

THE EFFICIENCY OF VARIOUS COMPUTERS AND OPTIMIZATIONS IN PERFORMING FINITE ELEMENT COMPUTATIONS

BY

MARTIN MARCUS

NAVAL RESEARCH LABORATORY

METHODS FOR COMPUTATIONAL EFFICIENCY

COMPILER OPTIMIZATION

MULTIPLE PROCESSORS

WELL CHOSEN COMPUTER FAST CHEAP

COMPILER OPTIMIZATION

FORTRAN

OPT	IMIZATION	SPEED
00	(DEBUG)	1
01	(DEFAULT)	
O 2	· · ·	1.62
O3	(AGGRESSIVE)	1.64

COMPILER OPTIMIZATION

SGI SPECIFIC

PIPELINE (WHEN 4 OPERATIONS CAN BE DONE SIMULTANEOUSLY)

SPEEDUP: 1.8

MULTIPLE PROCESSORS

THREADING

MPI PARALLELIZATION

MULTIPLE JOBS

How Much Can a Program Speed Up?

Parallel Speedup X = t₁/t_N

X: parallel speedup

t1: time for the best nonparallel execution tN: time for the parallel version on N cpus

Ideal speedup Xideal = N

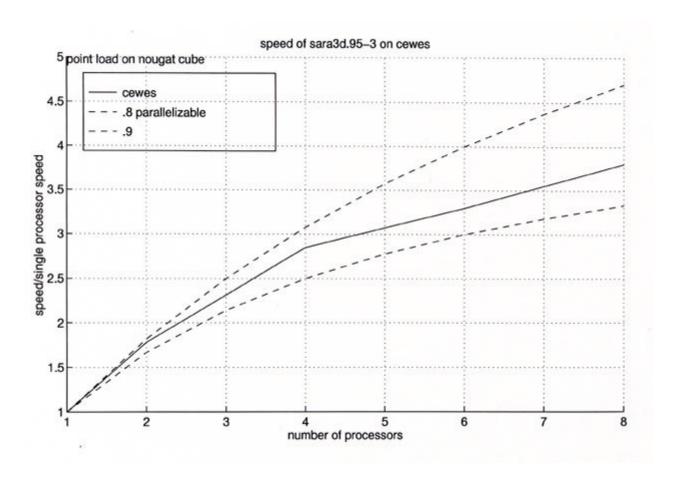
Amdahl's Law
$$X_A = \frac{s+p}{s+p/N} = \frac{1}{s+p/N} < \frac{1}{s}$$

X_A: max sustainable speedup

p: parallelizable portion of the program

s: non-parallelizable portion (s+p=1)

N: number of CPUs used.


Max sustainable speedup on N CPUs with p% parallelism

$\angle 3$	_		_	16		
PN	2	4	8	16	32	64
50%	1.33	1.60	1.78	1.9	1.9	2.0
75%	1.60	2.29	2.91	3.4	3.7	3.8
90%	1.82	3.08	4.71	6.4	7.8	8.8
95%	1.90	3.48	5.93	9.1	12.5	15.4
99%	1.98	3.88	7.48	13.9	24.4	39.3

