA CCATCTGCT GTAAAACTAA -601 CCTGGTAAAA ACTAGAGTA GCCTAGAGCA CAACTTCT -201 <td>CACCATCTGG</td> <td>TGGTAAAAAC</td> <td>TAACCTAGAC</td> <td>TGCCACCTTG</td> <td>TGTTAAAAAC</td> <td>-1301</td>	CACCATCTGG	TGGTAAAAAC	TAACCTAGAC	TGCCACCTTG	TGTTAAAAAC	-1301	
TTTTCTGTTA AAACTAGTCT AGAGCACCAT CTGCCAGTAA AAACTAACCT -1201 GGATTGCCAT CTGCTGTTAA AAACTATGGT GGCCTAGAGC ACCAAGTTCT -1151 GGTAAAAACT AGAGTAGCCT AGAGCGCCAT CTGCTGTTAA AAACTAACCT -1101 GGATTGCCAT CTGCTGTTAA AAACCAGGT TAGCCCAGG CAACAAGTC -1001 TTGGATTGCC ATGTGCTGTA AAACCAGGT TAGCCCAGG CAACAAGTC -1001 TTGGATTGCC ATGTGCTGTT AAAACCAGG TGTAGCCTAGA GCAACAAGT -951 TCTGGTAAAAC CAAGGTGA CCTAGAGCGC CATCTGCTGT TAAAAACTAAC -901 CCTGGATAGC CATCTGCTGT TAAAAACCAG TAGCCTAGA GCAACAAGTC -851 TGGGATGCC ATGTGCTGTA AAAACCAGT GTAGCCTAGA GCAACAAGTC -851 TGGGATGCC ATCTGCTGTT AAAAACCAG TGGCCTAGA GCAACAAGTC -751 CTGGTAAAAA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTT AAAAACTAAC -801 TGGATTGCC ATCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGT -751 CTGGTAAAAA CTAGAGTAGC CTAGAGCGC ATCTGCTGTT AAAAACTAAC -701 CTGGATAGC ATCTGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -751 CTGGTAAAAA CTAGAGTAG CCTAGAGCGC CATCTGCTGT TAAAAACTAA -601 CCTGGATTGC ATCTGCTGTT AAAAACCAAG TGTAGCCTA GAGCAACAAGT -551 TCTGGTAAAA ACTAGAGTAG CCTAGAGCAC CTTCTGCTGT TAAAAACTAA -601 CCTGGATTGC ATCTGCTGT TAAAAACCAA GTGTAGCCTA GAGCAACAAG -551 TCTGGTAAAA ACTAGAGTAG CCTAGAGCA CCATCTGCTG TTAAAAACTAA -501 AGCTCAGAAT CAATCAAGA GAGCAGTTG ATATTTTCA GAAGTGATC -401 AGCTCAGAAT CCATGAGGTA GACTAGGCA CATCTGCTG ATAAAACTAA -501 AGCTCAGAAT CAATCAAGA GACGAGTTG ATATTTTCA GAAGTGATC -401 CRX/OTX ATTTTTTGGA GCTTCATCC GAAGTAGGA CTATAACACT TCTGT <u>AAAACTAA -501</u> CCX/OTX CTAGTTCTCA CTGCTGTTACTATC CAAGTGGCA TTGCTGAAAACTAA -501 CCX/OTX CTAGTTCTCA CAGTCTCTC GAAGTAGGA CTATAACACT TCTGT <u>AAA</u> -501 AGCACAGAAA AAGCAAGCAG GACTGCGTA ACCAGCGCA AGCTTCTCT -201 GGCTGTACAA AAGCAAGCAG GACTGCGTA ACCAGCGCAA AGCTTCTCT -201 GGCTGTACAA AAGCAAGCAG GACTGCGTA ACCAGCGCAA AGCTTCTCT -201 GGCTGTACAA AAGCAAGCAG GACTGCGTA CACCTGCG GCGGCGGGAA -51 TCTC <u>GCCTG</u> <u>GCACGGTGGC</u> GCACTTTAG AGCTGCG GCGGCGGGAA -51 TCTC <u>GCCTG</u> <u>GCACGGTGGC</u> GCACTTTAG AGCAGCGGA GGTAAAGGC GAGGGGGG GATGAGGAGG GATCAGCGG CAAGGCGGA GGTAAAGGC AAGCGCAA ACCAGCCACAC ADAUCCACCA ACCACCACCACCA ACCACCACCA ACCACCAC	TAAGGTAGTC	CAGAACGCCA	TCTGGTGGTA	AAACCTAGTC	TAGAATCTCA	-1251	
GGATTGCCAT CTGCTGTTAA AAACTAGGT GGCCTAGAGC -1101 GGATTGCCAT CTGCTGTTAA AAACTAGCT CTGCTTAA AAACTAACCT -1101 GGATTGCCAT CTGCTGTTAA AAACCAAGTC -1001 -1001 TTGGTAAAAC TAGAGTAGCC TAGAGCGCCA TGCCCTGCT AAAACTAAC -1001 TTGGTAAAAAC TAGAGTAGCC TAGAGCCCA TGCCCTGCT AAAACTAAC -901 CCTGGATAGC CATGTGCTGT TAAAACCAAG TGGCCTGGT AAAACTAAC -901 CCTGGTAAAA CTAGAGGCAC TAGAGTAGCC TAGAGTAGC -851 TGGTAAAAAC TAGAGTAGCC TAGAGCACAG TACACAAGTCA -901 CCTGGTAAAA CTAGAGGCCA TCTGCTGTA AAAACTAAC -801 TGGATAGCA TAGAGTAGCC TAGAGCACAG TGCTGCTGTA AAAACTAAC -701 CTGGAATAA CTAGAGGCAC ATCTGCTGTA AAAACTAAC -701 CTGGAATAA -651 -701 CTGGTATAAA -651 CTTGGTAAA ACTAGAGTG -501 AGACACAAGT -651 -651 -651 -651 CTCTGGTAAA -651 -651	TTTTCTGTTA	AAACTAGTCT	AGAGCACCAT	CTGCCAGTAA	AAACTAACCT	-1201	
GGTAAAAACT AGAGTAGCCT AGAGCGCCAT CTGCTGTTAA AAACTAACCT -1101 GGATTGCCAT CTGCTGTTAA AAACCAAGTG TAGCGCTAGAG CAACAAGTTC -1001 TGGTAAAAAC TAGAGTAGCC TAGAGCGCCA TGCCCCTGCT AAAAACTAAC -1001 TGGTAAAAAC TAGAGTAGCC TAGAGCCCA TGCCCCTGCT AAAAACTAAC -951 TCTGGTAAAA ACTACAGTGAG CCTACGAGCGC CATCTGCTGT TAAAAACTAAC -951 CCTGGATTGC CATCTGCTGT TAAAAACCAG TAGCCTAGAG CAACAAGTT -851 TGGTAAAAAC TAGAGTAGC TAGAGCGCCA TCTGCTGTTA AAAACTAAC -801 TGGTAAAAA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTT AAAAACTAAC -701 CTGGATAGCA TCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGT -751 CTGGATAGCA TCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGT -701 CTGGATAGC ATCTGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -601 CCTGGATAGA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATAGC ATCTGCTGT TAAAAACCAAG GTGTAGCCTAG AGCAACAAGT -501 AGCTACAGATG CATCTGCTGT TAAAAACCAA GAGCAACAAGT CTGGATAGC ATCTGCTGCT TAAAAACCAA GTGTAGCCTA TAGAGTGTCT -501 AGCTACAGATG CATCTGCTGT TAAAAACCAA GAGCACACAAGT -501 AGCTACAGAT CAATTCAAGA GAGCACATTG ATTTTTCA GAAGTGACC -501 AGCTACAGATT CCAATTTA GGACAGTTGC ACCATCGCA TGAGTGTTA -301 CRX/OTX ATTTTTTGGA GCTCCATTCC GAAGTAGCA CTATCTGCCA A	GGATTGCCAT	CTGCTGTTAA	AAACTATGGT	GGCCTAGAGC	ACCAAGTTCT	-1151	
GGATTGCCAT CTGCTGTTAA AAACCAAGTG TAGCCTAGAG CACACAAGTTC -1051 TGGATAAAAC TAGAGTAGCC TAGAGGCCCA TGCCCTGGT AAAACCAAGT -951 TTGGATAGCC ATGAGAGTAGCC CATAGAGCCCA GCCCCTGGCTAGA ACACAACAAGT -951 TCTGGTAAAA ACTAGAGTAGC CATAGAGCGC CATCTGCTAG ACACAACAAGT -951 CCTGGGATAGC CATCTGCTGT TAAAAACCAAG TAGACTAACC -851 TGGATAACA TAGAGTAGCC TAGAGCCCAAG GTAGCCTAGAG CACACAAGTT -751 CTGGTAAAAA CTAGAGTAGC CTAGAGCCCA ACTGCTGTA AAAACCAAG -701 CTGGATAGC ACTAGAGTAGC CTAGAGCGC CTTGCTGT AAAAACAAAC -701 CTGGATAGC ACTAGAGTAGC CTAGAGCCA ACTAGACAAGT -511 CTGGTAAAA ACTAGAGTAG CCTAGAGCGC CTCTGCTGT TAAAAACAAA -601 CCTGGATAA ACACAGAGTA GCCTAGAGCA CCTAGAGCAA -501 AGCCAACAAGT -501 ACCTGGTAAA AACTAGAGTA GCCTAGAGCA CATCTGCTGT TAAAACAAA -501 AGCAAGCAAA -401 <td>GGTAAAAACT</td> <td>AGAGTAGCCT</td> <td>AGAGCGCCAT</td> <td>CTGCTGTTAA</td> <td>AAACTAACCT</td> <td>-1101</td>	GGTAAAAACT	AGAGTAGCCT	AGAGCGCCAT	CTGCTGTTAA	AAACTAACCT	-1101	
TGGTAAAAAC TAGAGTAGCC TAGAGCGCCA TGCCCCTGCT AAAAACTAAC -1001 TTGGATAGAC ATGTGCTGTT AAAACCCAG TGTAGCCTAG AGCAACAAGT -951 TCTGGTAAA ACTAGAGTAG CCTAGAGCGC CATCTGCTGT TAAAAACTAAC -801 CCTGGATTGC CATCTGCTGT TAAAAACCAG TAGCCTAGA GCAACAAGTT -851 TGGATAAAAC TAGAGTAGC TAGAGCGCA TCTGCTGTT AAAAACTAAC -801 TGGATAGCC ATCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGTT -751 CTGGTAAAAA CTAGAGTAGC CTAGAGCGCA TCTGCTGTT AAAAACTAAC -701 CTGGTAAAAA CTAGAGTAGC CTAGAGCGC ATCTGCTGT AAAAACTAAC -701 CTGGTAAAAA CTAGAGTAGC CTAGAGCGC ATCTGCTGT TAAAAACTAAC -701 CTGGTAAAA CTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATTGC CATCTGCTGT TAAAAACCAA GTGTAGCCTA GAGCAACAAG -551 TTCTGGTAAA ACTAGAGTAG CCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 AGCTCAGAAT CAATTGAAGT GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 AGCTCAGAAT CAATTGAAG GACCAGTTG ATATTTTCA GAAGTGATC -401 AGCTCAGAAT CCAATGAGTG TATTTGTCC ACAGCTCATA TAGATGTTT -401 AGCTCAGTGG GTTTATTTA TCATCTGACA ATCTCATCA TGACCATGA -301 CTAGTTCTCA CTGCTGTTAATA TCATCTGCGGC TTGATGAATT TGGAAACTGC -251 AGATAGAAA AAGCAAGCAG GACTGCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGACAA AAGCAAGCAG GACTGCTTA CACGCGCAA AGCTTTCTCT -201 GGTTGAAAA AAGCAAGCAG GACTGCTTA CACGTGCGAA ACGTTCCCA -101 Deltae E-Box SP-1 TCTCGACTGC ACAGGGTGG GCGCACTTAGAG GAGAGGAGGT GATAGGGTGA -51 <t< td=""><td>GGATTGCCAT</td><td>CTGCTGTTAA</td><td>AAACCAAGTG</td><td>TAGCCTAGAG</td><td>CAACAAGTTC</td><td>-1051</td></t<>	GGATTGCCAT	CTGCTGTTAA	AAACCAAGTG	TAGCCTAGAG	CAACAAGTTC	-1051	
TTGGATTGCC ATGTGCTGTT AAAACCCGAG TGTAGCCTAG AGCAACAAGT -951 TCTGGTAAAA ACTAGAGTAG CCTAGAGCGC CATCTGCTGT TAAAAACTAA -901 CCTGGATTGC CATCTGCTGT TAAAAACCAA -901 TGGTAAAAAC TAGAGTAGC CTAGAGCCAC CATCTGCTGTT AAAAACTAAC -851 TGGTAAAAAC TAGAGTAGC TAGAGCGCCA TCTGCTGTT AAAAACTAACC -801 TGGATAGCCA TCTGCTGTT AAAAACCAAG TGTAGCCTAGA GCAACAAGTT -751 CTGGATAGC ATCTGCTGTT AAAAACCAAC TGTGGCTAA AAAACTAACC -701 CTGGATAGC CATCGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -501 CCTGGATAGC CATCTGCTGT TAAAAACCAA GGTAGCCTA GAGCAACAAGT -601 CCTGGATAGC CATCTGCTGT TAAAAACCAA GGTGAGCCAT GAGCAACAAGT -601 CCTGGATTGC CATCTGCTGT TAAAAACCAA GGTGAGCCA GAGCAACAAGT -501 AGCTCAGAAT CAATTCAAGA GAGCAGTTG ATATTTTCA GAAGTGATCC -501 AGCTCAGAAT CAATTCAAGA GAGCAGTTG ATATTTTCA GAAGTGATCC -501 AGCTCAGAAT CAATTCAAGA GAGCAGTTG ATATACACT TCTGTTAATA -601 CCTGGATGC GTTTATTAT TCATCTGACA ATCTACCA TGACCATGA -301 CTAGTTCTCA CTGTCTTAATTA TCATCTGACA ATCTACCA TGACCCATGA -301 CTAGTTCTCA CTGTCTTAATTAT TCATCTGCGCC TGATGAATT TGGAAACTGC -251 AGAAGCAGCA ACAGTTTC GTAGTGCTTA ACCAGCGCGA AGCTTTCTCT -201 GGCTGACAA ACAGTTTC CGTAGACTGCTT ACGCTCACAA ACCAGTTCC -201	TGGTAAAAAC	TAGAGTAGCC	TAGAGCGCCA	TGCCCCTGCT	AAAAACTAAC	-1001	
