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INTRODUCTION

Population viability analysis (PVA) is a central tool in conservation biology

(Soulé 1987).  The use of population models in this context represents an application of

ecological theory to real world problems, often in an attempt to develop management

practices that minimize the risk of extinction of protected species (Burgman et al. 1993). 

Transition matrix models are a widely used method for PVA (Menges 1990, 2000).  The

technique involves pooling information on many aspects of a species’ life-cycle,

including recruitment, survival, and growth, into a single structured model (Caswell

2001).  The method has been promoted as a powerful tool for PVA and for understanding

the basic life-history of species targeted for conservation, partly because of its flexibility

in accommodating different species and the variety of useful demographic parameters it

can estimate (Schemske et al. 1994).  However, differences in implementation of PVA

models can lead to alternative, even conflicting, conclusions, even when the same source

data are used (Lindenmeyer et al. 1995, Mills et al. 1996, Pascual et al. 1997, Brook et al.

1999), and this is true for matrix models as well (Nakoaka 1996, Chapter 3). 

Correlation among vital rates may affect the outcome of risk assessments in

general (Bukowski et al. 1995) and stochastic matrix models in particular (Tuljapurkar

1982, Caswell 2001).  Positive correlations are possible when different stages respond in

similar ways to their environment.  For example, if rainfall in a given year promotes

growth of both small and large individuals to the next higher size class, these growth

probabilities will likely be correlated over time.  Positive correlations among vital rates
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have been shown to increase variability in estimates of average growth rate and

extinction risk (Doak et al. 1994).  There is ample evidence that demographic parameters

are correlated across years and environments (Horvitz and Schemske 1995, Horvitz et al.

1997, Caswell 2000, Oostermeijer et al. 1996), and inclusion of this correlation structure

in stochastic models may be necessary to avoid overly optimistic estimates of population

viability (Nakoaka 1996).  However, negative correlations among vital rates are also

possible (Oostermeijer et al. 1996), and these tend to counteract the effects of positive

correlations (Tuljapurkar 1982, Ferson and Burgman 1995, Orzack 1997).  Therefore, the

effect of correlation structure on population viability estimates may depend on the nature

of the correlations among vital rates, which, in turn, may differ among species and

environments.  

Transition matrices can generate estimates of deterministic parameters such as

population growth rate, sensitivities and elasticities, equilibrium population structure, and

reproductive values.  Often of greater concern to the conservationist are probabilistic

measures of population health, such as extinction risk, time to extinction, and stochastic

growth rate.  These measures of population viability can be estimated when demographic

and/or environmental stochasticity are incorporated into a model (Menges 2000, Caswell

2001).  Inclusion of environmental stochasticity into matrix models has generally been

accomplished through one of two mechanisms, matrix or element selection.  For both

methods, repeated estimates of annual recruitment, growth and survival must be available

(e.g., Bierzychudeck 1982) or temporal variability must be somehow assumed (e.g.,

Menges 1992).  Matrix selection involves shuffling whole observed matrices at random
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at each time step of a simulation, while element selection requires drawing each

component of the matrix at random from some statistical distribution.  However, the two

methods do not always give the same results (Greenlee and Kaye 1997, Kaye et al. 2001,

see also Chapter 3).  In addition, for implementation of the element selection method, too

few data are usually available for a formal assessment of goodness of fit, so a statistical

distribution is often assumed and the distribution is fit to the data at hand.  In some cases,

even if a reliable test of fit is possible, the statistically best distribution may be rejected

on the basis of biological or theoretical reasons, or because of modeling convenience. 

Unfortunately, different statistical distributions of such input variables may change

assessments of population viability (Nakoaka 1997), and information on temporal

variation in demographic parameters is sparse (Menges 1992).  The overall implications

of which stochastic method is chosen remain unclear.

Few examples of incorporating correlation structure into stochastic matrix models

are available, and these tend to emphasize positive correlations and single species. 

