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Key Findings 

• The main concerns about abrupt changes in atmospheric methane (CH4) stem 

from (1) the large quantity of methane believed to be stored as methane hydrate in 

the sea floor and permafrost soils and (2) climate-driven changes in methane 

emissions from northern high-latitude and tropical wetlands. 

• The size of the methane hydrate reservoir is uncertain, perhaps by up to a factor of 

10. Because the size of the reservoir is directly related to the perceived risks, it is 

difficult to make certain judgment about those risks. 

• There are a number of suggestions in the scientific literature about the possibility 

of catastrophic release of methane to the atmosphere based on both the size of the 

hydrate reservoir and indirect evidence from paleoclimatological studies. 

However, modeling and detailed studies of ice core methane so far do not support 

catastrophic methane releases to the atmosphere in the last 650,000 years or in the 

near future. A very large release of methane may have occurred at the Paleocene-

Eocene boundary (about 55 million years ago), but other explanations for the 

evidence have been offered. 

• The current network of atmospheric methane monitoring sites is sufficient for 

capturing large-scale changes in emissions, but it is insufficient for attributing 

changes in emissions to one specific type of source. 
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• Observations show that there have not yet been significant increases in methane 

emissions from northern terrestrial high-latitude hydrates and wetlands resulting 

from increasing Arctic temperatures. 

• Catastrophic release of methane to the atmosphere appears very unlikely in the 

near term (e.g., this century).  However, it is very likely that climate change will 

accelerate the pace of chronic emissions from both hydrate sources and wetlands. 

The magnitude of these releases is difficult to estimate with existing data.  

Methane release from the hydrate reservoir will likely have a significant influence 

on global warming over the next 1,000 to 100,000 years. 

Recommendations 

• Monitoring of the abundance of atmospheric methane and its isotopic composition 

sufficient to allow detection of change in emissions from northern and tropical 

wetland regions should be prioritized.  Specifically, systematic measurements of 

CH4 from tall towers and aircraft in the Arctic and subarctic regions and expanded 

surface flux measurements and continued observation of CH4 abundance in the 

tropics and subtropics would allow detection of changes in emissions from 

sparsely monitored but important regions. 

• The feasibility of monitoring methane in the ocean water column near marine 

hydrate deposits, or in the atmosphere near terrestrial hydrate deposits, to detect 

changes in emissions from those sources, should be investigated, and if feasible, 

this monitoring should be implemented. 

• Efforts should be made to increase certainty in the size of the global methane 

hydrate reservoirs. The level of concern about catastrophic release of methane to 

the atmosphere is directly linked to the size of these reservoirs. 

• The size and location of hydrate reservoirs that are most vulnerable to climate 

change (for example shallow-water deposits, shallow sub-surface deposits on 

land, or regions of potential large submarine landslides) should be identified 

accurately and their potential impact on future methane concentrations should be 

evaluated. 
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• Improvement in process-based modeling of methane release from marine hydrates 

is needed. The transport of bubbles is particularly important, as are the migration 

of gas through the stability zone and the mechanisms controlling methane release 

from submarine landslides. 

• Modeling efforts should establish the current and future climate-driven 

acceleration of chronic release of methane from wetlands and terrestrial hydrate 

deposits. These efforts should include development of improved representations 

of wetland hydrology and biogeochemistry, and permafrost dynamics, in earth 

system and global climate models. 

• Further work on the ice core record of atmospheric methane is needed to fully 

understand the implications of past abrupt changes in atmospheric methane. This 

work should include high-resolution and high-precision measurements of methane 

mixing ratios and isotopic ratios, and biogeochemical modeling of past methane 

emissions and relevant atmospheric chemical cycles. Further understanding of the 

history of wetland regions is also needed.   

1. Background: Why Are Abrupt Changes in Methane of Potential Concern? 

1.1 Introduction 

Methane (CH4) is the second most important greenhouse gas that humans directly 

influence,  carbon dioxide (CO2) being first. Concerns about methane’s role in abrupt 

climate change stem primarily from (1) the large quantities of methane stored as solid 

methane hydrate on the sea floor and to a lesser degree in terrestrial sediments, and the 

possibility that these reservoirs could become unstable in the face of future global 

warming, and (2) the possibility of large-scale conversion of frozen soil in the high- 

latitude Northern Hemisphere to methane producing wetland, due to accelerated warming 

at high latitudes. This chapter summarizes the current state of knowledge about these 

reservoirs and their potential for forcing abrupt climate change. 

1.2 Methane and Climate 

A spectral window exists between ~7 and 12 micrometers (μm) where the atmosphere is 

somewhat transparent to terrestrial infrared (IR) radiation. Increases in the atmospheric 
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abundance of molecules that absorb IR radiation in this spectral region contribute to the 

greenhouse effect. Methane is a potent greenhouse gas because it strongly absorbs 

terrestrial IR radiation near 7.66 μm, and its atmospheric abundance has more than 

doubled since the start of the Industrial Revolution. Radiative forcing (RF) is used to 

assess the contribution of a perturbation (in this case, the increase in CH4 since 1750 

A.D.) to the net irradiance at the top of the tropopause (that area of the atmosphere 

between the troposphere and the stratosphere) after allowing the stratosphere to adjust to 

radiative equilibrium. The direct radiative forcing of atmospheric methane determined 

from an increase in its abundance from its pre-industrial value of 700 parts per billion 

(ppb) (MacFarling-Meure et al., 2006; Etheridge et al., 1998) to its globally averaged 

abundance of 1,775 ppb in 2006 is 0.49±0.05 watts per square meter (W m-2) (Hofmann 

et al., 2006). Methane oxidation products, stratospheric water (H2O) vapor and 

tropospheric ozone (O3), contribute indirectly to radiative forcing, increasing methane’s 

total contribution to ~0.7 W m-2 (e.g., Hansen and Sato, 2001), nearly half of that for 

carbon dioxide (CO2) . Increases in methane emissions can also increase the methane 

lifetime and the lifetimes of other gases oxidized by the hydroxyl radical (OH). Assuming 

the abundances of all other parameters that affect OH stay the same, the lifetime for an 

additional pulse of CH4 (e.g., 1 teragram, Tg; 1 Tg = 1012g = 0.001Gt, gigaton) added to 

the atmosphere would be ~40% larger than the current value. Additionally, CH4 is 

oxidized to CO2; CO2 produced by CH4 oxidation is equivalent to ~6% of CO2 emissions 

from fossil fuel combustion. Over a 100-year time horizon, the direct and indirect effects 

on RF of emission of 1 kilogram (kg) CH4 are 25 times greater than for emission of 1 kg 

CO2 (Forster et al., 2007). 

The atmospheric abundance of CH4 increased with human population because of 

increased demand for energy and food. Beginning in the 1970s, as CH4 emissions from 

natural gas venting and flaring at oil production sites declined and rice agriculture 

stabilized, the growth rate of atmospheric CH4 decoupled from population growth. Since 

1999, the global atmospheric CH4 abundance has been nearly stable; globally averaged 

CH4 in 1999 was only 3 ppb less than the 2006 global average of 1775 ppb. Potential 

contributors to this stability are decreased emissions from the Former Soviet Union after 

their economy collapsed in 1992 (Dlugokencky et al., 2003), decreased emissions from 
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natural wetlands because of widespread drought (Bousquet et al., 2006), decreased 

emissions from rice paddies due to changes in water management (Li et al., 2002), and an 

increase in the chemical sink (removal terms in the methane budget are referred to as 

“sinks”) because of changing climate (Fiore et al., 2006). Despite attempts to explain the 

plateau in methane levels, the exact causes remain unknown, making predictions of future 

methane levels difficult. Hansen et al. (2000) have suggested that, because methane has a 

relatively short atmospheric lifetime (see below) and reductions in emissions are often 

cost effective, it is an excellent gas to target to counter increasing RF of CO2 in the short 

term. 

1.3 The Modern Methane Budget 

The largest individual term in the global methane budget is removal from the atmosphere 

by oxidation of methane initiated by reaction with hydroxyl radical (OH; OH + CH4 → 

CH3 + H2O) in the troposphere. 

Approximately 90% of atmospheric CH4 is removed by this reaction, so estimates of OH 

concentrations as a function of time can be used to establish how much methane is 

removed from the atmosphere. When combined with measurements of the current trends 

in atmospheric methane concentrations, these estimates provide a powerful constraint on 

the total source. OH is too variable for its large-scale, time-averaged concentration to be 

determined by direct measurements, so measurements of 1,1,1-trichloroethane (methyl 

chloroform), an anthropogenic compound with relatively well-known emissions and 

predominant OH sink, are most commonly used as a proxy. As assessed by the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Forster 

et al., 2007), the globally averaged OH concentration is ~106 per cubic centimeter (cm-3), 

and there was no detectable change from 1979 to 2004. Reaction with OH is also the 

major CH4 loss process in the stratosphere. Smaller atmospheric sinks include oxidation 

by chlorine in the troposphere and stratosphere and oxidation by electronically excited 

oxygen atoms [O(1D)] in the stratosphere. Atmospheric CH4 is also oxidized by bacteria 

(methanotrophs) in soils, a term which is usually included in budgets as a negative 

source. These sink terms result in an atmospheric CH4 lifetime of ~9 years (±10%). In 
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other words, at steady state, each year one ninth of the total amount of methane in the 

atmosphere is removed by oxidation, and replaced by emissions to the atmosphere. 

When an estimate of the lifetime is combined with global observations in a one-box mass 

balance model of the atmosphere (that is, considering the entire atmosphere to be a well-

mixed uniform box), total global emissions can be calculated with reasonable certainty. 

Using a lifetime of 8.9 years and National Oceanic and Atmospheric Administration 

(NOAA) Earth System Research Laboratory (ESRL) global observations of CH4 and its 

trend gives average emissions of 556±10 teragrams (Tg) CH4 per year (yr-1), with no 

significant trend for 1984-2006 (Figs. 5.1 and 5.7). The uncertainty on total emissions is 

1 standard deviation (s.d.) of the interannual variability; total uncertainty is on order of 

±10%. The total amount of methane in the atmosphere (often referred to as the 

atmospheric “burden”) is ~5,000 Tg, or 5 Gt CH4. 
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Figure 5.1. Methane emissions as function of time calculated with constant lifetime; 
emissions from EDGAR inventory with constant natural emissions shown as red 
triangles. The dashed line is a linear least-squares fit to the calculated emissions; its slope 
is -0.05+/-0.31 Tg CH4 yr-2. EDGAR is Emission Database for Global Atmospheric 
Research (described in Olivier and Berdowski, 2001); 2001 to 2004 emissions are 
preliminary (source: http://www.milieuennatuurcompendium.nl/indicatoren/nl0167-
Broeikasgasemissies%2C-mondiaal.html?i=9-20). Tg, teragrams; 1 Tg = 1012 g. 

Methane is produced by a variety of natural and anthropogenic sources. Estimates of 

emissions from individual sources are made using bottom-up and top-down methods. 

Bottom-up inventories use emission factors (e.g., average emissions of CH4 per unit area 

for a specific wetland type) and activity levels (e.g., total area of that wetland type) to 

calculate emissions. Because the relatively few measurements of emission factors are 

typically extrapolated to large spatial scales, uncertainties in emissions estimated with the 

bottom-up approach are typically quite large. An example of the top-down method 

applied to the global scale using a simple 1-box model is shown in Fig. 5.1 and described 

above, but the method can also be applied using a three-dimensional chemical transport 

   366

http://www.milieuennatuurcompendium.nl/indicatoren/nl0167-Broeikasgasemissies%2C-mondiaal.html?i=9-20
http://www.milieuennatuurcompendium.nl/indicatoren/nl0167-Broeikasgasemissies%2C-mondiaal.html?i=9-20


SAP 3.4: Abrupt Climate Change 
 

model to optimize emissions from regional to continental scales based on a comparison 

between model-derived mixing ratios and observations. Bottom-up inventories are 

normally used as initial guesses in this approach. This approach is used to estimate 

emissions by source and region. Table 5.1 shows optimized CH4 emissions calculated 

from an inverse modeling study (Bergamaschi et al., 2007, scenario 3) that was 

constrained by in situ surface observations and satellite-based estimates of column-

averaged CH4 mixing ratios. It should be noted that optimized emissions from inverse 

model studies depend on the a priori estimates of emissions and the observational 

constraints, and realistic estimates of uncertainties are still a challenge. For example, 

despite the small uncertainties given in the table for termite emissions, emissions from 

this sector varied from ~31 to 67 Tg yr-1 over the range of scenarios tested, which is a 

larger range than the uncertainties in the table would imply. While total global emissions 

are fairly well constrained by this combination of measurements and lifetime, individual 

source terms still have relatively large uncertainties. 

Table 5.1. Annual CH4 emissions for 2003 by source type (from scenario 3 of 
Bergamaschi et al., 2007); chemical sinks are scaled to total emissions based on Lelieveld 
et al. (1998). Tg/yr, teragrams per year; 1 Tg = 1012 g. 

Source Emissions (Tg/yr) Fraction of total (%) 
Coal 35.6±4.4 6.7 
Oil and gas 41.8±5.5 7.9 
Enteric fermentation 82.0±9.6 15.4 
Rice agriculture 48.7±5.1 9.2 
Biomass burning 21.9±2.6 4.1 
Waste 67.0±10.7 12.6 
Wetlands 208.5±7.6 39.2 
Wild animals 6.8±2.0 1.3 
Termites 42.0±6.7 7.9 
Soil -21.3±5.8 -4.0 
Oceans -1.3±2.9 -0.2 
Total 531.6±3.7  
   
Chemical Sinks Loss (Tg/yr)  
Troposphere 490±50 92.5 
Stratosphere 40±10 7.5 
Total 530  
The constraint on the total modern source strength is important because any new 

proposed source (for example, a larger than previously identified steady-state marine 
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hydrate source) would have to be balanced by a decrease in the estimated magnitude of 

another source. The budget presented in Table 5.1 refers to net fluxes to the atmosphere 

only. The gross production of methane is very likely to be significantly larger, but 

substantial quantities of methane are consumed in soils, oxic freshwater, and the ocean 

before reaching the atmosphere (Reeburgh, 2004). (The soil sink in Table 5.1 refers only 

to removal of atmospheric methane by oxidation in soils.) 