TCTGGTAAAA ACTAGAGTAG CCTAGAGCGC CATCTGCTGT TAAAAACTAAA -901 CCTGGATTGC CATCTGCTGT TAAAAACCAG TAGCCTAGAG CAACAAGTT -851 TGGATTGCC ATCGCTGTTA TAAAACCAG TAGAGCCTAGAG CAACAAGTT -751 TGGATTGCC ATCGCTGTTA AAAACCAG TGTGCCTATA AAAACTAAC -801 CTGGTAAAAA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTA AAAACTAAC -801 CTGGTAAAAA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTA AAAACTAAC -701 CTGGTAAAA CTAGAGTAGC CTAGAGCGC CATCTGCTGT TAAAAACTAAC -601 CCTGGATTGC CATCTGCTGT TAAAAACCAA GTGTAGCCTA GAGCAACAAG -551 TCTGGTAAA ACTAGAGTA GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 CCTGGATTGC CATCTGCTGT TAAAAACTAA -601 CCTGGATTGC CATCTGCTGT TAAAAACTAA -601 CCTGGATAG AACTAGCTG GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 CCTGGATAA AACTAGAGTA GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 AGCTACAAACTA GAGCAGCTTG ATAATTTCA GAAGTGATT -401 AGCTACAAACTA GAACTACC GAAGTATGCA ACACTGCA ACACATGA -401 CRX/OTX CCTAGTCTAATTC GAAGTAGCA ACCTGCA TGACCATGA ACACTGCA -301 CTAGTTCAAA AAGCAAG GACTGCCTA ACCAGCGCA AGCTTTCTCT -201 -201 GGCTGGTACAA AAGCAAGCAG GACTGCGCTA ACCAGCGCA AGCTTTCTCT -201 -201 GCCTGGTACAA AAGCATTTC CGAAGTGTT CACACTGCG AAGCTTCC -201<	TTGGATTGCC	ATGTGCTGTT	AAAACCCGAG	TGTAGCCTAG	AGCAACAAGT	-951	
CCTGGATTGC CATCTGCTGT TAAAAACCAG TAGCCTAGAG CAACAAGTT -851 TGGTATAAAAC TAGAGTAGCC TAGAGCGCCA TCTGCTGTTA AAAACTAACC -801 TGGATTGCCA TCTGCTGTTA AAAACCAAG TGTAGCCTAGA GCAACAAGT -751 CTGGTAAAAA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTA AAAACTAAC -701 CTGGTAAAAA CTAGAGTAG CCTAGAGCGC ATCTGCTGT AAAAACTAAC -601 CCTGGATTGC ATCTGCTGT TAAAAACCAAG TGTAGCCAA GACAACAAG -651 CCTGGTAAA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGTAAA ACTAGAGTAG CCTAGAGCAC AGTTAGCCAA GAGCAACAAG -551 TCTGGTAAA AACTAGAGTA GCCTAGAGCA CCATCTGCTG TAAAAACTAA -601 CCTGGATAC CAATGCAGT GTATACACAA GTGTAGCCA GAGCAACAAG -551 AGCTCAGAAT CAATCAAAG GAGCAGTTG ATATTTTCA GAAGTGATC -401 AGATCTGTGG GTTTATTA TCATCTGACA ATCTCACT TGGAACAAGC -301 CTX/OTX CTX/OTX -351 GGACTGACAA AAGCAG GACTGCCTTA ACCAGCGCAA AGCTTTCTCT -201 GGATTGCAA ACAGTTTCG GTAGAGTAT GGAGAGCTG ATCACCTGCG -101 CTAGTTCCAA CACAGGCTT CAGCTGCAAA -101 CGTGGACAA AACAGTTTCC GTAGAGTTA GAGCAGGGTG AATGCCGA -51 AGCTGTGACAA ACAGTTCC CACGCGCAGC GCACTTTAG AGCACTGCA -51 CCTGGTGTACAA ACAGTTCC CACGCGCGC GCACTTTAGG AGCACTGCA -51 CGTGGACAAA AAGCATTC CACGCGCAAG	TCTGGTAAAA	ACTAGAGTAG	CCTAGAGCGC	CATCTGCTGT	TAAAAACTAA	-901	
TGGTAAAAAC TAGAGTAGCC TAGAGCGCCA TCTGCTGTA AAAACTAAC -801 TGGATTGCCA TCTGCTGTTA AAAACCAAGT GTAGCCTAGA GCAACAAGT -751 CTGGTAAAA CTAGAGTAGC CTAGAGGCCA ACTGCTGTA AAAACTAAC -701 CTGGATAGCA CTCGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -611 CTGGATAGC ATCTGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -651 CCTGGATAGC CATCTGCTGT TAAAAACTAAC -601 CCTGGATAGC ATCTGCTGT TAAAAACTAA -601 CCTGGATAGC AACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATAG CATCTGCTGT TAAAAACTAA -601 AGCTCAGAAT CAATTGCAGTA GCCTAGAGCA CCATCTGCTG TTAAAAACTAA -501 AGCTCAGAAT CAATTCAAGA GAGCAGCTTG ATATTTTCA GAAGTGATCT -401 AGCTCAGGAG GCTTCATCC GAAGTAGGA CTATAACACT TCTGTTAATT -401 CRX/OTX CRX/OTX -351 GTACCTGTG GGTTTAATATA TCATCTGCACA ATCTCACT TGGAAACTGC -251 CAACTTCCA CACAGCAGCA GACTGCCTTA ACCAGCGCAA AGCTTTCTCT -201 CRX/OTX CTACTGCTGAAA AAGCAAGCAG GACTGCCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGACAA AAGCATTCCA GTAGCTGCTTA CACCACAGCCTTA ACCAGCGCCA AGCTTTCTCT -201 -201 GGCTGGACAA AAGCATTCCA GACCGCCACAA ACTTTCTCT -201 -201 -201 GGCTGGACAA AAGCATTCCAGACACCACACAACAACAAGCAGAGCTA ACCACCTGCC	CCTGGATTGC	CATCTGCTGT	TAAAAACCAG	TAGCCTAGAG	CAACAAGTTC	-851	
TGGATTGCCA TCTGCTGTTA AAAACCAAGT GTAGCCTAGA GCAACAAGT -751 CTGGATTAGA CTAGAGTAGC CTAGAGCGCC ATCTGCTGTT AAAAACTAAC -701 CTGGATACC ATCTGCTGTT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -651 TCTGGTAAAA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATGC CATCTGCTGT TAAAAACCAA GCTCAGACCACGT TAAAAACTAA ACTAGAGTAG CCTAGAGCA CCATCGCGTG TAAAAACTAA -601 CCTGGATAGC CATCTGCTGT TAAAAACTAA -601 CCTGGATAGC CATCTGCTGT TAAAAACTAA -601 ACCTCAGAT CAATTCCAGAG GCCACAGCGCG GTAAAAACTA -501 AGCCACAGAT CAATTCAAGA GAGCACTATG ATATTTTCA GAAGTGATTT -401 CRX/OTX CRX/OTX -351 GTACCTGTGG GTTTTATTAT TCATCTGACA ATCTCACAT TGGAAACTGC -251 AGATATGAAA ACGTTCTG GTAAGGACTTA ACCAGCCAA AGCTTCTCT -201 CRX/OTX CRX/OTX -301 CTAGTTCTCA CTGTCTTAATTA TCATCGGGCC TTGATGAATT TGGAAACTGC -251 AGATATGAAA ACGTTCTG GTAAGTGTTT GGACAGCGA AGCTTCTCT -201 GGCTGACAA ACAGTTCTG GTAAGTGTTT GGACAGCGCA AGCTTCTCT -201 GGCTGACAA ACAGTTCTG GTAAGTGTTT GGACAGCGGA AGCTTTGCCGCA -101 DeltaE E-Box SP-1 TCTCACCTG CCACGTGTGC GCACTTTAGG AGATCAGCAGGGCGGGGGGGGCGGGGGGGGGG	TGGTAAAAAC	TAGAGTAGCC	TAGAGCGCCA	TCTGCTGTTA	AAAACTAACC	-801	
CTGGTANANA CTAGAGTAGC CTAGAGGGCC ATCTGCTGTT ANAAACTAAC -701 CTGGATTGCC ATCTGCTGTT ANAAACCAG TGTAGCCTAG AGCAACAAG -601 CCTGGATAGC CATCTGCTGT TANAACTAA -601 CCTGGATAGC CATCTGCTGT TANAAACTAA -601 CCTGGATAGC CATCTGCTGT TANAAACTAA -601 CCTGGATAGC CATCTGCTGT TANAAACTAA -601 CCTGGATAG AACTAGAGTA GCCTAGAGCA CATCTGCTG TTANAAACTAA -501 AGCTCACAAT CAATGAGGA GGCAGAGTG ATAATTTTCA GAAGTGATGC -451 AGAAGCAAT TCTCAAATGT GTATTGTCC ACAGCTCTAA TAGATGTTTT -401 CRX/OTX CRX/OTX CTAGTTCCA CTGCTCTAATT CCGAGGCA CATCTACCA TGACCATGA -301 CRX/OTX CRX/OTX CTAGTTCCA CTGCTCTAAT TCTGCGGC TTGATGAAT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGTACAA ACAGTTTCC GTAGTGTTT GGAGAGCTG ATCACCTGCG -151 CGTGGAGAA AAGCATTCCG TGAGTGTTT CAGCACAGGCAA ACTTTCGCG -151 DGCTGGACAA ACAGTTTCC GTAGTGTTT GAGAGCGCA ACTTTAGGA ATCGCCG -101 Deltae E-Box SP-1 TCTCTACCCG GCACGTTAGC GCACTTTAGG AGACCAGGG GCGGGCGGAA -51 AACAGACGGG ATGAGGGAG GCTAAAGCG AAGCAGCA GACAGCGGA ACGCACGAGGGA GCTAGAGCAGCA ACGACAGCAGGAGGGA GCAGAGGAGGG GACGGGCGAAGCG GACAGCGAGGGCGA AGCCCACCACAGAGCCA ADACCAGCAGCAGAGCA GACAGCAGG	TGGATTGCCA	TCTGCTGTTA	AAAACCAAGT	GTAGCCTAGA	GCAACAAGTT	-751	
CTGGATTGCC ATCTGCTGT AAAAACCAAG TGTAGCCTAG AGCAACAAGT -651 CCTGGATAAA ACTAGAGTAG CCTAGAGGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATAGC CATCGCTGT TAAAAACTAA -601 CCTGGATAGC CATCGCTGT TAAAAACTAA -501 AGCTAGAAT CAATGAGTA GCCTAGAGCA CACGTGT TAAAAACTAA -501 AGCTACAAAT CAATCAAAG GACCAGTTG ATATTTTCA GAAGGACAAG -401 AGCACACAAT TCCAAAGG GAGCAGTTG ATATTTTCA GAAGTGATTC -401 CRX/OTX CRX/OTX ATTTTTTGGA GCTTCATTC GAAGTAGCA CACGCCAAGA ACTTCCT -301 CRX/OTX CRX/OTX CTAGTTCCA CAGGCTTA ACCAGCGCAA AGCTTTCCT -201 GGCTGGACAA AAGCAGGGA GACTGCTTA ACCAGCGCAA AGCTTTCCT -201 GGCTGGACAA AAGCATTCCG GTAAGTGTT GGAGAGGCTG ATCASCTGCG -151 CGTGGAGCAA AAGCATTCCG GTAGGTTA CAGCTGCAA ACCACTGCG -101 DeltaE E-Box SP-1 TCTCACCTG GCACGTGTGC GCACTTTAGG AGACTAGC AGCGCGGACGGGCGGGAGGGGAG	CTGGTAAAAA	CTAGAGTAGC	CTAGAGCGCC	ATCTGCTGTT	AAAAACTAAC	-701	
TCTEGGTAAAA ACTAGAGTAG CCTAGAGCGC CTTCTGCTGT TAAAAACTAA -601 CCTGGATTGC CATCTGCTGT TAAAAACTA -501 TCTGGTAAA AACTAGAGTA GCCTAGAGCA CCATCTGCTG TTAAAAACTA -501 AGCTCAGAAT CAATTCAAGA GAGCAGCAT CACTGCGTG TTAAAAACTA -501 AGGTCAGAAT CAATTCAAGA GAGCAGTTG ATATTTTCA GAAGTGATGC -451 AGAAGCAATT TCTCAAAATGT GTATTTGCC ACAGCTCTAA TAGATGTTTT -401 CTX/TTTTGGA GCTTCATTCC GAAGTTAGGA CTATAACACT TCTCTTAATAT -501 GTACCTGTGG GTTTTATTTA TCATCTGACA ATCTCATCA TGGACACTGA -301 CTX/OTX -351 GTACCTGTGG GTTTTATTTA TCATCTGACA ATCTCATCA TGGACACTGC -251 CATAGTTCTCA CTGTCTTAATAT TCATCTGGCGC TTGATGAATT TGGAAACTGC -201 GGCTGGTGACAA ACAGTTTCCG GTAAGTGTTT GGACAGCGA AGCTTTCTCT -201 GGCTGGACAA ACAGTTTCCG GTAAGTGTTT GGACAGCGA AGCTTTCTCT -201 GGCTGGACAA ACAGTTTCCG GTAAGTGTTT CGCTCACAA ACTTTCGCGA -101 DaltaE E-Box SP-1 TCTCACCTG GCACCTTCA ACCAGCGGA GGTTAAAGC AGCAGCGGA ATGACGGCGA AGCGCGGGCGGGAA -51 AACAGAGCGGA AGCGTTGCG CCACCTTAGG AAGAGCAGCG AAGAGCGGA AGCGGGCGGGCGGAA -51	CTGGATTGCC	ATCTGCTGTT	AAAAACCAAG	TGTAGCCTAG	AGCAACAAGT	-651	