Comparisons of different methods of incorporating stochasticity are also infrequent,

especially those that examine the effects of various statistical distributions for element

selection (Chapter 3).  One reason correlation structure is seldom included is that

multivariate random number generators are not widely available (Caswell 2001) and

implementation is generally complex.  In this paper, we compare the effects of

correlation among vital rates on population viability using five methods of stochastic

matrix simulation (bootstrap, beta, truncated normal, truncated gamma, and uniform

distributions).  We evaluate the results with a measure of population viability (stochastic
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growth rate) derived from observed data for multiple species and several populations. 

Our primary objectives are to 1) assess the effects of correlations among vital rates on

population viability estimates and determine if these effects differ among species and

stochastic methods, 2) explore factors that influence the effects of these correlations, and

3) measure the correlation of viability estimates derived through different methods. 

METHODS

Study species and data sets

Data from five plant species were included in this analysis: Astragalus tyghensis

Peck (Fabaceae), Cimicifuga elata Nutt. (Ranunculaceae), Haplopappus radiatus Nutt.

(Cronq.) (Asteraceae), Lomatium bradshawii Rose (Math. & Const.) (Apiaceae), and L.

cookii Kagan (Apiaceae).  All of these taxa are herbaceous perennials and rare or

endangered in the western United States (Oregon Natural Heritage Program 2001).  Data

were collected from multiple populations of each species over a period of five to ten

years (Table 4.1); the number of observed transition matrices for each population was

one less than the number of years of observation, except for L. bradshawii because one

year of sampling was skipped resulting in only seven matrices from nine years of
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observation.  In total, multi-year data from 27 populations were used.  We included

species from a variety of habitats and ecoregions in Oregon.  In all cases, individual

plants were followed through time as mapped and/or tagged individuals, and recruitment

of seedlings (first year plants) was monitored annually.  Stage-specific fecundity was

estimated based on per capita seed production in year t and seedling recruitment in year

t+1 (as in Kaye et al. 2001; “anonymous reproduction” of Caswell [2001:173-174]), or, if

only one reproductive stage was recognized, based on seedlings observed in year t+1 per

reproductive plant in year t.  No seed bank stage was included in our models because

biological evidence from studies of these species suggests that their seeds may not persist

in the soil or have delayed germination.  For example, no viable seeds more than one year

old have been detected in field studies of Lomatium species (Thompson 1985), including

L. bradshawii (Kaye et al. 2001), or H. radiatus (Kaye unpublished data).  Seeds of C.

elata stored under dry, room-temperature conditions do not remain viable for greater than

one year, and field sown seeds of A. tyghensis emerge in the following spring only (Kaye

unpublished data).  Information on each species, including field sampling techniques,

individual matrix construction methods, and the annual matrices, is available in the

Appendix.

Stochastic population growth rate

We focused on stochastic population growth rate (λs) as a measure of population

viability for this analysis.  Stochastic growth rate was chosen over the more conventional

extinction probability because it is not tied to a particular time horizon.  Most estimates
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of extinction probability are based on simulations for a particular period of time, such as

100 years, and this time period may be selected to resolve differences between

populations or treatments (i.e., if all populations go extinct after 100 year projections, the

time window may be shortened until at least some populations have a chance of

persisting).  However, this variability in time span makes it difficult to compare results

across studies (Menges 2000), and we found it difficult to identify a single time horizon

appropriate to all 27 data sets included in this study.  Any one period of simulation either

resulted in several populations with extinction probabilities of 0 or 1.  This resulted in an

inability to resolve differences in these populations, and created many constant values

inappropriate for evaluation with analysis of variance (ANOVA).  Unlike the

deterministic growth rate (λ), λs incorporates environmental variability and does not

assume a stable (equilibrium) population structure (Tuljapurkar 1990).  Further, as

stochasticity increases, λs declines, and is always less than the average growth rate

(which estimates λ) (Caswell 2001).  Populations with λs greater than 1.0 are projected to

grow, while those with λs less than 1.0 are projected to decline, making λs a convenient

measure of population viability in stochastic environments.

To calculate λs, we followed the numerical simulation method outlined in Caswell

(2001:396).  When the log of population growth is averaged over a very large number of

time steps, it converges to a fixed value determined by vital rates and environmental

processes (Caswell 2001, Tuljapurkar 1990).  For each type of simulation, we ran the

models for 10,000 time steps (discarding the first 500 to omit transient effects) to
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calculate λs.  All stochastic modeling described in this paper was implemented in

MATLAB 5 (The Mathworks 1998).