Given the short CH4 lifetime (~9 yr), short-term changes in methane emissions from 

climatically sensitive sources such as biomass burning and wetlands, or in sinks, are seen 

immediately in surface observations of atmospheric methane. As implied above, reaction 

with methane is one of the major sinks for the OH radical (the main methane sink), and 

therefore increases in methane levels should cause an increase in the lifetimes of methane 

and other long-lived greenhouse gases consumed by OH. Higher methane emissions 

therefore mean increased methane lifetimes, which in turn means that the impact of any 

short-term increase in methane emissions will last longer. 

1.4 Observational Network and Its Current Limitations, Particularly Relative to the 

Hydrate, Permafrost, and Arctic Wetland Sources 

The network of air sampling sites where atmospheric methane mixing ratios are measured 

can be viewed on the World Meteorological Organization (WMO) World Data Centre for 

Greenhouse Gases (WDCGG) Web site (http://gaw.kishou.go.jp/wdcgg/) and is 

reproduced in Figure 5.2. Methane data have been reported to the WDCGG for ~130 

sites. Relatively few measurements are reported for the Arctic, and sites are typically far 

from potential permafrost, hydrate, and wetland sources. Existing Arctic sites have been 

used to infer decreased emissions from the fossil-fuel sector of the Former Soviet Union 

(Dlugokencky et al., 2003) and provide boundary conditions for model studies of 

emissions, but they are too remote from source regions to accurately quantify emissions, 

so uncertainties on northern emissions will remain large until more continuous 

measurement sites are added close to sources. The optimal strategy would include 

continuous measurements from tall towers and vertical profiles collected from aircraft. 

Measurements from tall towers are influenced by emissions from much larger areas than 

those derived from eddy-correlation flux techniques, which have footprints on the order 
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of 1 square kilometer (km2). When combined with global- or regional-scale models, these 

measurements can be used to quantify fluxes; the vertical profiles would be used to assess 

the quality of the model results through the troposphere. To properly constrain CH4 

emissions in the tropics, retrievals of CH4 column-averaged mixing ratios must be 

continued to complement surface observations. 

 

Figure 5.2. World Meteorological Organization global network of monitoring sites (blue 
dots) for long-term observation of atmospheric methane as of this date 
(http://gaw.kishou.go.jp/wdcgg/). 

1.5 Abrupt Changes in Atmospheric Methane? 

Concern about abrupt changes in atmospheric methane stems largely from the large 

amounts of methane present as solid methane hydrate in ocean sediments and terrestrial 

sediments, which may become unstable in the face of future warming. Methane hydrate is 

a solid substance that forms at low temperatures and high pressures in the presence of 

sufficient methane, and is found primarily in marine continental margin sediments and 

some arctic terrestrial sedimentary deposits (see Box 5.1). Warming or release of pressure 

can destabilize methane hydrate, forming free gas that may ultimately be released to the 

atmosphere. The processes controlling hydrate stability and gas transport are complex 

and only partly understood. Estimates of the total amount of methane hydrate vary 

widely, from 500 to 10,000 gigatons of carbon (GtC) stored as methane in hydrates in 
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marine sediments, and 7.5 to 400 GtC in permafrost (both figures are uncertain, see Sec. 

4 ). The total amount of carbon in the modern atmosphere is ~810 GtC, but the total 

methane content of the atmosphere is only ~4 GtC (Dlugokencky et al., 1998). Therefore, 

even a release of a small portion of the methane hydrate reservoir to the atmosphere 

could have a substantial impact on radiative forcing. 

Box 5.1—Chemistry, Physics, and Occurrence of Methane Hydrate 

A clathrate is a substance in which a chemical lattice or cage of one type of molecule 

traps another type of molecule. Gas hydrates are substances in which gas molecules 

are trapped in a lattice of water molecules (Fig. 5.3). The potential importance of 

methane hydrate to abrupt climate change results from the fact that large amounts of 

methane can be stored in a relatively small volume of solid hydrate. For example, 1 

cubic meter (m3) of methane hydrate is equivalent to 164 m3 of free gas (and 0.8 m3 

of water) at standard temperature and pressure (Kvenvolden, 1993). Naturally 

occurring gas hydrate on Earth is primarily methane hydrate and forms under high 

pressure – low temperature conditions in the presence of sufficient methane. These 

conditions are most often found in relatively shallow marine sediments on continental 

margins, but also in some high-latitude terrestrial sediments (Fig. 5.4). Although the 

amount of methane stored as hydrate in geological reservoirs is not well quantified, it 

is very likely that very large amounts are sequestered in comparison to the present 

total atmospheric methane burden. 

The right combination of pressure and temperature conditions forms what is known as 

the hydrate stability zone, shown schematically in Fig. 5.5. In marine sediments, 

pressure and temperature both increase with depth, creating a relatively narrow region 

where methane hydrate is stable. Whether or not methane hydrate forms depends not 

only on temperature and pressure but also on the amount of methane present. The 

latter constraint limits methane hydrate formation to locations of significant biogenic 

or thermogenic methane (Kvenvolden, 1993). When ocean bottom water temperatures 

are near 0˚C, hydrates can form at shallow depths, below ~200 m water depth, if 

sufficient methane is present. The upper limit of the hydrate stability zone can 

therefore be at the sediment surface, or deeper in the sediment, depending on pressure 
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and temperature. The thickness of the stability zone increases with water depth in 

typical ocean sediments. It is important to note, however, that most marine methane 

hydrates are found in shallow water near continental margins, in areas where the 

organic carbon content of the sediment is sufficient to fuel methanogenesis. In 

terrestrial sediments, hydrate can form at depths of ~200 m and deeper, in regions 

where surface temperatures are cold enough that temperatures at 200 m are within the 

hydrate stability zone. 

 

  

Figure 5.3. Photographs of methane hydrate as nodules, veins, and laminae in sediment. 
Courtesy of USGS 
(http://geology.usgs.gov/connections/mms/joint_projects/methane.htm). 
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Figure 5.4. Map of methane hydrate deposit locations. Courtesy of USGS 
(http://geology.usgs.gov/connections/mms/joint_projects/methane.htm). 

 

  

Figure 5.5. Schematic diagram of hydrate stability zone for typical continental margin 
(left) and permafrost (right) settings. The red line shows the temperature gradient with 
depth. The hydrate stability zone is technically the depth interval where the in situ 
temperature is lower than the temperature of the phase transition between hydrate and 
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Massive releases of methane from marine or terrestrial hydrates have not been observed

Evidence from the ice core record indicates that abrupt shifts in methane concentration

have occurred in the past 110,000 years (Chappellaz et al., 1993a; Brook et al., 1996,

2000), although the concentration changes during these events were relatively small. 

Farther back in geologic time, an abrupt warming at the Paleocene-Eocene boundary

(about 55 million years ago) has been attributed to a large release of methane to the 

atmosphere, although alternate carbon sources such as oxidation of sedimentary organ

carbon or peats have also been proposed (see discussion in Sec. 4). These past abrupt 

changes are discussed in detail below, and their existence provid

The large impact of a substantial release of methane hydrates to the atmosphere, if it w

to occur, coupled with the potential for a more steady increase in methane productio

from melting hydrates and from wetlands in
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it is likely to be released if the climate warms in the near future? 

2. What is the impact on the climate system

methane over varying intervals of time? 

3. What is the eviden

methane release? 

4. What conditions (in terms of sea-level rise and warming of bottom wate

allow methane release from hydrates locked up in sea-floor sediments? 

5. How much methane is likely to be released by warming of northern

soils, sea-level rise, and other climate-driven changes in wetlands? 
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6. What are the observational and modeling requirements necessary to understand 

 

). Current levels of methane are 

anomalous with respect to the long-term ice core record, which now extends back to 

l plans to 

tend the 

 

methane storage and its release under various future scenarios of abrupt climate 

change? 

2. History of Atmospheric Methane 

Over the last ~300 years the atmospheric methane mixing ratio increased from ~700-750 

ppb in 1700 A.D. to a global average of ~1,775 ppb in 2006. Direct atmospheric 

monitoring has been conducted in a systematic way only since the late 1970s, and data

for previous times come primarily from ice cores (Fig. 5.6

800,000 years (Spahni et al., 2005; Loulergue et al., 2008).  New internationa

drill at a site of very low accumulation rate in Antarctica may in the future ex

record to 1.5 million years (Brook and Wolff, 2005). 

Fig. 5.6A  



SAP 3.4: Abrupt Climate Change 
 

   375

 

 

1800 

1600 

1400 

1200 

1000 

800 

600 
2000 15001000500 0

Year (AD)

Fig. 5.6C 

Fig. 5.6B 

Fig. 5.6C 



SAP 3.4: Abrupt Climate Change 
 

   376

800 600 400 200 0
Age (Thousands of Years)

1800

1600

1400

1200

1000

800

600

400

M
ethane (ppb)

-8

-4

0

4

Te
m

pe
ra

tu
re

 R
el

at
iv

e 
to

 M
od

er
n 

(Þ
C

)
 EPICA Dome C Methane
 Law Dome Methane
 South Pole Flask Data
 EPICA Dome C Reconstructed Temperature

 

Figure 5.6. The history of atmospheric methane as derived from ice cores and direct 
measurements. A, Zonally averaged representation of seasonal and interannual trends in 
tropospheric methane and interhemispheric gradient over the last decade from NOAA 
Earth System Research Laboratory (ESRL) data. B, The last 1,000 years from ice cores 
and direct measurements (MacFarling-Meure et al., 2006) and NOAA ESRL data. 
NOAA ESRL data are updated from Dlugokencky et al., 1994.   Unprocessed data and 
additional figures are available from NOAA ESRL web pages: 
http://www.esrl.noaa.gov/gmd/Photo_Gallery/GMD_Figures/ccgg_figures/ and  

ftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/, C, The last 100,000 years of methane history from 
the Greenland Ice Sheet Project 2 (GISP2) ice core in Greenland (Brook et al., 2006; 
Grachev et al., 2007; Brook and Mitchell, 2007). δ18O is the stable isotope composition 
of the ice, a proxy for temperature, with more positive values indicating warmer 
temperatures. The amplitude of abrupt methane variations appears positively correlated 
with Northern Hemisphere summer insolation (Brook et al., 1996). D, Ice core data from 
the EPICA Dome C ice cores for the last 800,000 years from Loulergue et al. (2008) with 
additional data for the late Holocene from MacFarling-Meure et al. (2006) and NOAA 
ESRL. Temperature reconstruction is based on the D/H ratio of ice at Dome C.  
Abbreviations: nmol mol-1, nanomoles per mole; ppb, parts per billion by mole (same as 
nanomoles per mole); ‰, per mil. 

2.1 Direct Observations 

Early systematic measurements of the global distribution of atmospheric CH4 established 

a rate of increase of ~16 ppb yr-1 in the late 1970s and early 1980s and a strong gradient 

between high northern and high southern latitudes of ~150 ppb (Blake and Rowland, 

1988). By the early 1990s it was clear that the CH4 growth rate was decreasing (Steele et 

al., 1992) and that, if the CH4 lifetime were constant, atmospheric CH4 was approaching 

steady state where emissions were approximately constant (Dlugokencky et al., 1998). 

Fig 5.6D 

http://www.esrl.noaa.gov/gmd/Photo_Gallery/GMD_Figures/ccgg_figures/
ftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/
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Significant variations are superimposed on this declining growth rate and have been 

attributed to climate-induced variations in emissions from biomass burning (van der Werf 

et al., 2004) and wetlands (Walter et al., 2001), and changes in the chemical sink after the 

eruption of Mount Pinatubo (Dlugokencky et al., 1996). Recent measurements show that 

the global atmospheric CH4 burden has been nearly constant since 1999 (Fig. 5.7). This 

observation is not well understood, underscoring our lack of understanding of how 

individual methane sources are changing. 

Recently published column-averaged CH4 mixing ratios determined from a satellite 

sensor greatly enhance the spatial coverage of CH4 observations (Frankenberg et al., 

2006). Coverage in the tropics greatly increases measurements there, but coverage in the 

Arctic remains poor because of the adverse impact of clouds on the retrievals. Use of 

these satellite data in inverse model studies will reduce uncertainties in emissions 

estimates, particularly in the tropics. 
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Figure 5.7. Recent trends in atmospheric methane from global monitoring data (NOAA 
Earth System Research Laboratory, ESRL). NOAA ESRL data are updated from 
Dlugokencky et al., 1994.   Unprocessed data and additional figures are available from 
NOAA ESRL web pages: 
http://www.esrl.noaa.gov/gmd/Photo_Gallery/GMD_Figures/ccgg_figures/ and  

ftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/. A, Global average atmospheric methane mixing 
ratios (blue line) determined using measurements from the ESRL cooperative air 
sampling network. The red line represents the long-term trend. B, Solid line is the 
instantaneous global average growth rate for methane; dashed lines are uncertainties (1 
standard deviation) calculated with a Monte Carlo method that assesses uncertainty in the 
distribution of sampling sites (Dlugokencky et al., 2003). 

2.2 The Ice Core Record 

The long-term record shows changes in methane on glacial-interglacial time scales of 

~300-400 ppb (Fig. 5.6D), dominated by a strong ~100,000-year periodicity, with higher 

levels during warm interglacial periods and lower levels during ice ages. Periodicity of 

~40,000 and 20,000 years is also apparent, associated with Earth’s cycles of obliquity and 

precession (Delmotte et al., 2004). Methane is believed to provide a positive feedback to 
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warming ultimately caused by changes in the Earth’s orbital parameters on these time 

scales. The cyclicity is widely attributed to processes affecting both northern high-

latitude and tropical wetlands, including growth and decay of Northern Hemisphere ice 

sheets, and variations in the strength of the monsoon circulation and associated rainfall 

patterns in Asia, Africa, and South America (Delmotte et al., 2004; Spahni et al., 2005; 

Loulergue et al., 2008). 