CCTGGATTGC CATCTGCTGT TAAAAACCAA GTGTAGCCTA GAGCAACAGA -551 TTCTGGTAAA AACTAGAGTA GCCTAGAGCA CCATCTGCTG TTAAAAACCAA -501 AGCTCAGAAT CAATTCAGAG GAGCAGTTG ATATTTTCA GAAGGATCG -451 AGAAGCAATT TCTCAAAAGTG GTATTTGTCC ACAGCTCTAA TAGATGTTT -401 CRX/OTX CRX/OTX AGATGTGTACAA CAGTCTGCG GAGTTGGAACTGC ACAGCCCATGA -351 GGACCTGTGG GTTTATTAT CACACGTGGACA ATCTCATCCA TAGACAGCC CAGAGTTTA CCATCTGACA ATCTCATCCA TGGACACTGC -301 -351 CRX/OTX CRX/OTX -301 CTAGTTCTCA CTGTCTTAAT TCTGCGGCC TTGATGAATT TGGAACTGC -251 -301 AGATATGAAA AAGCAAGCAG GACTGCCTTA ACCAGCGCAA AGCTTCTCT -201 -201 GGCTGGTACAA ACACTTTCTG GTAAGTGTTT GGAGAGCTGG ATCAGCGGCG -151 -101 DaltaE E-Box SP-1 -101 DaltaE E-Box SP-1 -51 AACAGAGCGG ATGAGGGAG GGTTAAAGC AAGCGGG CGGGCCGGAA -51 AACAGACCGG AGCGGCACGCCAAAGGC GACGAGGGG GATCAGCGAA GCTAAAGCCACGA AGCGCAGGGAAGGT GATAAGCAGCAGCA AGCGCAGCAGAGGGAAGGT GATAAGCAGCAGCA AGCGCAGCAGCA AGCGCAGCAGCA AGCGCAGAGGGAAGCGA AGCGGAGCGA ATGAGGGGAG GCTAAAGCCACGA AGCGCAGCGAGCGA AGCGCAGCGA AGCGCAGCAGCA AGCGCAGCAGCA AGCGCAGCGA AGCGCAGCGAGCG	TCTGGTAAAA	ACTAGAGTAG	CCTAGAGCGC	CTTCTGCTGT	TAAAAACTAA	-601	
TTCTGGTAAA AACTAGAGTA GCCTAGAGCA CCARCTGCTG TTAAAAACTA -501 AGCTCAGAAT CAATTCAAGA GAGCAGTTTG ATATTTTCA GAAGTGATGC -451 AGAAGCAATT TCTCAAATGT GTATTGTCC ACAGCTCTAA TAGATGTTTT -401 CRX/OTX ATTTTTTGGA GCTTCATTCC GAAGTTAGGA CTATAACACT TCTGTAATT -351 GTACCTGTGG GTTTTATTTA TCATCTGACA ATCTCATCCA TGACCATGA -301 CRX/OTX CTAGTTCCA CTGTCTTAATT TCTCTGCGGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGGCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGTACAA ACAGTTTCT GTAAGTGTTT GGAGAGCCTG ATCACCTGCG -151 CGTTGAGTAC CACAGGCTT CAGCTGACTA ACCAGCGCAA AATGCTGCA -101 DeltaE E-Box SP-1 TCTTCACCTG GCACGTGTGC GCACTTAGG AGATCAGCGGC GGAGGGGAA -51 AACAGACGGG ATGAGGGAG GGTTAAAGC CABAGCAGCA GATAGGATC -101	CCTGGATTGC	CATCIGCIGT	TAAAAACCAA	GTGTAGCCTA	GAGCAACAAG	-551	
AGCTCAGAAT CAATTCAAGA GACCAGTTTG ATATTTTCA GAAGTGATGC -451 AGAAGCAATT TCTCAAAATGT GTATTTGCC ACAGCTCTAA TAGATGTTT -401 CRX/OTX ATTTTTTGGA GCTTCATTCC GAAGTTAGGA CTATAACACT TCTGTAATT -351 GTACCTGTGG GTTTTATTTA TCATCTGACA ATCTCATCCA TGACCATGA -301 CRX/OTX CTAGTTCTCA CTGTCTTATTTA TCATCTGACA ATCTCATCCA TGACCCATGA -301 CRX/OTX CTAGTTCTCA CTGTCTTTATTTA TCATCTGGCGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGGCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGTACAA ACAGTTTCTG GTAAGTGTTT GGAGAGGCTG ATCAGCTGCG -151 CGTTGAGTAC CACAGGCTT CAGCTCACAA ACTTTAGGA AATGCTGCA -101 DeltaE E-Box SP-1 TCTTCACCTG GCACGTGTGC GCACTTTAGG AGATCAGCGGCGGGCTGGAA -51 AACAGCACGGG ATGAGGGGAG GGTTAAAGCC AADTCACCA ACGACACTGC -151	TTCTGGTAAA	AACTAGAGTA	GCCTAGAGCA	CCATCTGCTG	TTAAAAACTA	-501	
AGAAGCAATT TCTCAAATGT GTATTTGTCC ACAGCTCTAA TAGATGTTT -401 CRX/OTX ATTTTTTGGA GCTTCATTCC GAAGTTAGGA CTATAACACT TCTGTTAATT -351 GTACCTGTGG GTTTTATTTA TCATCTGGACA ATCTCATCCA TGACCCATGA -301 CRX/OTX CTAGTTCTCA CTGTCTTAAT TCTCTGCGGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGCCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGTACAA ACAGTTTCTG GTAAGTGTT GGAGAGCTG ATCAGCTGC -151 CGTTGACTA CACGTCTCT CAGCTCACAG ACTTTTAGG AATTGCTGCA -101 DeltaE E-BOX SP-1 TCTTCACCTG GCACGTGTGC GCACTTTAGG AGATCACGGG CGGGCTGGAA -51 AACAGACCGG ATGAGGGAG GTTAAAGC AADGCACGA ACGCACCACCT -201	AGCTCAGAAT	CAATTCAAGA	GAGCAGTTTG	ATATTTTTCA	GAAGTGATGC	-451	
CRX/OTX ATTTTTTGGA GCTTCATTCC GAAGTTAGGA CTATAACACT TCTGT <u>TAATT</u> -351 GTACCTGTGG GTTTATTTA TCATCTGACA ATCTCATCAT TGGAAACTGC -301 CRX/OTX CTAGTTCTCA CTGTCT <u>TAAT</u> TCTCTGCGGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGATTCTG GTAAGTGTT GGAGAGCTG ATCAGCTGCC -251 GGCTGTACAA ACAGTTTCTG GTAAGTGTT GGAGAGCTG ATCAGCTGCC -151 CGTTGAGTAC CACAGGCTT CAGCTCACAG ACTTTTAGG AACTGCTGCA -101 DeltaE E-Box SP-1 TCTT <u>CACCTG</u> GCACGTGTGC GCACTTTAGG AGATCAC <u>GGG CGG</u> GCTGGAA -51 AACAGACGGG ATGAGGGAG GGTTAAAGC GAGGAGAGGT GATAGGATCC -151 AACAGACGGG ATGAGGGGAG GGTTAAAGC AADTCCACCA ACAGCACCT -150	AGAAGCAATT	TCTCAAATGT	GTATTTGTCC	ACAGCTCTAA	TAGATGTTTT	-401	
ATTTTTTGGA GCTTCATTCC GAAGTAGGA CTATACACT TCTGTTAATT -351 GTACCTGTG GTTTTATTTA TCATCTGACA ATCTCATCCA TGACCATGA -301 CRX/OTX CTAGTTCTCA CTGTCTTAAT TCTCTGCGGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGGCTTA ACCAGGCGAA AGCTTTCTCT -201 GGCTGTACAA ACAGTTTCTG GTAAGTGTTT GGAGAGCCTG ATCAGCTGCG -151 CGTTGAGTAC CACAGGCTT CAGCTCACAG ACTTTTAGGA AATTGCTGCA -101 DeltaE E-Box SP-1 TCTTCACCTG GCACGTGTGC GCACTTTAGG AGATCAGCGG CGGGCTGGAA -51 AACAGACGGG ATGAGGGAG GGTTAAGGC AADTCACCA ACGACGACAG -51					CRX/OTX	5	
GTACCTGTGG GTTTTATTTA TCATCTGACA ATCTCATCCA TGACCATGA -301 CRX/OTX CTAGTTCTCA CTGTCT <u>TATTA TCATCTGACA ATCTCATCCA TGACCATGA -301</u> CTAGTTCTCA CTGTCT <u>TATTA TCCTCTGCGGC TTGATGAATT TGGAAACTGC -251</u> AGATATGAAA AAGCAAGCAG GACTGCCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGGTACAA ACAGTTCTC GTAAGTGTTT GGAGAGCGTG ATCAGCTGGG -151 CGTTGAGTAC CACAGGCTT CAGCTACACA ACTTTTAGGG AATTGCTGCA -101 DeltaE E-Box SP-1 TCTT <u>CACCTG GCACGGGGAG GGTTAAAGCG CGAGGGGGGGGGG</u>	ATTTTTTGGA	GCTTCATTCC	GAAGTTAGGA	CTATAACACT	TCTGTTAATT	-351	
CRX/OTX CTAGTTCTCA CTGTCT <u>TAAT</u> TCTCTGCGGGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGGCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGTACAA ACAGTTTCTG GTAAGTGTTT GGAGAGGCTG ATCAGCTGGG -151 CGTTGACTAC CACAGCCTTT CAGCTCACAG ACTTTTAGGG AATTGCTGCA -101 DeltaE E-Box TCTT <u>CACCTG</u> GCACGTGTGC GCACTTTAGG AGATCAG <u>GGG CGG</u> GCTGGAA -51 AACAGACGGG ATGAGGGGAG GTTAAAGGC GAGGGAGAGGT GATAGGATTC -150 CTGCACCTG CACGGGCAGG GTTAAAGGC AAGGGGAGGG TGATAGGATC -150 CTGCACCTG CACGGGCAGGC AAGGGCAGC AAGGGCAGGC GATAGGGCAGC -51 CTGCACCTG CACGGCAGGG GTTAAGGC AAGGGCAGG GATAGGATC -150 CTGCACCTG CACGGCAGGC AAGGCCAGC AAGGGCAGG GTTAAGGC ACGGAGGGGAGG	GTACCTGTGG	GTTTTATTTA	TCATCTGACA	ATCTCATCCA	TGACCCATGA	-301	
CTAGTICTCA CTGTCT <u>TAAT</u> TCTCTGCGGC TTGATGAATT TGGAAACTGC -251 AGATATGAAA AAGCAAGCAG GACTGCCTTA ACCAGCGCAA AGCTTTCTCG -201 GGCTGTACAA ACAGTTTCTG GTAAGTGTTT GGAGAGCTG ATCAGCTGCC -151 CGTTGAGTAC CACAGGCTTT CAGGCTCACAG ACTTTTAGG AATTGCTGCA -101 DeltaE E-BOX SP-1 TCTT <u>CACCTG</u> GCACGTGTGC GCACTTTAGG AGATCACGGG CGGGCTGGAA -51 AACAGACCGGG ATGAGGGGAG GGTTAAAGGC GAGGGAGAGGT GATAGGATCC -151	CRX/OTX						
AGATATGAAA AAGCAAGCAG GACTGGCTTA ACCAGCGCAA AGCTTTCTCT -201 GGCTGTACAA ACACTTTCTG GTAAGTGTTT GGAGAGCCTG ATCACCTGCG -151 CGTTGAGTAC CACAGGCTTT CAGCTCACAG ACTTTAGGG AATTGCTGCA -101 DeltaE E-Box SP-1 TCTTCACCTG GCACGTGTGC GCACTTTAGG AGATCAGGGC GGGGCGGGAA -51 AACAGACGGG ATGAGGGGAG GGTTAAAGC CAGGGAGAGGT GATAGGATTC -15 AACAGACGGG ATGAGGGGAG GGTTAAAGC CAGGGAGAGGT GATAGGATTC -15	CTAGTTCTCA	CTGTCTTAAT	TCTCTGCGGC	TTGATGAATT	TGGAAACTGC	-251	
GGCTGTACAA ACAGTTTCTG GTAAGTGTTT GGACAGGCTG ATCACCTGCG -151 CGTTGAGTAC CACAGCTTTT CAGCTCACAA ACTTTTAGGG AATTGCTGCA -101 DeltaE E-Box SP-1 TCTT <u>CACCTG</u> G <u>CACGTG</u> TGC GCACTTTAGG AGATCAG <u>GGG CGG</u> GCTGGAA -51 AACAGACGGG ATGAGGGGAG GGTTAAAGGC AGAGGAGGG GATAGGATTC -1 AACAGACGGC ACGCGCAGGGG AAATCGCGA ACAGCATCC +50	AGATATGAAA	AAGCAAGCAG	GACTGGCTTA	ACCAGCGCAA	AGCTTTCTCT	-201	
CGTTGAGTAC CACAGGCTTT CAGCTCACAG ACTTTTAGGG AATTGCTGCA -101 DeltaE E-Box SP-1 TCTT <u>CACCTG</u> <u>GCACGTG</u> TGC GCACTTTAGG AGATCAC <u>GGG CCG</u> GCTGGAA -51 AACAGACGGG ATGAGGGAG GGTTAAAGGC GAGGGGAGGT GATAGGATTC -1 AACAGACGGC ACGACTGAC ACGACGAGCA ACAGCACGA CAGACGACGA +50	GGCTGTACAA	ACAGTTTCTG	GTAAGTGTTT	GGAGAGGCTG	ATCAGCTGCG	-151	
DeltaE E-Box SP-1 TCTTCACCTG GCACCTGTGC GCACTTTAGG AGATCACGGG CCGCCTGGAA -51 AACAGACCGG ATGAGGGAG GGTTAAAGGC GAGGGAGAGGT GATAGGATTC -1 AACAGACCGC ACCAGCAGAC ADACCGACCAACAGACAACAGACCA ACCAGCACCA ACCAGCACAGAC ADACCGACCAACAGACAACAGACAACAGACAACAGACAACAGACAACA	CGTTGAGTAC	CACAGGCTTT	CAGCTCACAG	ACTTTTAGGG	AATTGCTGCA	-101	
TCTTCACCTC CCACCTCTCC CCACTTAGG AGATCACCGC CCGCCCGGAA -51 AACACACCGCG ATCACGGAAG GCTTAAAGC CACGACACGT GATACGATTC -1 AACACACTCA CACCTCAC ACCACCACAC ADATCACCA ACACACACACA	DeltaÉ	E-Box		SI	2-1		
AACAGACGGG ATGAGGGGAG GGTTAAAGGC GAGGAGAGGT GATAGGATTC -1 AAACACATCA CACCACTCAC ACCACCACACACACACAC	TCTTCACCTG	GCACGTGTGC	GCACTTTAGG	AGATCAGGGG	CGGGCTGGAA	-51	
$\mathbf{A}_{\mathbf{A}}$	AACAGACGGG	ATGAGGGGAG	GGTTAAAGGC	GAGGAGAGGT	GATAGGATTC	-1	
ANACACATCA CACCACIGAG ACGAGACAGAC ANAICCACCA ACAGACAGAC +30	AAACACATCA	CACCACTGAG	ACGAGCAGAC	AAATCCACCA	ACAGACAGAC	+50	
TGAAGTTTCC TAAAAGTCAG GAGCTCGGGT TAGTTTGGTC AGTACAGTAT +100	TGAAGTTTCC	TAAAAGTCAG	GAGCTCGGGT	TAGTTTGGTC	AGTACAGTAT	+100	
TOTALO TELECONO ONOCIOCO TELECOTO HOLIONOTHE	TGTCTAAAGT	GTGCGCGTGT	CAGATG			+126	
The second construction of the second s	TGTCTAAAGT	GTGCGCGTGT	CAGATG			+126	