Modeling environmental stochasticity

Environmental stochasticity was modeled by randomly selecting transition matrix

elements from either observed values (a bootstrap approach) or parametric distributions

fit to the observed values.  We compared these approaches to evaluate the effect of

distribution shape on the importance of correlation to estimates of λs. The observed

values represented the temporal variability known for each population of each species. 

At each time step of a simulation, a matrix was constructed at random and post-

multiplied by the vector of individual abundances to obtain a new vector of individual

stage abundances.  The initial stage distribution was the average observed distribution

over all years of observation for each population.  For the bootstrap method, stage

specific recruitment (the top row of the transition matrices) was allowed to vary through

time by randomly selecting from among the observed recruitment rates.  For each of the

parametric methods described below, recruitment varied according to a gamma

distribution, which has been shown to work well for fecundities (Tallie et al. 1995). 

When individual transitions (elements) are selected at random, the cumulative survival

(the sum of all transitions in a matrix column excluding recruitment) for a given stage

can, but should not, exceed 100%.  It is important to constrain stage-specific survival so

that it is never greater than 100%, or the model will create individuals from nothing

(Caswell 2001) and produce an overly optimistic estimate of population viability.  We
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constrained survival with the rescaling method of Chapter 3, which rescales each

transition rate (including mortality) so that the sum of all rates of a given stage always

sums to 100% while minimizing bias to the element means.

Distributions of vital rates.  We compared five methods of randomly varying transition

elements.  These were the bootstrap and four parametric distributions: beta, truncated

gamma, truncated normal, and uniform.  To incorporate stochasticity via the bootstrap,

the observed values were assumed to be independently and identically distributed (iid)

(the observed/discontinuous distribution of Chapter 3).  For the parametric approaches, a

statistical distribution was first fit to the observed data for each transition element, then

random values were drawn from the distribution to create a new matrix at each time step. 

Each of these distributions has been used in previous stochastic modeling studies (Table

4.2).  Because transition probabilities must be bounded by 0 and 1, the fitted distributions

must also be constrained or transition probabilities less than zero or greater than 1 might

be selected at random, a modeling error that is biologically unsound.  Therefore, the beta

distribution is a good candidate, since it is bounded by 0 and 1 by definition.  The beta is

also very flexible, capable of fitting to an extremely wide variety of distribution shapes

(Evans et al. 2000).  The normal distribution, on the other hand, must be truncated to 0

and 1.  The gamma distribution is bounded by 0 on the left tail, but was truncated to 1 on

the right in our simulations.  For the uniform distribution (also known as the rectangular

distribution), we determined only the minimum and maximum values from our data sets. 
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Table 4.2.  Examples of stochastic models, their inclusion of correlation structure, and
use of statistical distributions for varying transition elements.

correlation among
vital rates

distribution species or study citation

none normal comparative study Guerrant 1996

none truncated
lognormal

giant kelp Burgman and Gerard
1990

none truncated normal various, comparative Menges 1992

none truncated normal Lomatium bradshawii Kaye et al. 2001

none truncated normal
and lognormal

Yoldia notabilis Nakoaka 1997

none gamma Chinook salmon Ratner et al. 1997.

none uniform Pediocactus paradinei Frye 1998

none uniform Astragalus
cremnophylax 

Maschinski et al. 1997.

none observed/
discontinuous

red-cockaded
woodpecker

Maguire et al. 1995

perfect positive
correlation

lognormal
(truncated for
survivals)

spotted owl Akçakaya and Raphael
1998

perfect positive
correlation

truncated normal Totoaba macdonaldi Cisneros-Mata et al.
1997.

perfect positive
correlation

uniform Euphorbia clivicola Pfab and Witkowski
2000

as observed beta Desert tortoise Doak et al. 1994

as observed beta Hudsonia montana Gross et al. 1998

retained within
whole matrices

bootstrap (matrix
selection)

jack-in-the-pulpit Bierzychudeck 1982

retained within
whole matrices

bootstrap (matrix
selection)