The ice core record also clearly shows another scale of variability, abrupt shifts in 

methane on millennial time scales that are coincident with abrupt changes in temperature 

observed in Greenland ice cores (Fig. 5.6C). These abrupt shifts have been studied in 

detail in three deep ice cores from Greenland and in several Antarctic ice cores 

(Chappellaz et al., 1993a; Brook et al., 1996; Brook et al., 2000; Severinghaus et al., 

1998; Severinghaus and Brook, 1999; Huber et al., 2006; Grachev et al., 2007). Detailed 

work using nitrogen and argon isotope ratios as gas phase indicators of warming in the 

ice core record shows clearly that the increase in methane associated with the onset of 

abrupt warming in Greenland is coincident with, or slightly lags (by a few decades at 

most), the warming (Severinghaus et al., 1998; Severinghaus and Brook, 1999; Huber et 

al., 2006; Grachev et al., 2007). Methane closely follow the Greenland ice isotopic 

record (Fig. 5.6C), and the amplitude of methane variations associated with abrupt 

warming in Greenland appears to vary with time. Brook et al. (1996) suggested a long-

term modulation of the atmospheric methane response to abrupt climate change related to 

global hydrologic changes on orbital time scales, an issue further quantified by Flückiger 

et al. (2004). 

2.3 What Caused the Abrupt Changes in Methane in the Ice Core Record? 

Because the modern natural methane budget is dominated by emissions from wetlands, it 

is logical to interpret the ice core record in this context. The so-called “wetland 

hypothesis” postulates that abrupt warming in Greenland is associated with warmer and 

wetter climate in terrestrial wetland regions, which results in greater emissions of 

methane from wetlands. Probable sources include tropical wetlands (including regions 

now below sea level) and high-latitude wetlands in regions that remained ice free or were 

south of the major ice sheets. Cave deposits in China, as well as marine and lake 
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sediment records, indicate that enhanced monsoon rainfall in the Northern Hemisphere’s 

tropics and subtropics was closely linked to abrupt warming in Greenland (e.g., Kelly et 

al., 2006; Wang et al., 2004; Yuan et al., 2004; Dykoski et al., 2005; Peterson et al., 

2000). The cave records in particular are important because they are extremely well dated 

using uranium series isotopic techniques, and high-resolution oxygen isotope records 

from caves, interpreted as rainfall indicators, convincingly match large parts of the 

Greenland ice core methane record. 

The wetland hypothesis is based on climate-driven changes in methane sources, but it is 

also possible that changes in methane sinks, primarily the OH radical, played a role in the 

variations observed in ice cores. Both Kaplan et al. (2006) and Valdes et al. (2005) 

proposed that the glacial-interglacial methane change cannot be explained entirely by 

changes in emissions from wetlands, because in their global climate-biosphere models the 

difference between Last Glacial Maximum (LGM) and early Holocene methane 

emissions is not large enough to explain the observed changes in the ice core record. Both 

studies explain this apparent paradox by invoking increased production of volatile 

organic carbon (VOC) from the terrestrial biosphere in warmer climates. VOCs compete 

with methane for reaction with OH, increasing the methane lifetime and the steady-state 

methane concentration that can be maintained at a given emission rate. Neither of these 

studies is directly relevant to the abrupt changes in the ice core record, and there are 

considerable uncertainties in the modeling. Nonetheless, further work on the role of 

changes in the methane sink on time scales relevant to abrupt methane changes is 

warranted. 

The wetland hypothesis has been challenged by authors calling attention to the large 

marine and terrestrial hydrate reservoirs. The challenge was most extensively developed 

by Kennett et al. (2003), who postulated that the abrupt shifts in methane in the ice core 

record were caused by abrupt release of methane from methane hydrates in sea-floor 

sediments on continental margins. This hypothesis originated from observations of 

negative carbon isotope excursions in marine sediment records in the Santa Barbara 

basin, which apparently coincided with the onset of abrupt warming in Greenland and 

increases in atmospheric methane in the ice core record. The “clathrate gun hypothesis” 

   380



SAP 3.4: Abrupt Climate Change 
 

postulates that millennial-scale abrupt warming during the last ice age was actually 

driven by atmospheric methane from hydrate release, and further speculates on a central 

role for methane in causing late Quaternary climate change (Kennett et al., 2003). 

Some proponents of the clathrate gun hypothesis further maintain that wetlands were not 

extensive enough during the ice age to be the source of the abrupt variations in methane 

in the ice core record. For example, Kennett et al. (2003) maintain that large 

accumulations of carbon in wetland ecosystems are a prerequisite for significant 

methanogenesis and that these established wetlands are exclusively a Holocene 

phenomenon. Process-based studies of methane emissions from wetlands, on the other 

hand, emphasize the relationship between annual productivity and emissions (e.g., 

Christensen et al., 1996). In this view methane production is closely tied to the 

production of labile carbon (Schlesinger, 1997) in the annual productivity cycle 

(Christensen et al., 1996). From this perspective it has been postulated that the ice core 

record reflects changes in rainfall patterns and temperature that could quickly influence 

the development of anoxic conditions, plant productivity, and methane emissions in 

regions where the landscape is appropriate for development of water-saturated soil (e.g., 

Brook et al., 2000; von Huissteten, 2004). 

The hypothesis that there was very little methane emission from wetlands prior to the 

onset of the Holocene is at odds with models of both wetland distribution and emissions 

for pre-Holocene times, the latter indicating emissions consistent with, or exceeding, 

those inferred from the ice core record (e.g., Valdes et al., 2005; Kaplan, 2002; Kaplan et 

al., 2006; Chappellaz et al., 1993b; von Huissteten, 2004). Von Huissteten (2004) 

specifically considered methane emissions during the stadial and interstadial phases of 

Marine Isotope Stage 3 (~30,000-60,000 years ago), when ice core data indicate that 

several rapid changes in atmospheric methane occurred (Fig. 5.6C). Von Huissteten 

describes wetland sedimentary deposits in northern Europe dating from this period and 

used a process-based model to estimate methane emissions for the cold and warm 

intervals. The results suggest that emissions from Northern Hemisphere wetlands could 

be sufficient to cause emissions variations inferred from ice core data. MacDonald et al. 

(2006) presented a compilation of basal peat ages for the circumarctic and showed that 
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peat accumulation started early in the deglaciation (at about 16,000 years before present), 

and therefore emissions of methane from Northern Hemisphere peat ecosystems very 

likely played a role in the methane increase at the end of the last ice age. The coincidence 

of peatland development and the higher Northern Hemisphere summer insolation of late 

glacial and early Holocene time supports the hypothesis that such wetlands were methane 

sources at previous times of higher Northern Hemisphere summer insolation (MacDonald 

et al., 2006), for example during insolation and methane peaks in the last ice age or at 

previous glacial-interglacial transitions (Brook et al., 1996; 2000). In summary, although 

the sedimentary record of wetlands and the factors controlling methane production in 

wetlands are imperfectly known, it appears likely that wetlands were important in the pre-

Holocene methane budget. 

The clathrate gun hypothesis is important for understanding the future potential for abrupt 

changes in methane – concern for the near future is warranted if the clathrate reservoir 

was unstable on the time scale of abrupt late Quaternary climate change. However, as an 

explanation for late Quaternary methane cycles, the clathrate gun hypothesis faces several 

challenges, elaborated upon further in Section 4. First, the radiative forcing of the small 

variations in atmospheric methane burden during the ice age should have been quite 

small (Brook et al., 2000), although it has been suggested that impacts on stratospheric 

water vapor may have increased the greenhouse power of these small methane variations 

(Kennett et al., 2003). Second, the ice core record clearly shows that the abrupt changes 

in methane lagged the abrupt temperature changes in the Greenland ice core record, albeit 

by only decades (Severinghaus et al., 1998; Severinghaus and Brook, 1999; Huber et al., 

2006; Grachev et al., 2007). These observations imply that methane is a feedback to 

rather than a cause of warming, ruling out one aspect of the clathrate gun hypothesis 

(hydrates as trigger), but they do not constrain the cause of the abrupt shifts in methane. 

Third, isotopic studies of ice core methane do not support methane hydrates as a source 

for abrupt changes in methane (Sowers, 2006; Schaefer et al., 2006). The strongest 

constraints come from hydrogen isotopes (Sowers, 2006) and are described further in 

Section 4. 
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Box 5.2—The Ice Core Record and Its Fidelity in Capturing Abrupt Events 

Around the time of discovery of the abrupt, but small, changes in methane in the late 

Quaternary ice core records (Fig. 5.6C) (Chappellaz et al., 1993a) some authors 

suggested that very large releases of methane to the atmosphere might be consistent 

with the ice core record, given the limits of time resolution of ice core data at that 

time, and the smoothing of atmospheric records due to diffusion in the snowpack 

(e.g., Thorpe et al., 1996). Since that time a large number of abrupt changes in 

methane in the Greenland ice core record (which extends to ~120,000 years before 

present) have been sampled in great detail, and no changes greatly exceeding those 

shown in Figure 5.6C have been discovered (Brook et al., 1996; 2000; 2005; Blunier 

and Brook, 2001; Chappellaz et al., 1997; Severinghaus et al. 1998; Severinghaus 

and Brook, 1999; Huber et al. 2006; EPICA Members, 2006; Grachev et al., 2007). 

Could diffusion in the snowpack mask much larger changes? Air is trapped in polar 

ice at the base of the firn (snowpack) where the weight of the overlying snow 

transforms snow to ice, and air between the snow grains is trapped in bubbles (Fig. 

5.8). The trapped air is therefore younger than the ice it is trapped in (this offset is 

referred to as the gas age-ice age difference). It is also mixed by diffusion, such that 

the air trapped at an individual depth interval is a mixture of air of different ages. In 

addition, bubbles do not all close off all the same depth, so there is additional mixing 

of air of different ages due to this variable bubble close-off effect. The overall 

smoothing depends on the parameters that control firn thickness, densification, and 

diffusion – primarily temperature and snow accumulation rate. 

Spahni et al. (2003) used the firn model of Schwander et al. (1993) to study the 

impact of smoothing on methane data from the Greenland Ice Core Project (GRIP) 

ice core in Greenland for the late Holocene. They examined the impact of smoothing 

on abrupt changes in methane in the Greenland ice core record. Brook et al. (2000) 

investigated a variety of scenarios for abrupt changes in methane, including those 

proposed by Thorpe et al. (1996), and compared what the ice core record would 

record of those events with high-resolution data for several abrupt shifts in methane 

(Fig. 5.9). 
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Two aspects of the ice core data examined by Brook et al. argue against abrupt, 

catastrophic releases of methane to the atmosphere as an explanation of the ice core 

record. First, the abrupt shifts in methane concentration take place on time scales of 

centuries, whereas essentially instantaneous releases would be recorded in the 

Greenland ice core record as more abrupt events (Fig. 5.9). While this observation 

says nothing about the source of the methane, it does indicate that the ice core record 

is not recording an essentially instantaneous atmospheric change (Brook et al., 2000). 

Second, the maximum levels of methane reached in the ice core record are not high 

enough to indicate extremely large changes in the atmospheric methane concentration 

(Fig. 5.9). 
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Figure 5.8. The firn column of a typical site on a polar ice sheet, from Schwander (2006). 
Abbreviations: m, meter; kg m-3, kilograms per cubic meter. 
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Figure 5.9. Model simulations of smoothing instantaneous release of methane from 
clathrates to the atmosphere, and the ice core response to those events. The ice core 
response was calculated by convolving the atmospheric histories in the top panel with a 
smoothing function appropriate for the GISP2 ice core. The solid lines are the 
atmospheric history and smoothed result for the model of a 4,000 teragram release of 
methane from Thorpe et al. (1994). The blue solid line represents how an Arctic ice core 
would record a release in the Northern Hemisphere, and the red solid line represents how 
an Antarctic ice core would record that event (from Brook et al., 2000). The dashed lines 
represent instantaneous arbitrary increases of atmospheric methane to values of 1,000, 
2,000, 3,000, 4,000, or 5,000 ppb (colored dashed lines in top panel) and the ice core 
response (bottom panel, same color scheme). 

3. Potential Mechanisms for Future Abrupt Changes in Atmospheric Methane 

Three general mechanisms are considered in this chapter as potential causes of abrupt 

changes in atmospheric methane in the near future large enough to cause abrupt climate 

change. These are outlined briefly in this section, and discussed in detail in Sections 4-6.   

3.1 Destabilization of Marine Methane Hydrates 

This issue is probably the most well known due to extensive research on the occurrence 

of methane hydrates in marine sediments, and the large quantities of methane apparently 
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present in this solid phase in continental-margin marine sediments. Destabilization of this 

solid phase requires mechanisms for warming the deposits and/or reducing pressure on 

the appropriate time scale, transport of free methane gas to the sediment-water interface, 

and transport to the atmosphere (see Box 5.1). There are a number of physical 

impediments to abrupt release, in addition to the fact that bacterial methanotrophy 

consumes methane in oxic sediments and the ocean water column. Warming of bottom 

waters, slope failure, and their interaction are the most commonly discussed mechanisms 

for abrupt release. 

3.2 Destabilization of Permafrost Hydrates 

Hydrate deposits at depth in permafrost are known to exist, and although their extent is 

uncertain, the total amount of methane in permafrost hydrates is very likely much smaller 

than in marine sediments. Surface warming eventually would increase melting rates of 

permafrost hydrates. Inundation of some deposits by warmer seawater and lateral 

invasion of the coastline are also concerns and may be mechanisms for more rapid 

change. 