Fig. 2. Zebrafish AANAT-2 promoter. Sequence of the 5'-flanking region and 5' untranslated region. Transcription start site (+1) is in boldface and italic type. The putative initiator (lnr) sequence is underlined. Putative binding sites for transcription factors are boxed and labeled accordingly. The ATG translation start codon (+124-126) is shaded.

zfAANAT-2 signal was detected in the epiphysis after 1.5 hr of staining in approximately 30% of the embryos injected with λ clone zf6 (Fig. 3A). In contrast, embryos injected with the zf7B clone or mouse AANAT λ clone failed to generate a signal at this time (Fig. 3B,C); a weak signal representing endogenous zfAANAT-2 expression was detected after staining for 8 hr (data not shown). The large difference in the staining intensity among these different λ clone-injected embryos suggests that λ clone zf6 contains the regulatory elements required for pineal-specific expression in the zebrafish embryo.

To confirm the above findings, sequence encoding GFP was inserted in frame into exon II of the zfAANAT-2 gene. The resulting construct, pZF6(GFP) (Fig. 1), was microinjected into one- and two-cell stage zebrafish embryos, the embryos were fixed at 36 hpf, and GFP mRNA was detected by using whole-mount ISH. This strategy resulted in a specific signal in the pineal gland in ~35% of injected embryos with no extra-pineal expression in the remaining embryos (Fig. 3D), demonstrating that pZF6(GFP), like zf6 λ DNA, contains regulatory elements that confer pineal-specific expression.