Gentianella campestris Lennartsson 2000
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The method of matching moments was used to fit the beta and gamma distributions to our

data because observed values contained zeros and ones in for some transitions.  An

alternative would have been to use maximum likelihood estimation techniques, but this

would have forced us to drop observed values equal to 0 or 1.  However, dropping these

values would necessitate dropping entire matrices if we were to compare element

selection with bootstrapping of observed whole matrices, and we wanted to emphasize

the empirical basis of our data sets while maximizing the available sample sizes.  Frey

and Burmaster (1999) have shown that, for the beta distribution at least, although the

method of matching moments produces less efficient statistical parameter estimates than

maximum likelihood methods, matching moment estimates are less sensitive to extreme

values.  Therefore, we used matching moment estimators because they appear to be

adequately robust and because they tolerated the occasional zeros and ones among our

observed values. 

Correlation among vital rates.  For all distributions except the bootstrap, we used the

method of Fackler (1999) to generate dependent random variables (e.g., matrix elements

such as recruitment, vegetative plant growth, stasis of reproductive individuals, etc.) with

the marginal distributions we selected.  The pairwise dependence of the variables was

specified by an observed correlation matrix for each population.  Even though our sample

sizes were relatively low (4-9) for estimating correlations, they were typical (if not large)

for demographic studies of rare species.  The key to this technique is to specify the

correlation matrix using a non-parametric correlation measure that is not sensitive to
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monotonic transformations of the variables (Fackler 1999).  This method is equivalent to

the normal copula (Fackler, personal communication), and appears to be similar to that

proposed by Iman and Conover (1982) and reviewed in Haas (1999).  It does not seem to

have been implemented previously in the context of stochastic matrix models.  Copulas

are functions that describe the relationship between variables based on their joint

dependencies and marginal distributions (the reader is referred to Genest and MacKay

1986 and Nelson 1999 for introductions to copulas).  We used Spearman rank correlation

coefficients (Rs) (which, for the joint normal distribution, are associated with the Pearson

fractile correlations [C] by C=2×sin [π/6×Rs]), because they are not sensitive to non-

linear transformations of the variables, while Pearson product moment correlations are. 

This method involves generating a set of correlated normal variates, through use of the

Cholesky decomposition of C, which are then transformed to have uniform marginals. 

The desired inverse probability transform is then applied to each variate individually,

thus retaining the fractile correlation structure.  One convenient feature of this approach

is that individual variates may be transformed to different marginal distributions and still

maintain the specified correlation structure, which accommodates our use of the gamma

distribution for recruitment and the same or other distributions for transition

probabilities.  Use of the Cholesky function requires that the correlation matrix be

positive semidefinite, which was not always the case in our data sets (possibly because

some correlations could be derived from linear combinations of others).  Therefore, we

applied a ridge correction to the correlation matrices prior to their use by adding a value

equal to the minimum eigenvalue of each matrix.  In all cases, this value was extremely
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small (#10-16), and resulted in no detectable corruption of the realized marginals or

correlations.

Maintaining correlation structure for the bootstrap method was treated as a special

case.  Instead of selecting correlated variates using Fackler’s (1999) method, we selected

whole observed matrices from among the observed data sets.  This technique of

incorporating environmental stochasticity is also known as matrix selection (Chapters 2

and 3), and preserves the observed association of matrix elements (Greenlee and Kaye

1997, Menges 2000, Kaye et al. 2001).

Analysis

Tests for effects of correlation, input distributions, and study species. We tested for

effects of correlation among vital rates, input distributions, species, and interactions

among these factors using SAS proc mixed (SAS Institute, Inc. 1990).  Use of raw

estimates of λs as a response variable posed a difficulty because we were likely to detect

species effects simply because some species may have had stronger or weaker population

growth rates.  Further, we were interested in the relative effects of these methods more

than their actual estimates of mean λs.  Therefore, we chose as a response variable the

proportional change in λs when correlation among elements was included.  We

considered this response variable to be structured in a split plot design, with species as

the whole plot.
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Detecting bias in mean Rs.  Our procedure of constraining survival to #100% was