3.3 Changes in Wetland Extent and Methane Productivity 

Although a destabilization of either the marine or terrestrial methane hydrate reservoirs is 

the most probable pathway for a truly abrupt change in atmospheric methane 

concentration, the potential exists for a more chronic, but substantial, increase in natural 

methane emissions in association with projected changes in climate. The most likely 

region to experience a dramatic change in natural methane emission is the northern high 

latitudes, where there is increasing evidence for accelerated warming, enhanced 

precipitation, and widespread permafrost thaw which could lead to an expansion of 

wetland areas into organic-rich soils that, given the right environmental conditions, 

would be fertile areas for methane production. 

In addition, although northern high-latitude wetlands seem particularly sensitive to 

climate change, the largest natural source of methane to the atmosphere is from tropical 

wetlands, and methane emissions there may also be sensitive to future changes in 
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temperature and precipitation. Modeling studies addressing this issue are therefore also 

included in our discussion. 

4. Potential for Abrupt Methane Change From Marine Hydrate Sources 

4.1 Impact of Temperature Change on Marine Methane Hydrates 

A prominent concern about marine methane hydrates is that warming at the Earth’s 

surface will ultimately propagate to hydrate deposits and melt them, releasing methane to 

the ocean-atmosphere system. The likelihood of this type of methane release depends on 

the propagation of heat through the sea floor, the migration of methane released from 

hydrate deposits through sediments, and the fate of this methane in the water column. 

4.1.1 Propagation of Temperature Change to the Hydrate Stability Zone 

The time dependence of changes in the inventory of methane in the hydrate reservoir 

depends on the time scale of warming and chemical diffusion. There is evidence from 

paleotracers (Martin et al., 2005) and from modeling (Archer et al., 2004) that the 

temperature of the deep sea is sensitive to the climate of the Earth's surface. In general, 

the time scale for changing the temperature of the ocean increases with water depth, 

reaching a maximum of about 1,000 years for the abyssal ocean. This means that abrupt 

changes in temperature at the surface ocean would not be transmitted immediately to the 

deep sea. There are significant regional variations in the ventilation time of the ocean, 

and in the amount of warming that might be expected in the future. The Arctic is 

expected to warm particularly strongly because of the albedo feedback from the melting 

Arctic ice cap. Temperatures in the North Atlantic appear to be sensitive to changes in 

ocean circulation such as during rapid climate change during the last ice age (Dansgaard 

et al., 1989). 

The top of the hydrate stability zone is at 200 to 600 m water depth, depending mainly on 

the temperature of the water column. Within the sediment column, temperature increases 

with depth along the geothermal temperature gradient, 30-50°C km-1 (Harvey and Huang, 

1995). The shallowest sediments that could contain hydrate only have a thin hydrate 

stability zone, and the stability zone thickness increases with water depth. A change in 

the temperature of the deep ocean will act as a change in the upper boundary condition of 
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the sediment temperature profile. Warming of the overlying ocean may not put surface 

sediments into undersaturation, but the warmer overlying temperature propagates 

downward until a new profile with the same geothermal temperature gradient can be 

established. How long this takes is a strong (second order) function of the thickness of the 

stability zone, but the time scales are in general long. In 1,000 years the temperature 

signal should have propagated about 180 m in the sediment. In steady state, an increase in 

ocean temperature will decrease the thickness of the stability zone. Dickens (2001b) 

calculated that the volume of the stability zone ought to decrease by about half with a 

temperature increase of 5°C. 

4.1.2 Impact on Stratigraphic-Type Deposits 

Hydrate deposits formed within sedimentary layers are referred to as stratigraphic-type 

deposits.  After an increase in temperature of the overlying water causes hydrate to melt 

at the base of the stability zone, the fate of the released methane is difficult to predict. 

The increase in pore volume and pressure could provoke gas migration through the 

stability zone or a landslide, or the bubbles could remain enmeshed in the sediment 

matrix. Hydrate moves down to the base of the stability zone by the accumulation of 

overlying sediment at the sea floor, so melting of hydrate at the stability zone takes place 

continuously, not just in association with ocean warming. 

When hydrate melts, most of the released methane goes into the gas phase to form 

bubbles, assuming that the porewaters were already saturated in dissolved methane. The 

fate of the new bubbles could be to remain in place, to migrate, or to diffuse away and 

react chemically (Hinrichs et al., 1999; Wakeham et al., 2003), and it is difficult to 

predict which will occur. The potential for gas migration through the stability zone is one 

of the more significant uncertainties in forecasting the ocean hydrate response to 

anthropogenic warming (Harvey and Huang, 1995). 

In cohesive sediments, bubbles expand by fracturing the sediment matrix, resulting in 

elongated shapes (Boudreau et al., 2005). Bubbles tend to rise because they are less 

dense than the water they are surrounded by, even at the 200+ atmosphere pressures in 

sediments of the deep sea. If the pressure in the gas phase exceeds the lithostatic pressure 
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in the sediment, fracture and gas escape can occur (Flemings et al., 2003). Modeled and 

measured (Dickens et al., 1995) porewater pressures in the sediment column at Blake 

Ridge approach lithostatic pressures, indicating that new gas bubbles added to the 

sediment might be able to escape to the overlying water by this mechanism. 

A differential-pressure mechanism begins to operate when the bubbles occupy more than 

about 10% of the volume of the pore spaces (Hornbach et al., 2004). If a connected 

bubble spans a large enough depth range, the pressure of the porewater will be higher at 

the bottom of the bubble than it is at the top, because of the weight of the porewater over 

that depth span. The pressure inside the bubble will be more nearly constant over the 

depth span, because the compressed gas is not as dense as the porewater is. This will 

result in a pressure gradient at the top and the bottom of the bubble, tending to push the 

bubble upward. Hornbach et al. (2004) postulated that this mechanism might be 

responsible for allowing methane to escape from the sediment column, and they 

calculated the maximum thickness of an interconnected bubble zone required, before the 

bubbles would break through the overlying sediment column. In their calculations, and in 

stratigraphic deposits (they refer to them as “basin settings”), the thickness of the bubble 

column increases as the stability zone gets thicker. It takes more pressure to break 

through a thicker stability zone, so a taller column of gas is required. In compressional 

settings, where the dominant force is directed sideways by tectonics, rather than 

downward by gravity, the bubble layer is never as thick, reflecting an easier path to 

methane escape. 

Multiple lines of evidence indicate that gas can be transported through the hydrate 

stability zone without freezing into hydrate. Seismic studies at Blake Ridge have 

observed the presence of bubbles along faults in the sediment matrix (Taylor et al., 

2000). Faults have been correlated with sites of methane gas emission from the sea floor 

(Aoki et al., 2000; Zuhlsdorff et al., 2000; Zuhlsdorff and Spiess, 2004). Seismic studies 

often show “wipeout zones” where the bubble zone beneath the hydrate stability zone is 

missing, and all of the layered structure of the sediment column within the stability zone 

is smoothed out. These are interpreted to be areas where gas has broken through the 

structure of the sediment to escape to the ocean (Riedel et al., 2002; Wood et al., 2002; 
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Hill et al., 2004). Bubbles associated with seismic wipeout zones are observed within the 

depth range that should be within the hydrate stability zone, assuming that the 

temperature of the sediment column is the steady-state expression of the local average 

geothermal gradient (Gorman et al., 2002). This observation has been explained by 

assuming that upward migration of the fluid carries with it heat, maintaining a warm 

channel where gas can be transported through what would otherwise be 

thermodynamically hostile territory (Taylor et al., 2000; Wood et al., 2002). 

The sediment surface of the world’s ocean has holes in it called pockmarks (Hovland and 

Judd, 1988; Hill et al., 2004), interpreted to be the result of catastrophic or continuous 

escape of gas to the ocean. Pockmarks off Norway are accompanied by authigenic 

carbonate deposits associated with anaerobic oxidation of methane (Hovland et al., 

2005). Pockmarks range in size from meters to kilometers (Hovland et al., 2005), with 

one 700-km2 example on the Blake Ridge (Kvenvolden, 1999). If the Blake Ridge 

pockmark is the result of a catastrophic explosion, it might have released less than 1GtC 

as methane (assuming a 500-m-thick layer of 4% methane yields 1 GtC). Since each 

individual pockmark releases a small amount of methane relative to the atmospheric 

inventory, pockmark methane release could impact climate as part of the ongoing 

“chronic” methane source to the atmosphere, if the frequency of pockmark eruptions 

increased. In this sense pockmarks do not represent “catastrophic” methane releases. 

However, Kennett et al. (2003) hypothesized that some apparently inactive pockmark 

fields may have formed during the last deglaciation and are evidence of active methane 

discharge at that time. 

Another mechanism for releasing methane from the sediment column is by submarine 

landslides. These are a normal, integral part of the ocean sedimentary system (Hampton 

et al., 1996; Nisbet and Piper, 1998). Submarine landslides are especially prevalent in 

river deltas because of the high rate of sediment delivery and because of the presence of 

submarine canyons. The tendency for slope failure can be amplified if the sediment 

accumulates more quickly than the excess porosity can be squeezed out. This 

accumulation can lead to instability of the sediment column, causing periodic Storegga-

type landslides off the coast of Norway (see section below on Storegga Landslide), in the 
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Mediterranean Sea (Rothwell et al., 2000), or potentially off the East Coast of the United 

States (Dugan and Flemings, 2000). Maslin et al. (2004) find that 70% of the landslides 

in the North Atlantic over the last 45,000 years (45 kyr) occurred within the time 

windows of the two meltwater peaks, 15-13 and 11-8 kyr ago. These could have been 

driven by deglacial sediment loading or warming of the water column triggering hydrate 

melting. 

Warming temperatures or sea-level changes may trigger the melting of hydrate deposits, 

provoking landslides (Kvenvolden, 1999; Driscoll et al., 2000; Vogt and Jung, 2002). 

Paull et al. (1991) calculate that landslides can release up to about 1-2 GtC as methane; 1 

Gt is enough to alter the radiative forcing by about 0.25 watts per square meter (W m-2). 

The origin of these estimates is discussed in the section on the Storegga Landslide. 

4.1.3 Impact on Structural-Type Hydrate Deposits 

In stratigraphic-type hydrate deposits, hydrate concentration is highest near the base of 

the stability zone, often hundreds of meters below the sea floor. In shallower waters, 

where the stability zone is thinner, models predict smaller inventories of hydrate. 

Therefore, most of the hydrates in stratigraphic-type deposits tend to be deep. In contrast 

with this, in a few parts of the world, transport of presumably gaseous methane through 

faults or permeable channels results in hydrate deposits that are abundant at shallow 

depths in the sediment column, closer to the sea floor. These "structural-type" deposits 

could be vulnerable to temperature-change-driven melting on a faster time scale than the 

stratigraphic deposits are expected to be. 

The Gulf of Mexico contains structural-type deposits and is basically a leaky oil field 

(MacDonald et al., 1994, 2002, 2004; Sassen and MacDonald, 1994; Milkov and Sassen, 

2000, 2001, 2003; Sassen et al., 2001a; Sassen et al., 2003). Natural oil seeps leave 

slicks on the sea surface that can be seen from space. Large chunks of methane hydrate 

have been found on the sea floor in contact with seawater (MacDonald et al., 1994). One 

of the three chunks MacDonald et al. saw had vanished when they returned a year later; 

presumably it had detached and floated away. 
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Collett and Kuuskraa (1998) estimate that 500 GtC might reside as hydrates in the Gulf 

sediments, but Milkov (2004) estimates only 5 GtC. The equilibrium temperature change 

in the deep ocean to a large, 5,000-GtC fossil fuel release could be 3°C (Archer et al., 

2004). Milkov and Sassen (2003) subjected a two-dimensional model of the hydrate 

deposits in the Gulf to a 4°C temperature increase and predicted that 2 GtC from hydrate 

would melt. However, there are no observations to suggest that methane emission rates 

are currently accelerating, and temperature changes in Gulf of Mexico deep waters in the 

next 100 years are likely to be smaller than 3-4˚C. Sassen et al. (2001b) find no 

molecular fractionation of gases in near-surface hydrate deposits that would be indicative 

of partial dissolution, and suggest that the reservoir may in fact be growing. 

Other examples of structural deposits include the summit of Hydrate Ridge, off the coast 

of Oregon, USA (Torres et al., 2004; Trehu et al., 2004b), and the Niger Delta (Brooks et 

al., 2000). The distribution of hydrate at Hydrate Ridge indicates up-dip flow along sand 

layers (Weinberger et al., 2005). Gas is forced into sandy layers where it accumulates 

until the gas pressure forces it to vent to the surface (Trehu et al., 2004a). Trehu et al. 

(2004b) estimate that 30-40% of pore space is occupied by hydrate, while gas fractions 

are 2-4%. Methane emerges to the sea floor with bubble vents and subsurface flows of 1 

m s-1, and in regions with bacterial mats and vesicomyid clams (Torres et al., 2002). 

Further examples of structural deposits include the Peru Margin (Pecher et al., 2001) and 

Nankai Trough, Japan (Nouze et al., 2004). 

Mud volcanoes are produced by focused-upward fluid flow into the ocean and are 

sometimes associated with hydrate and petroleum deposits. Mud volcanoes often trap 

methane in hydrate deposits that encircle the channels of fluid flow (Milkov, 2000; 

Milkov et al., 2004). The fluid flow channels associated with mud volcanoes are ringed 

with the seismic images of hydrate deposits, with authigenic carbonates, and with 

pockmarks (Dimitrov and Woodside, 2003) indicative of anoxic methane oxidation. 