Constructs containing the 5'-flanking region and 5' UTR upstream of the β -gal or EGFP reporters pCSzfNAT-n β gal and pCS-zf δ -EGFP (Fig. 1) —were also injected. In contrast with the above results, microinjection of these did not produce a consistent pattern of expression; rather, in ~25% of the injected embryos, expression was randomly scattered throughout the body and expression was not observed in the pineal gland (data not shown). The failure of the 5'-flanking region to drive pineal-specific expression, compared with the results obtained with the entire genomic clone indicates that important regulatory elements are present in other regions of the gene, e.g., introns and/or 3'-flanking region.

The influence of the first intron on promoter activity was tested by microinjection of zf6(4.5)GFP (Fig. 1) followed by whole-mount ISH analysis for GFP mRNA. Microinjection of this construct resulted in scattered GFP mRNA expression; no GFP mRNA signal was detected in the pineal (data not shown). These results suggest that the regulatory elements that confer pineal-specific expression are downstream of the first intron.

To test the influence of 3'-flanking sequences, 7 kb of the 3'-flanking region was deleted from pZF6(GFP). Surprisingly, microinjection of the deleted construct pZF6(GFP)ΔAat did not result in GFP mRNA expression in the pineal of 2-day-old embryos; expression was inconsistent with no apparent pattern (data not shown). On the other hand, a smaller deletion of a 3.5-kb AatII fragment, pZF6(GFP)ΔAat3.5 (Fig. 1), did not eradicate promoter activity. Microinjection of this construct resulted in pineal-specific GFP mRNA expression in $\sim 30\%$ of injected embryos, similar to the results obtained with pZF6(GFP). The addition of this deleted 3.5-kb AatII fragment to the pCS-zf6-EGFP construct, giving rise to pCS-zf6-EGFP+3.5Aat (Fig. 1), did not confer pineal-specific GFP expression (data not shown). These results suggest that there are tissuespecificity regulatory elements in the downstreammost 3.5-kb fragment of the zf6 clone.

Based on the above findings, the distal 3'-AatII/SacII 3.5-kb fragment was recovered and cloned into pCSzf6-EGFP. Microinjection of this construct, pCS-zf6-EGFP+3.5Aat/Sac (Fig. 1), restored promoter activity as indicated by a strong exclusive fluorescence in the pineal cells (Fig. 4A). This construct was injected into several hundred embryos in a series of experiments. Expression was consistently observed to occur in $\sim 30\%$ of injected embryos; extra-pineal expression was not seen in the remaining embryos. The pineal signal was detected up to 6 dpf, probably reflecting accumulation of the stable GFP rather than production of new GFP.