applied to each column of a matrix independent of the other columns after random values

were drawn.  This procedure introduced the possibility of altering the correlation among

the transition elements in unpredicted ways.  To test for bias to the Spearman rank

correlation coefficients, we compared the mean Rs of each transition element in the

observed data sets with simulated results for each species.  First, we used the

distributions and correlation method described above to generate 1000 random matrices

from each population.  Second, we calculated the mean Rs for each of these sets.  Third,

we calculated the difference between the mean observed Rs and the simulated Rs as an

estimate of bias.  Mean estimates of bias for each species were then evaluated for

significant difference from zero and from one another using ANOVA.  

Explaining variation in effects of correlation. The magnitude and direction of

correlations are both important aspects of the overall correlation structure among the vital

rates in a transition matrix.  In theory, as the correlation among elements increases, so to

will its effect on population dynamics.  This effect, however, will be controlled, at least

in part, by the sign of the correlations, with positive and negative correlations cancelling

each other out.  From the observed correlation matrices for each of our study populations,

we calculated 1) the mean absolute value of Rs (|Rs|), 2) the difference between the

absolute value of the mean positive and negative Rss (0posRs&|0negRs|), and 3) the ratio of

the number of positive to negative correlations.  The first is a measure of overall

correlation strength, such that as the magnitude of correlations increase, average |Rs|



108

increases as well, regardless of correlation sign.  The other two are indices of the balance

between positive and negative correlations.  For example, if the strength of positive

correlations is exactly matched by negative correlations, their difference will be zero. 

But if negative correlations are stronger than the positives, the difference will be less than

zero (and vice versa).  Similarly, if negative Rs outnumber positive Rs, their ratio will be

less than one (and vice versa).  We performed a stepwise multiple regression with mean

proportional change in λs due to correlation for each species as the dependent variable,

and mean |Rs|, difference between mean positive and negative Rs, and ratio of positive to

negative Rs as the potential explanatory variables.

Correlation between techniques.  Even if combining dependencies among transition

elements with the various techniques for incorporating stochasticity results in different

estimates of λs, we would like to know if the various methods yield relatively similar

results.  That is, if one population has a higher estimated λs than another as measured by

one stochastic method in combination with correlation among vital rates, is it also higher

as measured by a different method?  Does this relationship change if correlation

structured is omitted?  To measure their degree of association, we correlated estimates of

λs from each method of including temporal variability using the Pearson product moment

(R), and this procedure was repeated for estimates with and without correlation among

vital rates.

RESULTS
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Effects of correlation, input distributions, and study species

The effect of including correlation among vital rates on estimates of λs differed

between study species (P=0.0101) but not among the various statistical distributions and

methods used to incorporate stochasticity (P=0.1209), and there was no interaction

between these terms (P=0.1147) in a split-plot ANOVA (Table 4.3).  The significant

effect of species in this model can be interpreted as an interaction between species and

correlation effects on estimated λs.  Estimates of λs were significantly lower when

correlation was included than when it was omitted from the stochastic models for two of

the five species examined here (Figure 4.1, note asterisks).  Including observed

correlation among transition elements reduced estimates of λs by 1.7% on average for A.

tyghensis and 3.0% for L. bradshawii, but there was no detectable effect in three other

species.  The magnitude of this effect was greatest in L. bradshawii and least in C. elata

and H. radiatus, and intermediate in A. tyghensis and L. cookii.  

Bias in Rs

A small, but significant, positive bias was detected among the correlation

coefficients in our simulated matrices relative to the observed Rs.  The strength of this

bias differed among species, ranging from an average of 0.012 in H. radiatus to  0.047 in

C. elata, and was significantly different from zero (P#0.0001) in each case (Figure 4.2).
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Table 4.3.  Split-plot ANOVA for the effects of statistical distribution of input variables
and species on the proportional change in λs when correlations among vital rates are
included (NDF and DDF are numerator and denominator degrees of freedom).