Milkov (2000) estimates that mud volcanoes contain at most 0.5 GtC of methane in 

hydrate, about 100 times his estimate of the annual supply. 
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4.1.4 Fate of Methane Released as Bubbles 

Methane released from sediments in the ocean may reach the atmosphere directly, or it 

may dissolve in the ocean. Bubbles are not generally a very efficient means of 

transporting methane through the ocean to the atmosphere. Rehder et al. (2002) compared 

the dissolution kinetics of methane and argon and found enhanced lifetime of methane 

bubbles below the saturation depth in the ocean, about 500 m, because a hydrate film on 

the surface of the methane bubbles inhibited gas exchange. Bubbles dissolve more slowly 

from petroleum seeps, where oily films on the surface of the bubble inhibit gas exchange, 

also changing the shapes of the bubbles (Leifer and MacDonald, 2003). On a larger scale, 

however, Leifer et al. (2000) diagnosed that the rate of bubble dissolution is limited by 

turbulent transport of methane-rich water out of the bubble stream into the open water 

column. The magnitude of the surface dissolution inhibition seems small; in the Rehder et 

al. (2002) study, a 2-cm bubble dissolves within 30 m above the stability zone, and only 

110 m below the stability zone. Acoustic imaging of the bubble plume from Hydrate 

Ridge showed bubbles surviving from 600-700 m water depth, where they were released 

to just above the stability zone at 400 m (Heeschen et al., 2003). One could imagine 

hydrate-film dissolution inhibition as a mechanism to concentrate the release of methane 

into the upper water column, but not really as a mechanism to get methane through the 

ocean directly to the atmosphere. 

Methane can reach the atmosphere if the methane bubbles are released in waters that are 

only a few tens of meters deep, as in the case of melting the ice complex in Siberia 

(Shakhova et al., 2005; Washburn et al., 2005; Xu et al., 2001), or during periods of 

lower sea level (Luyendyk et al., 2005). If the rate of methane release is large enough, the 

rising column of seawater in contact with the bubbles may saturate with methane, or the 

bubbles can be larger, potentially increasing the escape efficiency to the atmosphere. 

4.1.5 Fate of Methane Hydrate in the Water Column 

Pure methane hydrate is buoyant in seawater, so floating hydrate is another source of 

methane delivery from the sediment to the atmosphere (Brewer et al., 2002). In sandy 

sediment, the hydrate tends to fill the existing pore structure of the sediment, potentially 

entraining sufficient sediment to prevent the hydrate/sediment mixture from floating, 
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while in fine-grained sediments, bubbles and hydrate grow by fracturing the cohesion of 

the sediment, resulting in irregular blobs of bubbles (Gardiner et al., 2003; Boudreau et 

al., 2005) or pure hydrate. Brewer et al. (2002) and Paull et al. (2003) stirred surface 

sediments from Hydrate Ridge using the mechanical arm of a submersible remotely 

operated vehicle and found that hydrate did manage to shed its sediment load enough to 

float. Hydrate pieces of 0.1 m survived a 750-m ascent through the water column. Paull 

et al. (2003) described a scenario for a submarine landslide in which the hydrates would 

gradually make their way free of the turbidity current comprised of the sediment and 

seawater slurry. 

4.1.6 Fate of Dissolved Methane in the Water Column 

Methane is unstable to bacterial oxidation in oxic seawater. Rehder et al. (1999) inferred 

a methane oxidation lifetime in the high-latitude North Atlantic of 50 years. Methane 

oxidation is faster in the deep ocean near a particular methane source, where its 

concentration is higher (turnover time 1.5 years), than it is in the surface ocean (turnover 

time of decades) (Valentine et al., 2001). Water-column concentration and isotopic 

measurements indicate complete water-column oxidation of the released methane at 

Hydrate Ridge (Grant and Whiticar, 2002; Heeschen et al., 2005). 

An oxidation lifetime of 50 years leaves plenty of time for transport of methane gas to the 

atmosphere. Typical gas-exchange time scales for gas evasion from the surface ocean 

would be about 3-5 m per day. A surface mixed layer 100 m deep would approach 

equilibrium (degas) in about a month. Even a 1,000-m-thick winter mixed layer would 

degas about 30% during a 3-month winter window. The ventilation time of subsurface 

waters depends on the depth and the fluid trajectories in the water (Luyten et al., 1983), 

but 50 years is enough time that a significant fraction of the dissolved methane from 

bubbles might reach the atmosphere before it is oxidized. 

4.2 Geologic Data Relevant to Past Hydrate Release 

4.2.1 The Storegga Landslide 

One of the largest exposed submarine landslides in the ocean is the Storegga Landslide in 

the Norwegian continental margin (Mienert et al., 2000, 2005; Bryn et al., 2005). The 
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slide excavated on average the top 250 m of sediment over a swath hundreds of 

kilometers wide, stretching halfway from Norway to Greenland (Fig. 5.10). There have 

been comparable slides on the Norwegian margin every approximately 100 kyr, roughly 

synchronous with the glacial cycles (Solheim et al., 2005). The last one, Storegga proper, 

occurred about 8,150 years ago, after deglaciation. It generated a tsunami in what is now 

the United Kingdom (D'Hondt et al., 2004; Smith et al., 2004). The Storegga slide area 

contains methane hydrate deposits as indicated by a bottom simulating seismic reflector 

(BSR) (Bunz and Mienert, 2004; Mienert et al., 2005; Zillmer et al., 2005a, b) 

corresponding to the base of the hydrate stability zone (HSZ) at 200-300 m, and 

pockmarks (Hovland et al., 2005) indicating gas expulsion from the sediment. 

 

Figure 5.10. Image and map of the Storegga Landslide from Masson et al. (2006). The 
slide excavated on average the top 250 m of sediment over a swath hundreds of 
kilometers wide. Colors indicate water depth, with yellow-orange indicating shallow 
water, and green-blue indicating deeper water. 
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The proximal cause of the slide may have been an earthquake, but the sediment column 

must have been destabilized by either or both of two mechanisms. One is the rapid 

accumulation of glacial sediment shed by the Fennoscandian ice sheet (Bryn et al., 2005). 

As explained above, rapid sediment loading traps porewater in the sediment column 

faster than it can be expelled by the increasing sediment load. At some point, the 

sediment column floats in its own porewater (Dugan and Flemings, 2000). This 

mechanism has the capacity to explain why the Norwegian continental margin, of all 

places in the world, might have landslides synchronous with climate change. 

The other possibility is the dissociation of methane hydrate deposits by rising ocean 

temperatures. Rising sea level is also a player in this story, but a smaller one. Rising sea 

level tends to increase the thickness of the stability zone by increasing the pressure. A 

model of the stability zone shows this effect dominating deeper in the water column 

(Vogt and Jung, 2002); the stability zone is shown increasing by about 10 m for 

sediments in water depth below about 750 m. Shallower sediments are impacted more by 

long-term temperature changes, reconstructions of which show warming of 5-6°C over a 

thousand years or so, 11-12 kyr ago. The landslide occurred 2-3 kyr after the warming 

(Mienert et al., 2005). The slide started at a few hundred meters water depth, just off the 

continental slope, just where Mienert et al. (2005) calculate the maximum change in 

HSZ. Sultan et al. (2004) predict that warming in the near-surface sediment would 

provoke hydrate to dissolve by increasing the saturation methane concentration. This 

form of dissolution differs from heat-driven direct melting, however, in that it produces 

dissolved methane, rather than methane bubbles. Sultan et al. (2004) assert that melting 

to produce dissolved methane increases the volume, although laboratory analyses of 

volume changes upon this form of melting are equivocal. In any case, the volume 

changes are much smaller than for thermal melting that produces bubbles. 

The amount of methane released by the slide can be estimated from the volume of the 

slide and the potential hydrate content. Hydrate just outside the slide area has been 

estimated by seismic methods to fill as much as 10% of the porewater volume, in a layer 

about 50 m thick near the bottom of the stability zone (Bunz and Mienert, 2004). If these 
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results were typical of the entire 104 km2 area of the slide, the slide could have released 1-

2 GtC of methane in hydrate (Paull et al., 1991). 

If 1 GtC CH4 reached the atmosphere all at once, it would raise the atmospheric 

concentration from today’s value of ~1,700 ppb to ~2200 ppb, trapping about 0.25 

additional W/m2 of greenhouse heat, or more, considering indirect feedbacks. The 

methane radiative forcing would subside over a time scale of a decade or so, as the pulse 

of released methane was oxidized to CO2, and the atmospheric methane concentration 

relaxed toward the long-term steady-state value. The radiative impact of the Storegga 

Landslide would then be somewhat smaller in magnitude but opposite in sign to the 

eruption of a large volcano, such as theMount. Pinatubo eruption (-2 W/m2), but it would 

last longer (10 years for methane and 2 years for a volcano). 

It is tantalizing to wonder if there could be any connection between the Storegga 

Landslide and the 8.2-kyr climate event (Alley and Agustsdottir, 2005), which may have 

been been triggered by freshwater release to the North Atlantic. However, ice cores 

record a 75-ppb drop in methane concentration during the 8.2-kyr event (Kobashi et al., 

2007), not a rise. A slowdown of convection in the North Atlantic would have cooled the 

overlying waters. Maslin et al. (2004) suggested that an apparent correlation between the 

ages of submarine landslides in the North Atlantic region and methane variations during 

the deglaciation supported the hypothesis that clathrate release by this mechanism 

influenced atmospheric methane. The lack of response for Storegga, by far the largest 

landslide known, and a relatively weak association of other large slides with increased 

methane levels (Fig. 5.11) suggest that it is unlikely that submarine landslides caused the 

atmospheric methane variations during this time period. 
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Figure 5.11. Timing of submarine landslides in the North Atlantic region and pre-
industrial ice core methane variations. Landslide data from Maslin et al. (2004). Methane 
data from Brook et al. (2000) and Kobashi et al. (2007). Abbreviations: km3, cubic 
kilometers; yr, year; ppb, parts per billion. 

Much of our knowledge of the Storegga Landslide is due to research sponsored by the 

Norwegian oil industry, which is interested in tapping the Ormen Lange gas field within 

the headlands of the Storegga slide but is concerned about the geophysical hazard of gas 

extraction (Bryn et al., 2005). Estimates of potential methane emission from the Storegga 

slide range from 1 to 5 GtC, which is significant but not apocalyptic. As far as can be 

determined, the Storegga Landslide had no impact on climate. 

4.2.2 The Paleocene-Eocene Thermal Maximum 

About 55 million years ago, the δ13C signature of carbon in the ocean and on land 

decreased by 2.5-5 per mil (‰) on a time scale of less than 10 kyr, then recovered in 

parallel on a time scale of ~120-220 kyr (Kennett and Stott, 1991; Zachos et al., 2001). 
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Associated with this event, commonly called the Paleocene-Eocene Thermal Maximum 

(PETM), the δ18O of CaCO3 from intermediate depths in the ocean decreased by 2-3‰, 

indicative of a warming of about 5°C (Fig. 5.12). The timing of the spikes is to a large 

extent synchronous. Planktonic foraminifera and terrestrial carbon records show a δ13C 

perturbation a bit earlier than benthic foraminifera do, suggesting that the carbon spike 

invaded the deep ocean from the atmosphere (Thomas et al., 2002). Similar events, also 

associated with transient warmings have been described from other times in geologic 

history (Hesselbo et al., 2000; Jenkyns, 2003). The PETM is significant to the present 

day because it is an analog to the potential fossil fuel carbon release if we burn all the 

coal reserves. 

 

Figure 5.12. Carbon (top) and oxygen (bottom) isotope record for benthic foraminifera 
from sites in the south Atlantic and western Pacific Oceans for the Paleocene-Eocene 
Thermal Maximum (PETM), from Zachos et al. (2001), modified by Archer (2007). ‰, 
per mil. 
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The change in isotopic composition of the carbon in the ocean is attributed to the release 

of some amount of isotopically light carbon to the atmosphere. However, it is not clear 

where the carbon came from, or how much of it there was. The magnitude of the carbon 

shift depends on where it was recorded. The surface change recorded in CaCO3 in soils 

(Koch et al., 1992) and in some planktonic foraminifera (Thomas et al., 2002) is twice as 

large a change as is reported for the deep sea. Land records may be affected by changes 

in plant fractionation, driven by changing hydrological cycle (Bowen et al., 2004). Ocean 

records may be affected by CaCO3 dissolution (Zachos et al., 2005) resulting in 

diagenetic imprints on the remaining CaCO3, a necessity to use multiple species, or 

simple inability to find CaCO3 at all. 

We can estimate the change in the carbon inventory of the ocean by specifying an 

atmospheric partial pressure of CO2 value (pCO2), a mean ocean temperature, and 

insisting on equilibrium with CaCO3 (Zeebe and Westbroek, 2003). The ocean was 

warmer, prior to the PETM event, than it is today. Atmospheric pCO2 was probably at 

least 560 ppm at this time (Huber et al., 2002). The present-day inventory of CO2 in the 

ocean is about 40,000 GtC. According to simple thermodynamics, neglecting changes in 

the biological pump or circulation of the ocean, the geological steady-state inventory for 

late Paleocene, pre-PETM time could have been on the order of 50,000 GtC. 

The lighter the isotopic value of the source, the smaller the amount of carbon that must be 

released to explain the isotopic shift (Fig. 5.12, top). Candidate sources include methane, 

which can range in its δ13C isotopic composition from –30 to –110‰. If the ocean δ13C 

value is taken at face value, and the source was methane at –60‰, then 2,000 GtC would 

be required to explain the isotopic anomaly. If the source were thermogenic methane or 

organic carbon at δ13C of about –25‰, then 10,000 GtC would be required. 

Buffett and Archer (2004) find that the steady-state hydrate reservoir size in the ocean is 

extremely sensitive to the temperature of the deep sea. At the temperature of Paleocene 

time but with everything else as in the present-day ocean, they predict less than a 

thousand GtC of methane in steady state. As the ocean temperature decreases, the 

stability zone gets thinner and covers less area. Their model was able to fit 6,000 GtC in 
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the Arctic Ocean, however, using 6°C temperatures from CCSM (Huber et al., 2002) 

(which may be too cold) and assuming that the basin had been anoxic (Sluijs et al., 2006). 