Generation of a zfAANAT2-GFP Transgenic Line and Its GFP Expression

The transient expression studies suggested that pCS-zf6-EGFP+3.5Aat/Sac contains sufficient regulatory elements to drive GFP expression in a tissue-

Fig. 3. zfAANAT-2 genomic clone (zf6) contains sufficient regulatory elements to drive transient pineal-specific expression of reporter gene. Whole-mount in situ hybridization (ISH) for zfAANAT-2 mRNA (A–C, frontal view) or green fluorescent protein (GFP) mRNA (D, dorsal view) in 30-36 hpf embryos after microinjection of λ genomic clones zf6 (A), zf7B (B), mouse AANAT gene (C), and plasmid construct pZF6(GFP) (D). Embryos were kept in constant darkness. ISH procedure was done as described, except that staining was performed for only 1.5 hr instead of the usual 8 hr that is done for detection of endogenous zfAANAT-2 mRNA.

specific manner and, therefore, was used in an effort to generate transgenic zebrafish lines. When this construct was injected as both linear and circular DNA, $\sim 30\%$ of injected embryos displayed a pineal glandspecific GFP signal. These GFP-positive larvae were raised to adulthood (founder fish).

To establish stable transgenic lines, founder fish were crossed against wild-type or crossed with each other to generate F1 embryos. Of 73 founder fish tested, two produced embryos expressing GFP in the pineal gland. With one founder, which was injected with a linearized construct, 5% of embryos expressed GFP at day 1 (12 GFP positive of 235), suggesting that the transgenic founder is a germline mosaic, common in production of transgenic zebrafish at the founder generation (Du and Dienhart, 2001). Transgenic embryos were raised to adulthood, and one female was crossed with wild-type male to produce a transgenic line, TG(AANAT2:EGFP)^{y8}. The GFP signal in this line was detectable as early as 23-24 hpf and became stronger at 32 hpf (Fig. 4B). The second founder fish, injected with the circular construct, gave rise to offspring displaying two levels of GFP expression. Among F1 progeny of this founder, 13% (89 GFP positive of 690) of embryos expressed GFP in the pineal gland at day 1 and an additional 11% (75 GFP positive of 690) were GFP

Fig. 4. Pineal-specific expression of green fluorescent protein (GFP) is driven by the 5'-flanking region and a downstream fragment. **A:** Transient expression of GFP in a 3-day-old larva after microinjection of pCS-zf6-EGFP+3.5Aat/Sac, frontal view of the head. **B:** Stable expression of GFP in a prehatched 32 hpf TG(AANAT2:EGFP)^{y8} F2 embryo inside the chorion membrane. **C:** Stable expression of GFP in 3-monthold TG(AANAT2:EGFP)^{y8} F2 adult. **D:** Higher magnification of C. Skin and brain cartilages were removed to expose the pineal gland. A-P indicates anterior-posterior orientation. e, eye; y, yolk.

positive at day 2. These GFP-positive embryos were raised to adulthood and produced two transgenic lines, TG(AANAT2:EGFP)^{y9} and TG(AANAT2:EGFP)^{y12}, respectively. In the TG(AANAT2:EGFP)^{y9} line, GFP signal was detectable at 50 hpf, whereas in the TG(AANAT2: EGFP)^{y12} line the GFP signal was detectable several hours later at 56 hpf. These results suggest that the differences in the onset of GFP expression were hereditary, possibly reflecting different integration sites or copy numbers of the injected gene. In all three lines, examined from 1 to 6 dpf, the GFP signal was observed strictly in the pineal gland; a GFP signal was not detected in the retina or the parapineal organ. The TG(AANAT2:EGFP)^{y8} line, with strong GFP expression, was used for further analysis.

Pineal gland-specific GFP expression was examined in 3-month-old transgenic progeny of TG(AANAT2: EGFP)^{y8}. The robust GFP signal was observed in the pineal gland through the skin and the skull roof (Fig. 4C). To determine the expression domain more clearly, skin and parietal bone were removed to expose the pineal gland. GFP was expressed not only in the pineal body but also in an underlying midline structure, which appears to be the pineal stalk (Gothilf et al., 1999) (Fig. 4D). An asymmetrical pattern of staining consistent with expression in the parapineal—was not detected. Likewise, retinal GFP fluorescence was not detected. Rhythmic changes in fluorescence were not observed in the transgenic fish, presumably because the expressed GFP protein is stable. However, preliminary data indicate that TG(AANAT2:EGFP)^{y8} larvae exhibit a daily rhythm of GFP mRNA expression (data not shown).

GFP Expression Under Mutant Background

As we reported previously, the expression of the zfAANAT-2 gene is influenced by two zebrafish mutants, *floating head* (flh^{n1}) and *mindbomb* (mib^{ta52b} ; Gothilf et al., 1999). zfAANAT-2 mRNA levels are reduced in the flh homozygote embryos due to the reduction in the number of the pineal photoreceptors (Masai et al., 1997). In contrast, zfAANAT-2 expression is upregulated in the *mib* embryos due to the overproduction of neuronal cells (Schier et al., 1996). In view of this, the expression of GFP under the control of the zfAANAT-2 promoter was examined in these mutant backgrounds to determine whether it behaved as the endogenous zfAANAT-2 gene.

Heterozygote mutant carriers $(flh^{+/-} \text{ or } mib^{+/-})$ were crossed with TG(AANAT2:EGFP)^{y8} heterozygote fish and only GFP-positive offspring, heterozygous for GFP, were raised to sexual maturity. The mature GFP^{+/-} F1s were crossed with each other to identify heterozygote mutant carriers (TG(AANAT2:EGFP)^{y8+/-}/flh^{+/-} or $mib^{+/-}$) and to generate homozygous mutant transgenic embryos (TG(AANAT2:EGFP)^{y8}/flh^{-/-} or $mib^{-/-}$). When F1s that are heterozygous for the mutation and for the transgene are crossed, one of four offspring should be homozygous for the mutation ($flh^{-/-}$ or $mib^{-/-}$) and among them three quarters should be GFP positive.

Homozygous mutant embryos were identified by their distinct morphologic abnormalities, and GFP expression was carefully examined at several time points. As expected, among 26 *flh* homozygous embryos, 9 did not express GFP (GFP^{-/-}) and 17 were GFP positive (GFP^{+/-} or GFP^{+/+}). The GFP signal in the pineal gland was significantly reduced in these 17 *flh* mutant embryos compared with that of wild-type embryos (Fig. 5A,B). Among 25 *mib* homozygous embryos, 8 did not express (GFP^{-/-}) and 17 were GFP positive (GFP^{+/-} or GFP^{+/+}). A distinct pineal GFP signal was obvious a few hours earlier in the *mib* mutants as compared to wild type; and, the signal remained stronger in the mutant even after 48 hr (Fig. 5C–F).

DISCUSSION

AANAT-2 expression in zebrafish is exclusive to retinal and pineal complex (epiphysis and paraphysis) photoreceptor cells. In the zebrafish embryo, zfAANAT-2 gene expression begins at 22 hpf in the pineal primordium and at 3 dpf in the developing retina. This evidence makes the zfAANAT-2 gene an excellent marker to study the molecular basis for pineal- and retinal-specific gene expression. In this study, we have cloned and characterized the zfAANAT-2 gene and have shown by using an *in vivo* transient expression assay that both the 5'-flanking re-

Fig. 5. Effect of mutations on green fluorescent protein (GFP) expression in transgenic fish. **A,B:** Embryos resulting from incross of *flh^{+/-}*; AANAT2:GFP^{+/-} at 48 hours postfertilization (hpf). A: Normal sibling; B: *flh^{-/-}* embryo. **C–F:** Embryos resulting from incross of *mib^{+/-}*;AANAT2: GFP^{+/-} at 32 hpf (C,D) and 48 hpf (E,F). C and E are normal sibling; D and F are *mib^{-/-}* embryos. Homozygous mutant embryos (*flh^{-/-}* and *mib^{-/-}*) were identified by their morphology. All pictures were taken at the same light strength and exposure time.

gion and a 3' fragment are needed to obtain pineal-specific expression. On the basis of this information, we produced transgenic zebrafish lines that exhibit pinealspecific expression of GFP that was affected by mutations that are known to have an effect on pineal development.

Promoter Region

As in other fish species, a clock-controlled rhythm in zfAANAT-2 mRNA levels in the pineal gland occurs in zebrafish (Bégay et al., 1998; Gothilf et al., 1999). This rhythm may be regulated by means of the E-box element at position -87; these elements are known to bind the basic-helix-loop-helix (bHLH) transcription factor heterodimer CLK:BMAL and up-regulate the expression of clock-controlled genes (Jin et al., 1999; Reppert and Weaver, 2001). E-box elements are present in other known fish AANAT promoters, including zebrafish AANAT-1 (Coon et al., unpublished results), pufferfish (Flint et al., 2001; accession no. AY016023), and a Fugu AANAT promoter (Bases 5221-8920 of scaffold number 10140, Rokshar et al., DoE Joint Genome Institute, unpublished results). Moreover, a functional E-box element has been described in the promoter of the chicken AANAT gene (Chong et al., 2000).

Recently, knockdown of zebrafish OTX-5, by microinjection of morpholino antisense oligonucleotides, was shown to decrease the amplitude of the zfAANAT-2 mRNA rhythm in the pineal gland (Gamse et al., 2002). This may occur through its binding to the CRX/OTX binding sites (also termed pineal regulatory elements; Li et al., 1998) at positions -283 and -353. This binding site is also present in the fish AANAT promoters listed above.

In the rat, the AANAT promoter is activated strongly by means of cAMP acting through a cAMP response element (CRE; Baler et al., 1997). The zfAANAT-2 promoter contains only one, imperfect, CRE site in the distal promoter region. However, the presence of this site in all other known fish AANAT promoters may indicate that this site has a role in the regulation of AANAT promoter activity.