source NDF DDF Type III F P

whole plot

species 4 22 4.3 0.0101

subplot

distribution 4 88 1.88 0.1209

interaction

species×distribution 16 88 1.51 0.1147
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Figure 4.1.  Mean (±1 SE) proportional effect of correlation on stochastic growth rate (λs)
for five plant species.  Bars with the same letter do not differ at the 0.05 level of
probability (Fisher’s protected LSD) and asterisks indicate significant difference from
zero (*0.05>P$0.01, **P#0.0001).
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Figure 4.2.  Mean (±1 SE) bias in Spearman rank correlation coefficients (Rs) for each of
five plant species examined.  Bias was defined here as the average difference between
mean observed and simulated Rs.
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Effects of correlation strength and sign on stochastic growth rate

The average absolute value of Rs ranged from 0.35 in H. radiatus to 0.51 in L.

cookii (Figure 4.3, top), while the average difference between mean positive and negative

Rs was closest to zero in L. bradshawii (0.001) and most negative in H. radiatus (-0.044)

(Figure 4.3, center).  Negative Rs outnumbered positive Rs by a ratio of 0.930 in L.

bradshawii to 0.858 in H. radiatus (Figure 4.3, bottom).  In stepwise multiple regression

with proportional effect of correlation on λs as the dependent variable, the only factor in

the final model was the ratio of the number of positive to negative Rs (Figure 4.4).  The

final model explained 95.6% of the variability in correlation effect (P=0.0026), and took

the form:

     proportional effect of correlation on λs=0.392×[no. positive:negative Rs]- 0.335

In separate regressions, the proportional effect of vital rate correlations on λs was

also associated with the difference between mean positive and negative Rs at (R=0.84,

P=0.075), but the linear association of this factor with the ratio of positive to negative Rs

(R=0.89, P=0.044) prevented it from entering the stepwise regression model.  There was

no significant association between effect of correlation on λs and mean |Rs| either alone

(R=0.22, P=0.73), or as part of a larger regression model.
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Figure 4.3. 
Mean (±1 SE) absolute value of observed correlation coefficients (|Rs|, top), difference
between mean positive and negative Rs values (middle) and ratio of number of positive to
negative Rs (bottom) for each of five species included in this study.  For the ratios, when
negative correlations outnumber positives, the value is less than 1.
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than 1.0 indicate that negative correlations outnumber positive values.  The fitted linear
regression line (dashed) and model parameters are also shown.  
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Correlation among techniques

Most estimates of λs were highly and significantly correlated.  When correlation

among vital rates was included in the models, the various statistical distributions yielded

estimates of λs that were correlated between R=0.847 (uniform vs. beta) and R=0.993

(bootstrap vs. truncated gamma) (Table 4.4, above diagonal, all P#0.0001).  When

correlation among elements was excluded (Table 4.4, below diagonal), association

among estimates of λs from the various techniques ranged from R= 0.843 to R=0.980

(P#0.0001), except for correlations involving the bootstrap method, which were much

lower (R=0.579 to 0.703, P#0.0016).  Within each statistical distribution, estimates of λs

derived with and without correlation structure were also highly correlated (R=0.973-

0.988) (Table 4.4, diagonal).

DISCUSSION

Correlations among vital rates

Including correlation among vital rates in stochastic matrix models significantly

reduced estimates of population viability in two plant species, but no effect was detected

in three others examined here.  Adding correlation to the models resulted in an average

1.7% decline in estimated λs in A. tyghensis and a 3% reduction in L. bradshawii (Figure

4.1).  Effects of correlation were not significant in C. elata, L. cookii, or H. radiatus.  Our

modeling correlation structure resulted in very little bias to the correlations (Figure 4.2). 
Although published comparisons of stochastic models
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Table 4.4.  Pearson correlation coefficients (R) for estimates of stochastic population
growth rate (λs) derived from five methods of incorporating environmental stochasticity. 
Correlations with λs calculated by including correlation structure are above the diagonal
(P#0.0001), while those estimated without correlation structure are below (P#0.0016). 
Values on the diagonal (in bold) are correlations between λs estimates with and without
correlation structure (P#0.0001 in all cases).