Marine organic matter has an isotopic composition of –20‰ and would require 6,000 

GtC to explain the isotopic anomaly. Svensen et al. (2004) proposed that lava intrusions 

into organic-rich sediments could have caused the isotopic shift. They cite evidence that 

the isotopic composition of methane produced from magma intrusion should be –35 to –

50‰, requiring therefore 2,500-3,500 GtC to explain the isotope anomaly in the deep 

ocean. If CO2 were also released, from metamorphism of CaCO3, the average isotopic 

composition of the carbon spike would be lower, and the mass of carbon greater. Storey 

et al. (2007) showed that the opening of the North Atlantic Ocean and associated igneous 

intrusions and volcanism correspond in time with the PETM. However, the time scale of 

carbon release (<10 kyr), indicated by the isotopic shft, is likely more abrupt than one 

would expect from this kind of volcanic activity.  Furthermore, the volcanic activity 

continued for hundreds of thousands of years, leaving still unexplained the reason for the 

fast (<10,000 years) carbon isotope excursion.  

A comet impact might have played a role in the PETM, and while the isotopic 

composition of comets is not well constrained, carbon in cometary dust tends to be about 

–45‰ (Kent et al., 2003). Kent et al. (2003) calculate that an 11 km comet containing 20-

25% organic matter, a rather large icy tarball, could deliver 200 GtC, enough to decrease 

the δ13C of the atmosphere and upper ocean by 0.4‰. It is unlikely that a comet could 

deliver thousands of GtC, however. An impact strike to a carbonate platform or an 

organic-rich sediment of some sort could release carbon, but it would take a very large 

crater to release thousands of gigatons of carbon. 

Volcanic carbon has an isotopic composition of –7‰, requiring a huge carbon release of 

~20,000 GtC to explain the PETM. Excess carbon emissions have been attributed to 

superplume cycles in the mantle and flood-basalt volcanic activity (Larson, 1991). 

Schmitz et al. (2004) and Bralower et al. (1997) find evidence of increased volcanic 

activity during the PETM interval but view the activity as rearranging ocean circulation, 

triggering methane release, rather than being a major primary source of carbon itself, 
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presumably because the potential volcanic carbon source is too slow. 

Acidification of the ocean by invasion of CO2 drove a shoaling of the depth of CaCO3 

preservation in the Atlantic (Zachos et al., 2005) although, curiously, the signal is much 

smaller in the Pacific (Zachos et al., 2003). The magnitude of the carbonate 

compensation depth (CCD) shift in the Atlantic would suggest a large carbon addition, on 

the order of 5,000 GtC or more (Archer et al., 1997). 

A large carbon release is also supported by the warming inferred from the δ18O spike. 

The benthic δ18O record is clearly interpretable as a temperature change, at a depth of 

several kilometers in the ocean, from about 8° to about 14°C, in a few thousand years. 

Warming is also implied by Mg/Ca ratios in CaCO3 (Zachos et al., 2003) and other 

tracers (Sluijs et al., 2006; 2007). The temperature can be altered by both CH4 and CO2. 

Schmidt and Shindell (2003) calculated that the steady-state atmospheric CH4 

concentration during the period of excess emission (ranging from 500-20,000 years) 

would be enough to explain the temperature change. However, the atmospheric-methane 

concentration anomaly would decay away a few decades after the excess emission 

ceased. At this point the temperature anomaly would die away also. Hence, as soon as the 

carbon isotopic composition stopped plunging negatively, the oxygen isotopic 

composition should recover as the ocean cools. The carbon isotopic composition 

meanwhile should remain light for hundreds of thousands of years (Kump and Arthur, 

1999) until the carbon reservoir isotopic composition reapproached a steady-state value. 

The record shows instead that the oxygen and carbon isotopic anomalies recovered in 

parallel (Fig. 5.12). This suggests that CO2 is the more likely greenhouse warmer rather 

than CH4. It could be that the time scale for the pCO2 to reach steady state might be 

different than the time scale for the isotopes to equilibrate, analogous to the equilibration 

of the surface ocean by gas exchange: isotopes take longer. However, in the Kump and 

Arthur (1999) model results, pCO2 seems to take longer to equilibrate than δ13C. The 

first-order result is that the CO2 and δ13C time scales are much more similar than the CH4 

and δ13C time scales would be. 

A warming of 5°C would require somewhere between one and two doublings of the 

atmospheric CO2 concentration, if the climate sensitivity is in the range of IPCC 
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predictions of 2.5 – 4.5°C. Beginning from 600 ppm, we would increase the pCO2 of the 

atmosphere to somewhere in the range of 1,200 – 2,400 ppm. The amount of carbon 

required to achieve this value for hundreds of thousands of years (after equilibration with 

the ocean and with the CaCO3 cycle) would be of order 20,000 GtC. This would imply a 

mean isotopic composition of the spike of mantle isotopic composition, not isotopically 

light methane. The amount of carbon required to explain the observed δ18O would be 

higher if the initial atmospheric pCO2 were higher than the assumed 600 ppm. The only 

way that a biogenic methane source could explain the warming is if the climate 

sensitivity were much higher in the Paleocene than it seems to be today, which seems 

unlikely because the ice albedo feedback amplifies the climate sensitivity today (Pagani 

et al., 2006). 

The bottom line conclusion about the source of the carbon isotopic excursion is that it is 

still not clear. There is no clear evidence in favor of a small, very isotopically depleted 

source of carbon. Mechanistically, it is easier to explain a small release than a large one, 

and this is why methane has been a popular culprit for explaining the δ13C shift. 

Radiative considerations argue for a larger carbon emission, corresponding to a less 

fractionated source than pure biogenic methane. Thermogenic methane might do, such as 

the release of somewhat more thermogenic methane than in Gulf of Mexico sediments, if 

there were a thermogenic deposit that large. Perhaps it was some combination of sources, 

an initial less-fractionated source such as marine organic matter or a comet, followed by 

hydrate release. 

The PETM is significant to the present day because it is a close analog to the potential 

fossil fuel carbon release if we burn all the coal reserves. There are about 5,000 GtC in 

coal, while oil and traditional natural gas deposits are hundreds of Gt each (Rogner, 

1997). The recovery time scale from the PETM (140 kyr) is comparable to the model 

predictions, based on the mechanism of the silicate weathering thermostat (400 kyr time 

scale, Berner et al., 1983). 

The magnitude of the PETM warming presents an important and currently unanswered 

problem. A 5,000-GtC fossil fuel release will warm the deep ocean by perhaps 2-4°C, 
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based on paleoclimate records and model results (Martin et al., 2005). The warming 

during the PETM was 5°C, and this was from an atmospheric CO2 concentration higher 

than today (at least 600 ppm), so that a further spike of only 2,000 GtC (based on 

methane isotopic composition) would have only a tiny radiative impact, not enough to 

warm the Earth by 5°C. One possible explanation  is that our estimates for the climate 

sensitivity are too low by a factor of 2 or more. However, as mentioned above, one might 

expect a decreased climate sensitivity for an ice-free world rather than for the ice-age 

climate of today. 

Another possible explanation  is that the carbon release was larger than 2,000 GtC. 

Perhaps the global average δ13C shift was as large as recorded in soils (Koch et al., 1992) 

and some planktonic foraminifera (Thomas et al., 2002). The source could have been 

thermogenic methane, or maybe it was not methane at all but CO2, derived from some 

organic pool such as sedimentary organic carbon (Svensen et al., 2004). At present, the 

PETM serves as a cautionary tale about the long duration of a release of new CO2 to the 

atmosphere (Archer, 2005). However, our current understanding of the processes 

responsible for the δ13C spike is not strong enough to provide any new constraint to the 

stability of the methane hydrate reservoir in the immediate future. 

4.2.3 Santa Barbara Basin and the Clathrate Gun Hypothesis 

Nisbet (2002) and Kennett et al. (2003) argue that methane from hydrates is responsible 

for the deglacial rise in the Greenland methane record between 20,000 and 10,000 years 

ago, and for abrupt changes in methane at other times (Fig. 5.6C). Kennett et al.(2000) 

found episodic negative δ13C excursions in benthic foraminifera in the Santa Barbara 

basin, which they interpret as reflecting release of hydrate methane during warm climate 

intervals. Biomarkers for methanotrophy are found in greater abundance and indicate 

greater rates of reaction during warm intervals in the Santa Barbara basin (Hinrichs et al., 

2003) and in the Japanese coastal margin (Uchida et al., 2004). Cannariato and Stott 

(2004), however, argued that these results could have arisen from contamination or 

subsequent diagenetic overprints. Hill et al. (2006) measured the abundance of tar in 

Santa Barbara basin sediments, argued that tar abundance was proportional to methane 
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emissions, and described increases in tar abundance and inferred destabilization of 

methane hydrates associated with warming during the last glacial-interglacial transition. 

As discussed in Section 1, there are several arguments against the hypothesis of a 

clathrate role in controlling atmospheric methane during the last glacial period. Perhaps 

the most powerful so far is that the isotopic ratio of deuterium to hydrogen (D/H) in ice 

core methane for several abrupt transitions in methane concentration indicates a 

freshwater source, rather than a marine source, apparently ruling out much of a role for 

marine hydrate methane release (Sowers, 2006). However, the D/H ratio has not yet been 

measured for the entire ice core record. The timing of the deglacial methane rise was also 

more easily explained by wetland emissions than by catastrophic methane release (Brook 

et al., 2000). The interhemispheric gradient of methane tells us that the deglacial increase 

in atmospheric methane arose in part from high northern latitudes (Dallenbach et al., 

2000), although more work is needed to verify this conclusion because constraining the 

gradient is analytically difficult. The deglacial methane rise could therefore be attributed 

at least in part to methanogenesis from decomposition of thawing organic matter from 

high-latitude wetlands. Regardless of the source of the methane, the climate forcing from 

the observed methane record (Fig. 5.6C and D) is too weak to argue for a dominant role 

for methane in the glacial cycles (Brook et al., 2000). 

4.3 Review of Model Results Addressing Past and Future Methane Hydrate 

Destabilization 

4.3.1 Climate Impact of Potential Release 

Probably the most detailed analysis to date of the potential for methane release from 

hydrates on a century time scale is the study of Harvey and Huang (1995). Their study 

calculated the inventory of hydrate and the potential change in that inventory with an 

ocean warming. They treated as a parameter the fraction of methane in bubbles that could 

escape the sediment column to reach the ocean, and evaluated the sensitivity of the 

potential methane release to that escaped fraction. Our picture of methane release 

mechanisms has been refined since 1995, although it remains difficult to predict the fate 

of methane from melted hydrates. Harvey and Huang (1995) did not treat the invasion of 
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heat into the ocean or into the sediment column. Their conclusion was that the radiative 

impact from hydrate methane will be much smaller than that of CO2, or even between 

different scenarios for CO2 release. The calculation should be redone, but it is unlikely 

that an updated calculation would change the bottom-line conclusion. 

Schmidt and Shindell (2003) showed that the chronic release of methane from a large 

hydrate reservoir over thousands of years can have a significant impact on global climate. 

The accumulating CO2 from the oxidation of the methane also has a significant climate 

impact. New CO2 from methane oxidation accumulates in the atmosphere / ocean / 

terrestrial biosphere carbon pool and persists to affect climate for hundreds of thousands 

of years (Archer, 2005). If a pool of methane is released over a time scale of thousands of 

years, the climate impact from the accumulating CO2 concentration may exceed that from 

the steady-state increase in the methane concentration (Harvey and Huang, 1995; 

Dickens, 2001a; Schmidt and Shindell, 2003; Archer and Buffett, 2005). After the 

emission stops, methane drops quickly to a lower steady state, while the CO2 persists. 

If hydrates melt in the ocean, much of the methane would probably be oxidized in the 

ocean rather than reaching the atmosphere directly as methane. This reduces the century 

time scale climate impact of melting hydrate, but on time scales of millennia and longer 

the climate impact is the same regardless of where the methane is oxidized. Methane 

oxidized to CO2 in the ocean will equilibrate with the atmosphere within a few hundred 

years, resulting in the same partitioning of the added CO2 between the atmosphere and 

the ocean regardless of its origin. The rate and extent to which methane carbon can 

escape the sediment column in response to warming is very difficult to constrain at 

present. It depends on the stability of the sediment slope to sliding, and on the 

permeability of the sediment and the hydrate stability zone’s cold trap to bubble methane 

fluxes. 

4.4 Conclusions About Potential for Abrupt Release of Methane From Marine 

Hydrates 

On the time scale of the coming century, it appears likely that most of the marine hydrate 

reservoir will be insulated from anthropogenic climate change. The exception is in 
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shallow ocean sediments where methane gas is focused by subsurface migration. The 

most likely response of these deposits to anthropogenic climate change is an increased 

background rate of chronic methane release, rather than an abrupt release. Methane gas in 

the atmosphere is a transient species, its loss by oxidation continually replenished by 

ongoing release. An increase in the rate of methane emission to the atmosphere from 

melting hydrates would increase the steady-state methane concentration of the 

atmosphere. The potential rate of methane emission from hydrates is more speculative 

than the rate from other methane sources such as the decomposition of peat in thawing 

permafrost deposits, or anthropogenic emission from agricultural, livestock, and fossil 

fuel industries, but the potential rates appear to be comparable to these sources. 

5. Terrestrial Methane Hydrates 

There are two sources for methane in hydrates, biogenic production by microbes 

degrading organic matter in anaerobic environments, and thermogenic production at 

temperatures above 110°C, typically at depths greater than about 15 km. Terrestrial 

methane hydrates are primarily biogenic (Archer, 2007). They form and are stable under 

ice sheets (thicker than ~250 m) and within permafrost soils at depths of about 150 to 

2,000 m below the surface (Kvenvolden, 1993; Harvey and Huang, 1995). Their presence 

is known or inferred from geophysical evidence (e.g., well logs) on Alaska’s North 

Slope, the Mackenzie River delta (Northwest Territories) and Arctic islands of Canada, 

the Messoyakha Gas Field and two other regions of western Siberia, and two regions of 

northeastern Siberia (Kvenvolden and Lorenson, 2001). Samples of terrestrial methane 

hydrates have been recovered from 900 to 1,110 m depth in the Mallik core in the 

Mackenzie River delta (Kvenvolden and Lorenson, 2001; Uchida et al., 2002). 