The rhythmic activity of the zfAANAT-2 promoter may be facilitated by other putative transcription factor binding sites, including those binding SP1 and DeltaE. DeltaE is a zinc finger DNA binding protein that has been shown to repress bHLH-mediated transcription of various genes by competing with the binding of bHLH protein activators on overlapping sequence elements (Genneta et al., 1994; Sekido et al., 1994; Yasui et al., 1998). The possible function of the E-box and of the other putative transcription factor binding sites in the regulation of rhythmic expression of the zfAANAT-2 gene is yet to be tested.

Pineal Gland-Specific Expression

Although the 5'-flanking region contains regulatory elements that can supposedly drive promoter activity, the presence of a downstream fragment is required to drive pineal-specific expression of the reporter gene. Transcription factors that may be responsible for pineal photoreceptor-specific expression may be the known factors RX (Kikuchi et al., 1993), CRX (Li et al., 1998), or both (Kimura et al., 2000), or other known or novel transcription factors. The issue of the functionality of these elements in the downstream region of the gene requires further investigation.

In contrast to previous results showing zfAANAT-2 mRNA expression in photoreceptors of the pineal and retina, the genomic clones and constructs containing several kilobases of 5'- and 3'-flanking regions together did not direct expression of the reporter gene to the retina in either transient expression assays or in the transgenic lines. One explanation for this is that the elements that confer retinal expression are not present in the regions containing sequences required for pineal-specific expression; those regions responsible for retinal expression may reside elsewhere in the gene. Another possible explanation is that GFP protein does not accumulate at detectable levels in retinal photoreceptor cells, because the level of promoter activity is lower, as indicated by the low level of retinal zfAANAT-2 mRNA compared with that in pineal cells.

Characterization of Transgenic Fish

Several observations indicate that the transgenic zebrafish lines described here will be useful in analysis of the development of pineal photoreceptor cells and the molecular basis of pineal photoreceptor-specific gene expression. This belief is indicated in part by the pattern of distribution of the reporter in the adult transgenic fish, which is restricted to the pineal gland and stalk, indicating that it is expressed in photoreceptors. Moreover, mutations that cause abnormal development of the pineal (Masai et al., 1997; Schier et al., 1996), reduce (flh) or elevate (mib) zfAANAT-2 mRNA levels (Gothilf et al., 1999) and expression of GFP in the transgenic fish in a similar way.

The lines of fish described here will be useful in mass mutagenesis and screening for pineal mutations, crossing with different known mutants, and overexpression or knockdown of transcription factors that are suspected to be involved in pineal development and pinealspecific gene expression.

EXPERIMENTAL PROCEDURES Isolation of AANAT Genomic Fragments

A zebrafish genomic library in λ FIX-II (Stratagene, La Jolla, CA) was screened at moderate stringency with a ³²P-labeled (Megaprime labeling kit, Amersham, Arlington Heights, IL) open reading frame (ORF) of pike AANAT-2 cDNA (Coon et al., 1999). Hybridizations were performed at 60°C in QuickHyb (Stratagene) and final washes in 0.2× standard saline citrate, 0.1% sodium dodecyl sulfate at 60°C for 30 min. Two clones (zf6 and zf7B) were identified and purified. Inserts from clones zf6 and zf7B were released by using *Not*I and subcloned into pBluescript II (Stratagene) to give pZF6 and pZF7B, respectively.

Determination of the Transcription Start Site

The transcription start site was determined by using three independent methods.

5' RACE. First-strand cDNA was synthesized from retinal and pineal mRNA by using zf6r1 primer (5'gtttctctttatcccagcc-3'), corresponding to nucleotides 421-439 of the zfAANAT-2 cDNA (accession no. AF124756) antisense strand. 5' RACE was performed by using zf65 primer (5'-ttcgaaactcgctggccggt-3'), corresponding to nucleotide 225-244 of the zfAANAT-2 cDNA antisense strand, and a universal primer (5' RACE kit, Gibco BRL). The reaction product was subcloned into pGEM-T Easy (Promega, Madison, WI) and sequenced by using an ABI automated sequencer. This clone, zf5', contains 123 bp 5' to the ATG translation start codon. An additional first-strand cDNA synthesis and 5' RACE were performed by using more upstream primers; a product was obtained indicating a 5' UTR of similar length.

RNAse protection assay. By using pZF6 as a template, a DNA fragment spanning 455 bp upstream of the ATG translation start codon was PCR amplified by

using zf6f7 (5'-tcatctgacaatctcatcc-3') and zf6r9 (5'cgtcggatcctgacacgcgcacactttag-3') primers. The product was subcloned into pGEM-T Easy, and the resulting clone, pF7R9, was linearized with *NcoI* for use as a template to synthesize [³²P]-labeled RNA probe (MAXIscript in vitro transcription kit, Ambion, Austin, TX). The probe (60 fmol; specific activity, 37,000 cpm/ fmol) was hybridized with adult zebrafish eye poly(A⁺)RNA (extracted from 20 eyes). After an overnight incubation at 42°C, unprotected fragments were degraded with a mixture of RNAse A and RNAse T1 and the protected fragment, of approximately 120 bp, was resolved on a 5% denaturing polyacrylamide gel.

Primer extension. Primer extension and sequencing reactions were performed by using px2 primer (5'acacgcgcacaccttagacaatactg-3'), corresponding to nucleotides 95-120 of the zfAANAT-2 cDNA antisense strand. The primer was 5'-end labeled with ${}^{32}P$ by using T4 polynucleotide kinase. A mixture of 1 μ g of adult zebrafish eye $poly(A^+)RNA$ and 1 pmol of labeled primer was denatured at 95°C for 5 min and then allowed to hybridize at 70°C for 10 min. Reverse transcription was done at 42°C by using avian myeloblastosis virus (AMV) reverse transcriptase (Promega). After the reaction was completed, additional zebrafish eye poly(A^+)RNA (1 µg) was added and the mixture was denatured at 95°C for 5 min and allowed to hybridize at 70°C for 10 min; a second reverse transcription reaction was initiated with the addition of the thermophilic reverse transcriptase *Tth* DNA polymerase (Epicentre, Madison, WI) and incubated for 30 min at 70°C to disrupt secondary structures that may have inhibited AMV reverse transcriptase. The reverse transcription product was resolved on an 8% polyacrylamide gel along with a sequencing reaction of pZF6 that was performed by using the fmol sequencing system (Promega).

DNA Constructs

pCSzfNAT-nβgal. The zfAANAT-2 promoter was placed upstream of a β-galactosidase coding sequence. A 1.8-kb fragment containing 1.65 kb of 5'-flanking region and the 123-bp 5' UTR of the zfAANAT-2 gene was PCR amplified from the λ clone zf6 as a template by using a specific primer zf6r9 containing *Bam*HI restriction site (5'-cgtcggatcctgacacgcgcacactttag-3') and T3 primer. The product was digested with *Bam*HI and *Sal*I and ligated into *Bam*HI/*Sal*I-cut pCS-nβgal (Turner and Weintraub, 1994).

pCS-zf6-EGFP. The zfAANAT-2 promoter was placed upstream of an EGFP reporter gene. A fragment containing the 5'-flanking region and 5' UTR of the zfAANAT-2 gene was subcloned into pCS2+EGFP vector upstream of the EGFP-coding sequence as described above for pCSzfNAT-n β gal. pCS-zf6-EGFP has another polylinker downstream of the EGFP-coding sequence for subcloning of additional regions of interest (see below).

pZF6(GFP). Sequence encoding EGFP was inserted

in frame into exon II of the zfAANAT-2 gene. A GFPcoding DNA fragment was PCR amplified by using a set of GFP-specific primers containing *NcoI* restriction sites. The fragment was digested with *NcoI* and ligated into a unique *NcoI* site in exon II of pZF6 (a genomic zfAANAT-2 clone subcloned into pBluescript II, see above).

 $pZF6(GFP)\Delta Aat 3.5$. Part of the 3'-flanking region was deleted from pZF6(GFP). pZF6(GFP) was digested with AatII and religated. This procedure resulted in a deletion of approximately 3.5 kb in the 3'-flanking region, leaving the upstream-most 2 kb and downstreammost 3.5 kb of 3'-flanking sequence.

 $pZF6(GFP)\Delta Aat$. Most of the 3'-flanking region was deleted from pZF6(GFP). pZF6(GFP) was double digested with *SacII* and *AatII* and religated with the addition of a polylinker. This procedure resulted in a deletion of approximately 7 kb of the 3'-flanking region, leaving only 2 kb of 3'-flanking sequence.

zf6(4.5)GFP. A fragment spanning the 5'-flanking region down to exon II was placed upstream of an EGFP reporter. pZF6 was digested with *NcoI*, situated in exon II, and *NotI*, situated 5' to the insert, and the resulting 4.5-kb fragment was inserted instead of the α -actin promoter of α p-GFP(S65A) (Higashijima et al., 1997) in frame with the GFP(S65A)-coding sequence.

pCS-zf6-EGFP+3.5Aat. Part of the 3'-flanking region was added to pCS-zf6-EGFP. pZF6 was cut with *Aat*II, and a 3.5-kb *Aat*II fragment was recovered and cloned into *Aat*II-cut pGEM-T Easy vector. The insert, a 3.5-kb *Aat*II fragment, was excised with *Apa*I and *Not*I located in the pGEM-T Easy vector and ligated into *ApaI/Not*I-cut pCS-zf6-EGFP downstream of the polyadenylation signal.

pCS-zf6-EGFP+3.5Aat/Sac. Downstream-most part of the 3'-flanking region was added to pCS-zf6-EGFP. pZF6 was cut with *Aat*II and *Sac*II, and the 3'-most 3.5-kb fragment was cloned into *Aat*II/*Sac*IIcut pGEM-T Easy. The insert, a 3.5-kb *Aat*II/*Sac*II fragment, was excised with *Sac*II and *Apa*I located in the pGEM-T Easy vector and subcloned into *Sac*II/ *Apa*I-cut pCS-zf6-EGFP downstream of the polyadenylation signal.