Stochastic
method bootstrap uniform truncated

normal
truncated
gamma beta

bootstrap 0.973 0.884 0.991 0.993 0.975

uniform 0.579 0.985 0.920 0.874 0.847

truncated normal 0.626 0.974 0.986 0.990 0.964

truncated gamma 0.703 0.884 0.944 0.988 0.978

beta 0.638 0.843 0.904 0.980 0.980
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with and without cross-correlations among transition elements are few, their conclusions

are in general agreement with ours.  For example, population simulations with Totoaba

macdonaldi using both a diffusion approximation approach and Monte Carlo methods

found that inclusion of correlations among vital rates tended to increase extinction risk

(Cisneros-Mata et al. 1997).  In that study, the authors assumed perfect positive

correlations in their comparisons.  For most species in natural stochastic environments,

however, correlations among matrix elements may include many negative values and are

rarely, if ever, perfect, as in herbaceous plants such as Calathea ovandensis of Mexican

rainforests (Horvitz and Schemske 1995) and Gentiana pneumonanthe of Scandinavian

heathlands (Oostermeijer et al. 1996).  Doak et al. (1994) found that adding observed

correlations (which included both positive and negative values) to their desert tortoise

model increased variability in mean growth rate and population size estimates after 25-50

years.  Presumably this increase in variability would translate into a reduction in

estimates of population viability, although they did not test this explicitly.

Our analysis suggests that the effect of correlations among vital rates on

stochastic matrix model outcomes depends on the nature and type of correlations present,

and this differs among species.  The average ratio of the number of positive to negative

correlations among vital rates was an excellent predictor (adj. R2=95.6%) of the

proportional change in stochastic growth rate among species due to inclusion of these

correlations (Figure 4.4).  This measure of correlation structure is simple to calculate and

represents the relative distribution of positive and negative correlations across all vital

processes.  There was an indication that the relative strength of positive vs. negative
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correlations (0posRs&|0negRs|) was also important in explaining this variation, but its

function was weaker (adj. R2=60.1%, P=0.075)  and it was not included in the regression

model after a stepwise procedure.  We were surprised that the average strength of

correlations was not a significant factor in explaining variation among species in mean λs,

because stronger correlations should, in theory, result in a greater effect (Tuljapurkar

1982).  It may be that inclusion of a greater number of species could elucidate these

relationships by encompassing life histories with a greater range in absolute and relative

correlation strengths.  Even so, it is clear that the relative mix of positive and negative

correlations among model parameters is an important aspect of correlation structure. 

Ferson and Burgman (1995), using various hypothetical correlation structures in a

stochastic model for Leadbeater’s possum, found that estimates of extinction probability

increased or decreased depending on whether correlations were positive, negative, or

mixed, and whether dependencies were linear or non-linear.  The simplistic assumption

of complete positive correlation used in some models (e.g., Table 4.2) may yield overly

pessimistic estimates of population viability.  We suggest that if inclusion of correlation

structure is desired, empirically derived correlations should be incorporated over

hypothetical structures.

Correlation structure is clearly a complex factor in population models

(Tuljapurkar 1982), and its effect on model results will differ among species and life

histories (Orzack 1993, 1997).  Although omitting correlation structure, as many authors

of population viability models have done (e.g., Table 4.2), may appear to be a hazardous

assumption, it may have little effect on results of PVAs in some species due to the
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balancing effect of positive and negative correlations.  Even in our most extreme case, L.

bradshawii, in which the average 3% decline was statistically significant, its biological

significance was less obvious, and conservationists will have to decide for themselves

what magnitude of effect on viability is important.  Within a given technique for

incorporating environmental stochasticity, estimates of λs derived with and without cross-

correlation among elements were strongly correlated (R$0.973), suggesting that for

purposes of assessing the relative differences among populations or management actions,

inclusion of correlation structure may be of little significance.

Input distributions

The effects of correlation structure did not depend on which method we used to

incorporate stochasticity into the transition matrix models (Table 4.3).  Including

correlation structure had the same effect on estimates of λs for each species regardless of

whether stochasticity was driven by a bootstrap method, or parametric distributions such

as the beta, truncated gamma, truncated normal, or uniform.  Some authors (e.g., Menges

2000) have noted that the bootstrap method of shuffling whole observed matrices (matrix

selection) could exaggerate correlations among vital rates, but we found no evidence that

stochastic method altered the effects of correlation.  