5.1 Terrestrial Methane Hydrate Pool Size and Distribution 

While most methane hydrates are marine, the size of the contemporary terrestrial 

methane hydrate pool, although unknown, may be large. Estimates range from less than 

10 Gt CH4 (Meyer, 1981) to more than 18,000 Gt CH4 (Dobrynin et al., 1981) (both cited 

in Harvey and Huang, 1995). More recent estimates are 400 Gt CH4 (MacDonald, 1990), 

800 Gt CH4 (Harvey and Huang, 1995), and 4.5-400 GtC; this is a small fraction of the 

ocean methane hydrate pool size (see Sec. 4). 
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Terrestrial methane hydrates are a potential fossil energy source. Recovery can come 

from destabilization of the hydrates by warming, reducing the pressure, or injecting a 

substance (e.g., methanol) that shifts the stability line (see Box 5.1). The Messoyakha 

Gas Field in western Siberia, at least some of which lies in the terrestrial methane hydrate 

stability zone, began producing gas in 1969, and some production is thought to have 

come from methane hydrates, though methanol injection made this production very 

expensive (Kvenvolden, 1993; Krason, 2000). A more recent review of the geological 

evidence for methane production from hydrates at Messoyakha by Collett and Ginsburg 

(1998) could not confirm unequivocally that hydrates contributed to the produced gas. 

Due to low costs of other available energy resources, there had not been significant 

international industrial interest in hydrate methane extraction from 1970 to 2000 

(Kvenvolden, 2000), and the fraction of terrestrial methane hydrate that is or will be 

technically and economically recoverable is not well established. In theUnited States , the 

Methane Hydrate Research and Development Act of 2000 and its subsequent 2005 

Amendment have fostered the National Methane Hydrates R&D Program, supporting a 

wide range of laboratory, engineering, and field projects with one focus being on 

developing the knowledge and technology base to allow commercial production of 

methane from domestic hydrate deposits by the year 2015, beginning with Alaska’s 

North Slope. Estimates of technically and economically recoverable methane in hydrates 

are being developed (Boswell, 2005, 2007). 

5.2 Mechanisms To Destabilize Terrestrial Methane Hydrates 

Terrestrial methane hydrates in permafrost are destabilized if the permafrost warms 

sufficiently or if the permafrost hydrate is exposed through erosion (see Box 5.3). 

Destabilization of hydrates in permafrost by global warming is not expected to be 

significant over the next few centuries (Nisbet, 2002; see Sec. 5.4). Nisbet (2002) notes 

that although a warming pulse will take centuries to reach permafrost hydrates at depths 

of several hundred meters, once a warming pulse enters the soil/sediment, it continues to 

propagate downward and will eventually destabilize hydrates, even if the climate has 

subsequently cooled. 
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Terrestrial methane hydrates under an ice sheet are destabilized if the ice sheet thins or 

retreats. The only globally significant ice sheets now existing are on Greenland and 

Antarctica; maps of the global distribution of methane hydrates do not show any hydrates 

under either ice sheet (Kvenvolden, 1993). It is likely, however, that hydrates formed 

under Pleistocene continental ice sheets (e.g., Weitemeyer and Buffett, 2006; see Sec. 

5.3.1). 

Terrestrial methane hydrates can also be destabilized by thermokarst erosion (a melt-

erosion process) of coastal-zone permafrost. Ice complexes in the soil melt where they 

are exposed to the ocean along the coast, the land collapses into the sea, and more ice is 

exposed (Archer, 2007). The Siberian coast is experiencing very high rates of coastal 

erosion (Shakhova et al., 2005). Methane hydrates associated with this permafrost 

become destabilized through this process, and methane is released into the coastal waters 

(Shakhova et al., 2005). Magnitudes of the emissions are discussed below. 

De Batist et al. (2002) analyzed seismic reflection data from Lake Baikal sediments, the 

only freshwater nonpermafrost basin known to contain gas hydrates, and infer that 

hydrate destabilization is occurring in this tectonically active lacustrine basin via upward 

flow of hydrothermal fluids advecting heat to the base of the hydrate stability zone. If 

occurring, this means of destabilization is very unlikely to be important globally, as the 

necessary geological setting is rare. 

Mining terrestrial hydrates for gas production will necessarily destabilize them, but 

presumably most of this methane will be captured, used, and the carbon emitted to the 

atmosphere as CO2. 

5.3 Evidence of Past Release of Terrestrial Hydrate Methane  

No direct evidence has been identified of past release of terrestrial hydrate methane in 

significant quantities. Analyses related to the PETM and clathrate gun hypothesis 

discussed in Sec. 4 have focused on methane emissions from the larger and more 

vulnerable marine hydrates. Emissions from terrestrial hydrates may have contributed to 

changes in methane observed in the ice core record, but there are so far no distinctive 

isotopic tracers of terrestrial hydrates, as is the case for marine hydrate (Sowers, 2006). 
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5.3.1. Quantity of Methane Released From Terrestrial Hydrates in the Past 

Weitemeyer and Buffett (2006) modeled the accumulation and release of biogenic 

methane from terrestrial hydrates below the Laurentide and Cordilleran ice sheets of 

North America during the last glaciation. Methane was generated under the ice sheet 

from anaerobic decomposition of buried, near-surface soil organic matter, and hydrates 

formed if the ice sheet was greater than ~250 m thick. Hydrate destabilization arose from 

pressure decreases with ice sheet melting/thinning. They simulated total releases for 

North America of about 40-100 Tg CH4, with most of the deglacial emissions occurring 

during periods of glacial retreat during a 500-year interval around 14 kyr before present 

(BP), and a 2,000-year interval centered on about 10 kyr BP. The highest simulated 

emission rates (~15-35 Tg CH4 yr-1) occurred during the dominant period of ice sheet 

melting around 11-9 kyr BP. 

Shakova et al. (2005) measured supersaturated methane concentrations in northern 

Siberian coastal waters. This supersaturation is thought to arise from degradation of 

coastal shelf hydrate, hydrate that had formed in permafrost when the shelf was exposed 

during low sea level of the last glacial maximum. Methane concentrations in the Laptev 

and East Siberian Seas were supersaturated up to 800% in 2003 and 2500% in 2004. 

From this and an empirical model of gas flux between the atmosphere and the ocean, they 

estimated summertime (i.e., ice-free) fluxes of up to 0.4 Mg CH4 km-2 y-1 (or 0.4 g CH4 

m-2 y-1). They assume that the methane flux from the sea floor is of the same order of 

magnitude, and may reach 1-1.5 g CH4 m-2 y-1. These fluxes are low compared to wetland 

fluxes (typically ~1-100 g CH4 m-2 y-1; Bartlett and Harriss, 1993), but applied across the 

total area of shallow Arctic shelf, the total annual flux for this region may be as high as 1-

5 Tg CH4 y-1, depending on degree of oxidation in the seawater. (See Table 5.1 above for 

global methane emissions by source.) 

5.3.2 Climate Impact of Past Methane Release From Terrestrial Hydrates 

Most studies of climate impacts from possible past methane hydrate releases have 

considered large releases from marine hydrates (see Sec. 4 above). It is generally not well 

known what fraction of the methane released from hydrate destabilization is either 

trapped in overlying sediments or oxidized to carbon dioxide before reaching the 
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atmosphere (Reeburgh, 2004), and the same considerations are relevant to release from 

terrestrial sources. 

Weitemeyer and Buffett (2006) estimated intervals of 500-2,000 years when methane 

hydrate destabilization from retreat of the North American ice sheet caused increases of 

atmospheric methane of 10-200 ppb, with the largest perturbation at 11-9 kyr before 

present. Any effect of methane oxidation before reaching the atmosphere was ignored; 

this oxidation would have reduced the impact on the atmospheric methane burden. This 

atmospheric perturbation is equivalent to about 2-25% of pre-industrial Holocene 

atmospheric methane burdens, and roughly equivalent to a radiative forcing of 0.002 – 

0.1 W m-2 (using contemporary values for methane radiative efficiency and indirect 

effects from Ramaswamy et al., 2001). 

Thermokarst erosion on the Arctic coast of Siberia is thought to cause hydrate 

destabilization and emissions of methane that are at most 1% of total global methane 

emissions (Shakhova et al. 2005), and so this process is very unlikely to be having a large 

climatic impact. 

5.4 Estimates of Future Terrestrial Hydrate Release and Climatic Impact 

Harvey and Huang (1995) modeled terrestrial methane hydrate release due to global 

warming (step function temperature increases of 5°C, 10°C, and 15°C, and the 

propagation of this heat into hydrate-bearing permafrost). Over the first few centuries the 

methane release is very small, and after 1,000 years, the cumulative methane release is 

<1%, 2%, and 5% of the total terrestrial methane hydrate pool size, respectively; by 5,000 

years this cumulative release has increased to 3%, 15%, and 30%, respectively. Even 

5,000 years after a step function increase in temperature of 15˚C, the radiative forcing 

caused by terrestrial hydrate melting (direct effects of methane plus methane converted to 

carbon dioxide) was only ~0.3 W/m2. 

Methane release from hydrate destabilization due to decaying ice sheets is unlikely to be 

substantial unless there are significant hydrate pools under Greenland and/or Antarctica, 

which does not seem to be the case. Thermoskarst erosion release is the only known 

present terrestrial hydrate methane source. This process can be expected to continue into 
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the future, and it is very likely that emissions will remain a small fraction of the global 

methane budget and therefore have a small impact on radiative forcing. However, most 

recent modeling analyses have focused on marine hydrates (e.g., Dickens, 2001c; Archer 

and Buffett, 2005), and more work on the terrestrial hydrate reservoir is clearly needed. 

5.5 Conclusions 

No mechanisms have been proposed for the abrupt release of significant quantities of 

methane from terrestrial hydrates (Archer, 2007). Slow and perhaps sustained release 

from permafrost regions may occur over decades to centuries from mining extraction of 

methane from terrestrial hydrates in the Arctic (Boswell, 2007), over decades to centuries 

from continued thermokarst erosion of coastal permafrost in Eurasia (Shakhova et al., 

2005), and over centuries to millennia from the propagation of any warming 100-1,000 m 

down into permafrost hydrates (Harvey and Huang, 1995). 

6. Changes in Methane Emissions From Natural Wetlands 

6.1 Introduction 

Natural wetlands are most extensive at high northern latitudes, where boreal and arctic 

wetlands contain substantial carbon in peat and are frequently associated with permafrost, 

and in the tropics, often associated with river and lake floodplains. Annual methane 

emissions from tropical wetlands are roughly twice that from boreal/arctic wetlands. 

Globally, wetlands are the largest single methane source to the atmosphere, with recent 

emission estimates ranging from 100 to 231 Tg CH4 yr-1 (Denman et al., 2007), 

constituting more than 75% of the total estimated natural emissions. Variations in 

wetland distribution and saturation, in response to long-term variations in climate, are 

therefore thought to have been main determinants for variation in the atmospheric CH4 

concentration in the past (Chappellaz et al., 1990; Chappellaz et al., 1993a,b; Brook et 

al., 1996, 2000; Delmotte et al., 2004). Recent interannual variations in methane 

emissions have been dominated by fluctuations in wetland emissions (Bousquet et al., 

2006), although biomass burning also plays a significant role. 

Methane emissions from natural wetlands are sensitive to temperature and moisture (see 

below), and thus to climate variability and change. Emissions can also be influenced by 

   413



SAP 3.4: Abrupt Climate Change 
 

anthropogenic activities that impact wetlands such as pollution loading (e.g., Gauci et al., 

2004), land management (e.g., Minkkinen et al., 1997), and water management (e.g., St. 

Louis et al., 2000). While these anthropogenic impacts can be expected to change in the 

coming decades, they are unlikely to be a source of abrupt changes in methane emissions 

from natural wetlands, so this section will focus on climate change impacts. 

Global climate-model projections suggest that the tropics, on average, and the northern 

high latitudes are likely to become warmer and wetter during the 21st century, with 

greater changes at high latitudes (Chapman and Walsh, 2007; Meehl et al., 2007). 

Temperatures in the tropics by 2100 are projected to increase by 2-4°C (Meehl et al., 

2007). Precipitation in the tropics is expected to increase in East Africa and Southeast 

Asia, show little change in West Africa and Amazonia, and decrease in Central America 

and northern South America (Meehl et al., 2007). 

Warming in the northern high latitudes in recent decades has been stronger than in the 

rest of the world (Serreze and Francis, 2006), and that trend is projected to continue, with 

multimodel projections indicating that arctic land areas could warm by between 3.5° and 

8°C by 2100 (Meehl et al., 2007). The northern high latitudes are also expected to see an 

increase in precipitation by more than 20% in winter and by more than 10% in summer. 

Climate change of this magnitude is expected to have diverse impacts on the arctic 

climate system (ACIA, 2004), including the methane cycle. Principal among the projected 

impacts is that soil temperatures are expected to warm and permafrost, which is prevalent 

across much of the northern high latitudes, is expected to thaw and degrade. Permafrost 

thaw may alter the distribution of wetlands and lakes through soil subsidence and 

changes in local hydrological conditions. Since methane production responds positively 

to soil moisture and summer soil temperature, the projected strong warming and 

associated landscape changes expected in the northern high latitudes, coupled with the 

large carbon source (northern peatlands have ~250 GtC as peat within 1 to a few meters 

of the atmosphere; Turunen et al., 2002), will likely lead to an increase in methane 

emissions over the coming century. 
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6.2 Factors Controlling Methane Emissions From Natural Wetlands 

Methane is produced as a byproduct of microbial decomposition of organic matter under 

anaerobic conditions that are typical of saturated soils and wetlands. As this methane 

migrates from the saturated soil to the atmosphere (via molecular diffusion, ebullition 

(bubbling), or plant-mediated transport), it can be oxidized to carbon dioxide by 

microbial methanotrophs in oxygenated sediment or soil. In wetlands, a significant 

fraction of the methane produced is oxidized by methanotrophic bacteria before reaching 

the atmosphere (Reeburgh, 2004). If the rate of methanogenesis is greater than the rate of 

methanotrophy and pathways for methane to diffuse through the soil are available, then 

methane is emitted to the atmosphere. Dry systems, where methanotrophy exceeds 

methanogenesis, can act as weak sinks for atmospheric methane (see Table 5.1). Methane 

emissions are extremely variable in space and time, and therefore it is difficult to quantify 

regional-scale annual emissions (Bartlett and Harriss, 1993; Melack et al., 2004). Recent 

reports of a large source (62-236 Tg CH4 yr-1) of methane from an aerobic process in 

plants (Keppler et al., 2006) appear to be in overstated (Dueck et al., 2007; Wang et al., 

2008). 