Microinjection of Zebrafish Embryos and Transient Expression Assay

Plasmid DNA was purified by using a plasmid isolation kit (Qiagen, Valencia, CA). DNA from λ clones was extracted to high purity by CsCl step and equilibrium density-gradient centrifugation (Maniatis et al., 1982). The DNA constructs (Fig. 1) were diluted to a concentration of 50 ng/µl and phenol red was added to a final concentration of 0.1%. Approximately 2 nl of the diluted DNA was microinjected into the cytoplasm of oneor two-cell stage zebrafish zygotes, and development proceeded at 28°C. Injected embryos were collected at different times after fertilization, and zfAANAT-2 promoter activity was estimated in all injected embryos by one of the following methods: (1) When β-gal was used as the reporter gene, β -gal labeling was done as described (Du et al., 1997). (2) When GFP was used as the reporter gene, GFP fluorescence in live embryos was detected under a dissecting microscope (Leica MZFLIII) equipped with ultraviolet-light source and GFP filters. Alternatively, GFP mRNA was detected by whole-mount ISH (Toyama and Dawid, 1997). (3) When DNA of λ clones was injected (no reporter gene used), zfAANAT-2 mRNA levels were determined by wholemount ISH. Each DNA construct was tested two to three times; each time, > 100 embryos were injected.

Production of Stable Transgenic Lines

To generate stable transgenic lines, pCS-zf6-EGFP+3.5Aat/Sac (300 pg) was injected into the cytoplasm of wild-type AB* zebrafish zygotes immediately after fertilization, before fertilized eggs reached the one cell stage. Both circular and *Cla*I-linearized constructs were injected. Three days after injection, embryos were examined, and GFP fluorescence-positive embryos were selected and cultured to adult stage.

Embryo and Larval Culture

Zebrafish embryos were generated by natural mating and raised at 28°C in egg water (Westerfield, 1995). Two mutant zebrafish lines, *mindbomb* (*mib*^{ta52b}; Schier et al., 1996) and *floating head* (*flh*ⁿ¹; Halpern et al., 1995; Talbot et al., 1995), were also studied because they exhibit abnormal pineal development (Schier et al., 1996; Masai et al., 1997) and zfAANAT-2 expression (Gothilf et al., 1999).

ACKNOWLEDGMENTS

The authors thank Ms. Elizabeth Laver, National Institute of Child Health and Human Development, for assistance with fish crossing and handling; Dr. Joe Breen, National Institute of Allergy and Infectious Diseases, for providing us with the pCS2⁺EGFP vector; and Ms. Kathy Kight, University of Maryland, and Dr. Gert Veenstra, National Institute of Child Health and Human Development, for fruitful discussions regarding the transcription initiation region. Fugu genome sequence data has been provided freely by the DoE Joint Genome Institute and the Fugu Genome Consortium for use in this publication only.

REFERENCES

- Arendt J. 1995. Melatonin and the mammalian pineal gland. London: Chapman and Hall.
- Baler R, Covington S, Klein DC. 1997. The rat arylalkylamine Nacetyltransferase gene promoter. cAMP activation via a cAMPresponsive element-CCAAT complex. J Biol Chem 272:6979-6985.
- Bégay V, Falcon J, Cahill GM, Klein DC, Coon SL. 1998. Transcripts encoding two melatonin synthesis enzymes in the teleost pineal organ: circadian regulation in pike and zebrafish, but not in trout. Endocrinology 139:905–912.
- Benbrook DM, Jones NC. 1994. Different binding specificities and transactivation of variant CRE's by CREB complexes. Nucleic Acids Res 22:1463–1469.
- Benyassi A, Schwartz C, Coon SL, Klein DC, Falcon J. 2000. Melatonin synthesis: arylalkylamine N-acetyltransferases in trout retina and pineal organ are different. Neuroreport 11:255–258.

- Bernard M, Klein DC, Zatz M. 1997. Chick pineal clock regulates serotonin N-acetyltransferase mRNA rhythm in culture. Proc Natl Acad Sci U S A 94:304–309.
- Chalkley GE, Verrijzer CP. 1999. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II)150 complex recognizes the initiator. EMBO J 18:4835–4845.
- Chong NW, Bernard M, Klein, DC. 2000. Characterization of the chicken serotonin N-acetyltransferase gene. Activation via clock gene heterodimer/E box interaction. J Biol Chem 275:32991–32998.
- Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW. 2000. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28:399-409.
- Coon SL, Bégay V, Deurloo D, Falcón J, Klein DC. 1999. Two arylalkylamine N-acetyltransferase genes mediate melatonin synthesis in fish. J Biol Chem 274:9076-9082.
- Du SJ, Dienhart M. 2001. The zebrafish *tiggy-winkle hedgehog* promoter directs notochord and floor plate GFP expression in transgenic zebrafish embryos. Dev Dyn 222:655–666.
- Du SJ, Devoto SH, Westerfield M, Moon RT. 1997. Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF- β gene families. J Cell Biol 139:145–156.
- Falcón J, Galarneau KM, Weller JL, Ron B, Chen G, Coon SL, Klein DC. 2001. Regulation of arylalkylamine N-acetyltransferase-2 (AANAT2, EC 2.3.1.87) in the fish pineal organ: evidence for a role of proteasomal proteolysis. Endocrinology 142:1804–1813.
- Flint J, Tufarelli C, Peden J, Clark K, Daniels RJ, Hardison R, Miller W, Philipsen S, Tan-Un KC, McMorrow T, Frampton J, Alter BP, Frischauf AM, Higgs DR. 2001. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Hum Mol Genet 10:371–382.
- Gamse JT, Shen YC, Thisse C, Thisse B, Raymond PA, Halpern ME, Liang JO. 2002. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet 30:117–121.
- Gastel JA, Roseboom PH, Rinaldi PA, Weller JL, Klein DC. 1998. Melatonin production: proteasomal proteolysis in serotonin *N*-acetyltransferase regulation. Science 279:1358-1360.
- Genetta T, Ruezinsky D, Kadesch T. 1994. Displacement of an E-boxbinding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol 14:6153–6163.
- Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MAA, Klein DC. 1999. Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140:4895–4903.
- Halpern ME, Thisse C, Ho RK, Thisse B, Riggleman B, Trevarrow B, Weinberg ES, Postlethwait JH, Kimmel CB. 1995. Cell-autonomous shift from axial to paraxial mesodermal development in zebrafish floating head mutants. Development 121:4257–4264.
- Higashijima S-I, Okamoto H, Ueno N, Hotta Y, Eguchi G. 1997. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles of the whole body by using promoters of zebrafish origin. Dev Biol 192:289–299.
- Hill C. 1891. Development of the epiphysis in Coregonus albus. J Morphol 5:503-510.
- Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68.
- Kadonaga JT, Carner KR, Masiarz FR, Tjian R. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51:1079–1090.
- Kikuchi T, Raju K, Breitman ML, Shinohara T. 1993. The proximal promoter of the mouse arrestin gene directs gene expression in photoreceptor cells and contains an evolutionarily conserved retinal factor-binding site. Mol Cell Biol 13:4400–4408.
- Kimura A, Singh D, Wawrousek EF, Kikuchi M, Nakamura M, Shinohara T. 2000. Both PCE-1/RX and OTX/CRX interactions are necessary for photoreceptor-specific gene expression. J Biol Chem 275:1152–1160.
- Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Bégay V, Falcón J, Cahill GM, Cassone VM, Baler R. 1997. The melatonin rhythm-generating

enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–357.

- Li X, Chen S, Wang Q, Zack DJ, Snyder SH, Borjigin J. 1998. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retinal-specific transcription factor CRX. Proc Natl Acad Sci U S A 95:1876–1881.
- McNutly JA. 1984. Functional morphology of the pineal complex in cyclostomes, elasmobranchs, and bony fishes. Pineal Res Rev 2:1–40.
- Maniatis T, Fritsch EF, Sambrook J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.
- Masai I, Heisenberg CP, Barth KA, Macdonald R, Adamek S, Wilson SW. 1997. *floating head* and *masterblind* regulate neuronal patterning in the roof of the forebrain. Neuron 18:43-57.
- Reppert SM, Weaver DR. 2001. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676.
- Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC. 1996. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 137:3033–3045.
- Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, Klein DC. 1998. Natural melatonin 'knockdown' in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res Mol Brain Res 63:189–197.

- Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, Yang H, Driever W. 1996. Mutations affecting the development of the embryonic zebrafish brain. Development 123:165–178.
- Sekido R, Murai K, Funahashi J, Kamachi Y, Fujisawa-Sehara A, Nabeshima Y, Kondoh H. 1994. The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol Cell Biol 14:5692–5700.
- Talbot WS, Trevarrow B, Halpern ME, Melby AE, Farr G, Postlethwait JH, Jowett T, Kimmel CB, Kimelman D. 1995. A homeobox gene essential for zebrafish notochord development. Nature 378: 150–157.
- Toyama R, Dawid IB. 1997. Lim6, a novel LIM homeobox gene in the zebrafish: comparison of its expression pattern with lim1. Dev Dyn 209:406–417.
- Turner DL, Weintraub H. 1994. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8:1434-1447.
- Westerfield M. 1995. The zebrafish book. Oregon: University of Oregon Press.
- Yasui DH, Genetta T, Kadesch T, Williams TM, Swain SL, Tsui LV, Huber BT. 1998. Transcriptional repression of the IL-2 gene in Th cells by ZEB. J Immunol 160:4433–4440.