PowerLearn Chapter 4: MP System Overview

4-24

THREADING

REQUIRES LARGE VECTOR TO BE PROCESSED

SPEED OF SARA3D WITH BW = 1116 ON SGI R10000 POWER CHALLENGE

PROCESSORS	SPEED	SPEED/PROC
1	1	1
4	2.2	0.55
8	1.9	0.238

MPI PARALLELIZATION

SEND JOBS TO PROCESSORS FROM WITHIN CODE

MUST LEARN MPI

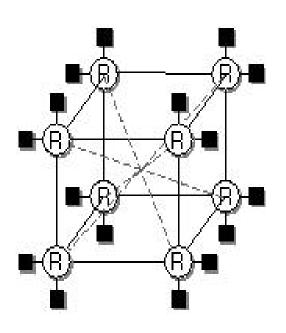
ONE PROCESSOR MUST BABY SIT OTHERS

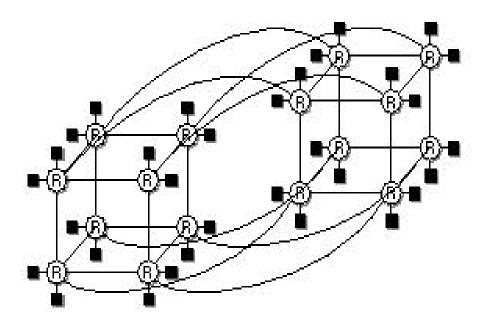
PROCESSORS MUST WAIT FOR EACH OTHER

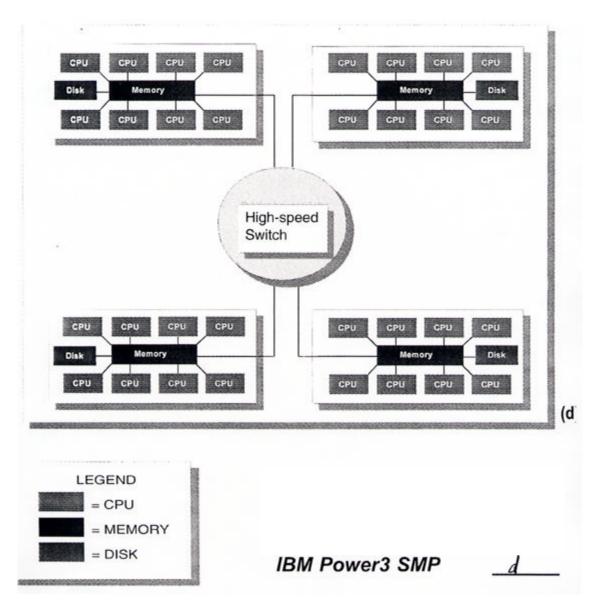
MORE EFFICIENT THAN THREADING WHEN USING MANY PROCESSORS

NEEDS RAM AND DISK SPACE FOR EACH JOB

MPI PARALLELIZATION


SPEED ON SGI R10000 ORIGIN


PROCESSORS	SPEED	SPEED/PROC
1	1	1
2	0.75	0.375
5	2.1	0.42
40	15.5	0.39


32 Processor System

64 Processor System

May 17, 2001

Naval Research Laboratory Martin Marcus

MPI AND THREADING

IBM SMP

NODES	MPI JOBS/NODE	THREADS/MPI JOB	SPEED	SPEED/PROC
1*	1	8	8	1
1	2	4	6.0	0.75
1	4	2	4.7	0.58
2	1	8	8.8	0.55
2	4	2	4.9	0.31
13	2	4	29.1	0.28

*NO MPI

COST OF HAVING MULTIPLE PROCESSORS SGI ORIGIN

PROCESSORS	CAPACITY	COST	COST/PROC
		(1996)	
4	4	\$41K	\$10K
4	8	\$85K	\$21K
8	8	\$175K	\$22K
8	128	\$271K	\$34K
128	128	\$4116K	\$32K

Computer comparison

	speed/PROC (SPECFP95)	cost/PROC	cost/speed
SGI origin	23.7	\$32,000	1350
IBM SMP	48.8	\$27,000	544
Compaq alpha	a 48.1	\$13,500	281

COMPUTER USING PARALLELIZATION

	Efficiency	Adjusted speed/proc	Cost/speed
SGI origin	0.39	9.2	3462
IBM SMP	0.28	13.7	1944
Compaq alpha	1	48.1	281

CONCLUSIONS

OPTIMIZE YOUR CODE WHEN COMPILING

THREADING SPEEDS UP CALCULATION WITHOUT TAKING MORE RAM OR DISK

MPI PARALLELIZATION IS ALWAYS LESS EFFICIENT THAN SPLITTING UP JOB

COST OF COMPUTERS ALLOWING HIGH PROCESSOR COMMUNICATION IS PROHIBITIVE

BEST CHOICE IS SEVERAL SMALL WORKSTATIONS