Even though stochastic method did not alter the effects of correlation structure,

different input distributions can have significant effects on estimates of population

viability.  For example, we found (in Chapter 3) significant differences in estimates of λs

among bootstrap, beta, truncated gamma, truncated normal, uniform and triangular
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distributions of transition rates for incorporating stochasticity.  In the present study, we

found a close association (R=0.847-0.993) in estimates of λs among various input

distributions when correlation among vital rates was included.  However, in the absence

of correlation structure, associations between the bootstrap method and each parametric

method were weaker (R=0.579-0.703).  These correlations are lower than those observed

in Chapter 3 (R=0.849-0.990) with the same data sets and similar modeling procedures. 

The primary difference between methods in these two studies was that, in the current

case, we allowed recruitment to vary (via the bootstrap or gamma distribution) while it

was held constant in the previous study.  Apparently, stochasticity in  recruitment can

have a substantial effect on estimates of λs, possibly interacting with the choice of

distribution shape used to model transition probabilities.  Nakoaka (1997), for example,

found that lognormal and truncated normal distributions for varying recruitment in clam

population models yielded estimates of λs that differed significantly.  Our results suggest

that if correlation is included among all vital rates, and transitions and recruitment vary

stochastically, then estimates of population viability may differ among stochastic

methods but their relative rankings will not.  

This is relevant because conservationists have expressed concern that viability

analyses yield results so sensitive to model parameters that any conclusions are uncertain,

if not misleading.  We agree with Beissinger and Westphal (1998) and Menges (2000)

that the strength of viability analysis lies in its use as comparative tool rather than a

means of precisely assessing the health of individual populations.  Especially in the face

of uncertainty due to measurement error, which can create very wide confidence intervals
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on estimates of extinction probability (Ludwig 1999, Fieberg and Ellner 2000), the use of

viability analysis to assess the relative vigor of a group of populations or the impact of a

habitat alteration should be emphasized over quantitative estimates of viability. 

Fortunately, the relative ranking of populations appears to be fairly robust to differences

in stochastic methods, especially when correlation structure is included.

Conclusion

Temporal correlation among vital rates in our stochastic matrix models altered

estimates of population viability, but this effect differed among species and was generally

weak.  The magnitude of change in estimated λs for each species examined here was

largely explained by the ratio of positive to negative cross-correlations of transition

matrix elements; as the relative number of negative correlations decreased, the impact of

correlation structure increased.  When deciding whether or not to include such correlation

structure in viability models, conservationists may want to examine the correlations in

their species as a means of assessing their anticipated effect, and we have provided a

tentative linear regression model for doing so.  Examples of stochastic matrix approaches

that incorporate correlations are few, but we hope our illustration of a straightforward

method based on rank correlations will encourage others to include this aspect of

stochastic population dynamics in future models where correlation is deemed important. 

Our implementation, which was based on an approach described by Fackler (1999), is

only one of a variety of methods that may be useful for this purpose, and the extent to

which correlation technique affects model results deserves further attention.  The use of
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copulas in functions for generating multivariate random numbers may be particularly

fruitful (Haas 1999, Frees and Valdez 1998), especially because of their ability to

accommodate non-linear dependencies (Embrechts et al. 1999 and in press) and a mixture

of statistical distributions for different vital rates.

We found no interaction between inclusion of correlation structure and various

distribution shapes for incorporating stochasticity.  Stochastic method may, however,

have significant effects on estimates of λs, which can lead to differing conclusions

regarding the health of a given population.  When correlation structure is maintained in

stochastic models, the estimates of λs are generally highly correlated, suggesting that

PVA should stress comparisons between populations over quantitative estimates of

population health.  Incorporating stochasticity into matrix models through bootstrapping

whole observed matrices (matrix selection) may be preferable in many cases because the

method appears to be relatively conservative and does not bias transition elements

(Chapter 3).  In addition, it does not bias correlation structure and its results do not

appear to differ substantially from other methods of including correlation.
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