There are relatively few field studies of methane fluxes from tropical wetlands around the 

world, but work in the Amazon and Orinoco Basins of South America has shown that 

methane emissions appear to be most strongly controlled in aquatic habitats by 

inundation depth and vegetation cover (e.g., flooded forest, floating macrophytes, open 

water) (Devol et al., 1990; Bartlett and Harriss, 1993; Smith et al., 2000; Melack et al., 

2004). Wet season (high water) fluxes are generally higher than dry season (low water) 

fluxes (Bartlett and Harriss, 1993). 

At high latitudes, the most important factors influencing methane fluxes are water table 

depth, soil or peat temperature, substrate type and availability, and vegetation type (Fig. 

5.13). Water table depth determines both the fraction of the wetland soil or peat that is 

anaerobic and the distance from this zone of methane production to the atmosphere (i.e., 

the length of the oxidation zone) and is often the single most important factor controlling 

emissions (Bubier et al., 1995; Waddington et al., 1996; MacDonald et al., 1998). The 

strong sensitivity of CH4 emissions to water table position suggests that changing 
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hydrology of northern wetlands under climate change could drive large shifts in 

associated methane emissions. 

 

Figure 5.13. Relationships between water table height, temperature, and methane 
emissions for northern wetlands from Bubier et al. (1995). Abbreviations: mg/m2/d, 
milligrams per square meter per day; mm, millimeters; C, degrees Celsius. 

Vegetation type controls plant litter tissue quality/decomposability, methanogen substrate 

input by root exudation (e.g., King and Reeburgh, 2002), and the potential for plant-

mediated transport of methane to the atmosphere (e.g., King et al., 1998; Joabsson and 

Christensen, 2001). Substrate type and quality, generally related to quantity of root 

exudation and to vegetation litter quality and degree of decomposition, can directly affect 
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potential methane production. Vegetation productivity controls the amount of organic 

matter available for decomposition. 

In wetland ecosystems, when the water table is near the surface and substantial methane 

emissions occur, the remaining controlling factors rise in relevance. Christensen et al. 

(2003) find that temperature and microbial substrate availability together explain almost 

100% of the variations in mean annual CH4 emissions across a range of sites across 

Greenland, Iceland, Scandinavia, and Siberia. Bubier et al. (1995) find a similarly strong 

dependence on soil temperature at a northern peatland complex in Canada. The observed 

strong relationship between CH4 emissions and soil temperature reflects the exponential 

increase in microbial activity as soil temperatures warm. The strong warming expected 

across the northern high latitudes is likely to be a positive feedback on methane 

emissions. 

The presence or absence of permafrost can also have a direct influence on CH4 emissions. 

Across the northern high latitudes, permafrost features such as ice wedges, ice lenses, 

thermokarst, and ice heaving determine the surface microtopography. Small variations in 

surface topography have a strong bearing on plant community structure and evolution as 

well as soil hydrologic and nutritional conditions (Jorgenson et al., 2001, 2006), all of 

which are controlling factors for methane emission. Projections of future methane 

emission are hampered by the difficulty of modeling landscape and watershed hydrology 

well enough at large scales to realistically represent small changes in wetland water table 

depth. 

6.3 Observed and Projected Changes in Natural Wetlands 

6.3.1 Observed Changes in Arctic Wetlands and Lakes 

Increased surface ponding and wetland formation have been observed in warming 

permafrost regions (Jorgenson et al., 2001, 2006). These increases are driven primarily 

by permafrost-thaw-induced slumping and collapsing terrain features (thermokarst) that 

subsequently fill with water. For the Tanana Flats region in central Alaska, large-scale 

degradation of permafrost over the period 1949-95 is associated with substantial losses of 

birch forest and expansion of wetland fens  (Jorgenson et al., 2001). 
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In recent decades, lake area and the number of lakes in discontinuous permafrost regions 

have decreased in western Siberia (Smith et al., 2005) and Alaska (Riordan et al., 2006) 

but have increased in continuous permafrost regions in northwestern Siberia (Smith et al., 

2005). The differing trends in discontinuous and continuous permafrost zones can be 

understood if one considers that initial permafrost warming leads to development of 

thermokarst and lake and wetland expansion as the unfrozen water remains trapped near 

the surface by the icy soil beneath it. As the permafrost degrades more completely, lake 

or wetland drainage follows, as water more readily drains through the more ice-free soil 

to the ground-water system. 

A strength of the Smith et al. (2005) study is that lake abundance is determined via 

satellite, permitting the study of thousands of lakes and evaluation of the net change 

across a broad area, which can in turn be attributed to regional driving mechanisms such 

as climate and permafrost degradation. A similar analysis for wetlands would be useful 

but is presently intractable because wetlands are not easy to pinpoint from satellite, as 

inundation, particularly in forested regions, cannot be easily mapped, and wetland-rich 

landscapes are often very spatially heterogeneous. (Frey and Smith, 2007). 

Present-generation global climate or large-scale hydrologic models do not represent the 

thermokarst processes that appear likely to dictate large-scale changes in wetland extent 

over the coming century. However, wetland area can also respond to trends in 

precipitation minus evaporation (P–E). A positive P–E trend could lead, in the absence of 

large increases in runoff, to an expansion of wetland area and more saturated soil 

conditions, thereby increasing the area from which methane emission can occur. Most 

climate models predict that both arctic precipitation and evapotranspiration will rise 

during the 21st century if greenhouse gas concentrations in the atmosphere continue to 

rise. In at least one model, the NCAR CCSM3, the P–E trend is positive throughout the 

21st century (Lawrence and Slater, 2005). 

6.3.2 Observed and Projected Changes in Permafrost Conditions 

There is a considerable and growing body of evidence that soil temperatures are 

warming, active layer thickness (ALT) is increasing, and permafrost is degrading at 
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unprecedented rates (e.g., Osterkamp and Romanovsky, 1999; Romanovsky et al., 2002, 

Smith et al., 2005; Osterkamp and Jorgenson, 2006). Continuous permafrost in Alaska, 

which has been stable over hundreds, or even thousands, of years, has suffered an abrupt 

increase in degradation since 1982 that “appears beyond normal rates of change in 

landscape evolution” (Jorgenson et al., 2006). Similarly, discontinuous permafrost in 

Canada has shown a 200-300% increase in the rate of thawing over the 1995-2002 period 

relative to that of 1941-91 (Camill, 2005). Payette et al. (2004) present evidence of 

accelerated thawing of subarctic peatland permafrost over the last 50 years. An example 

of permafrost degradation and transition to wetlands in the Tanana Flats region of central 

Alaska is shown in Figure 5.14. 

  

 

Figure 5.14. Transition from tundra (left, 1978) to wetlands (right, 1998) due to 
permafrost degradation over a period of 20 years (Jorgensen et al., 2001). Photographs, 
taken from the same location in Tanana Flats in central Alaska, courtesy of NOAA 
(obtained from http://www.arctic.noaa.gov/detect/land-tundra.shtml). 

Model projections of soil temperature warming and permafrost degradation in response to 

the strong anticipated high-latitude warming vary considerably, although virtually all of 

them indicate that a significant amount of permafrost degradation will occur if the Arctic 

continues to warm (Anisimov and Nelson, 1997; Stendel and Christensen, 2002; Zhang et 

al., 2003; Sazonova et al., 2004). Buteau et al. (2004) find downward thawing rates of up 

to 13 cm yr-1 in ice-rich permafrost for a 5oC warming over 100 years. A collection of 

process-based models, both global and regional, all with varying degrees of completeness 

in terms of their representation of permafrost, indicates widespread large-scale 
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degradation of permafrost (and by extension increased thermokarst development), sharply 

increasing ALTs, and a contraction of the area where permafrost can be found near the 

Earth’s surface during the 21st century (Lawrence and Slater, 2005; Euskirchen et al., 

2006; Lawrence et al., 2008; Saito et al., 2007; Zhang et al., 2007). 

Box 5.3—High-Latitude Terrestrial Feedbacks 

In recent decades, the Arctic has witnessed startling environmental change. The 

changes span many facets of the arctic system including rapidly decreasing sea ice 

extent, melting glaciers, warming and degrading permafrost, increasing runoff to the 

Arctic Ocean, expanding shrub cover, and important changes to the carbon balance 

(Serreze et al., 2000; ACIA, 2004; Hinzman et al., 2005). The observed 

environmental trends are driven largely by temperatures that are increasing across the 

Arctic at roughly twice the rate of the rest of the world (Serreze and Francis, 2006). 

If the arctic warming continues and accelerates, as is predicted by all global climate 

models (Chapman and Walsh, 2007), it may invoke a number of feedbacks that have 

the potential to alter and possibly accelerate arctic and global climate change. If the 

feedbacks operate constructively, even relatively small changes in the Arctic could 

conspire to amplify global climate change. Continued environmental change, 

especially if it occurs rapidly, is likely to have adverse consequences for highly 

vulnerable arctic and global ecosystems and negative impacts on human activities, 

including costly damage to infrastructure, particularly in the Arctic.. 

The Arctic can influence global climate through both positive and negative feedbacks 

(Fig. 5.15). For example, sea-ice retreat reduces surface albedo, enhances absorption 

of solar radiation, and ultimately leads to greater pan-Arctic warming. Large-scale 

thawing of permafrost alters soil structural (thermokarst) and hydrologic properties 

(Jorgenson et al., 2001) with additional effects on the spatial extent of lakes and 

wetlands (Smith et al., 2005; Riordan et al., 2006), runoff to the Arctic Ocean, 

ecosystem functioning (Jorgenson et al., 2001; Payette et al., 2004), and the surface 

energy balance. Warming is also expected to enhance decomposition of soil organic 

matter, releasing carbon to the atmosphere (a positive feedback) (Zimov et al., 2006) 

and also releasing nitrogen which, in nutrient-limited arctic ecosystems, may prompt 
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shrub growth (a negative feedback due to carbon sequestration) (Sturm et al., 2001). 

This greening-of-the-Arctic negative feedback may itself be offset by a positive 

radiative feedback related to lower summer and especially winter albedos of shrubs 

and trees relative to tundra (Chapin et al., 2005), which promotes an earlier spring 

snowmelt that among other things affects soil temperature and permafrost (Sturm et 

al., 2001). 

The future of the Arctic as a net sink or source of carbon to the atmosphere depends 

on the delicate balance between carbon losses through enhanced soil decomposition 

and carbon gains to the ecosystem related to the greening of the Arctic (McGuire et 

al., 2006). Irrespective of the carbon balance, anticipated increases in methane 

emissions mean that the Arctic is likely to be an effective greenhouse gas source 

(Friborg et al., 2003; McGuire et al., 2006). 

The Arctic is a complex and interwoven system. On the basis of recent evidence of 

change, it appears that many of these processes are already operating. Whether or not 

the positive or negative feedbacks will dominate is a critical question facing climate 

science. In a recent paper reviewing the integrated regional changes in arctic climate 

feedbacks, McGuire et al. (2006) conclude that the balance of evidence indicates that 

the positive feedbacks to global warming will likely dominate over the next century, 

but their relationship to global climate change remains difficult to predict, especially 

since much of the research to date has considered these feedbacks in isolation. 
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Figure 5.15. Terrestrial responses to warming in the Arctic that influence the climate 
system. Responses of permafrost on the left are coupled with functional (physiological) 
and structural biotic responses on the right either directly (arrows B and D) or through 
mediating processes of disturbance and land use (arrows C and E). Functional and 
structural biotic responses are also coupled (arrow A). Physical responses will generally 
result in positive feedbacks. In general, functional responses of terrestrial ecosystems act 
as either positive or negative feedbacks to the climate system. In contrast, most of the 
structural responses to warming are ambiguous because they result in both positive and 
negative feedbacks to the climate system. Abbreviation: NPP, net primary production. 
Figure adapted from McGuire et al. (2006). 
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6.4 Observed and Modeled Sensitivity of Wetland Methane Emissions to Climate 

Change 

Field studies indicate that methane emissions do indeed increase in response to soil 

warming and permafrost thaw. Christensen et al. (2003) note that a steady rise in soil 

temperature will enhance methane production from existing regions of methanogenesis 

that are characterized by water tables at or near the surface. While this aspect is 

important, changes in landscape-scale hydrology can cause significant change in methane 

emissions. For example, at a mire in subarctic Sweden, permafrost thaw and associated 

vegetation changes drove a 22-66% increase in CH4 emissions over the period 1970 to 

2000 (Christensen et al., 2004). Bubier et al. (2005) estimated that in a Canadian boreal 

landscape with discontinuous permafrost and ~30% wetland coverage, methane fluxes 

increased by ~60% from a dry year to a wet year, due to changes in wetland water table 

depth, particularly at the beginning and end of the summer. Nykänen et al. (2003) also 

found higher methane fluxes during a wetter year at a sub-Arctic mire in northern 

Finland. Walter et al. (2006) found that thawing permafrost along the margins of thaw 

lakes in eastern Siberia accounts for most of the methane released from the lakes. This 

emission, which occurs primarily through ebullition, is an order of magnitude larger 

where there has been recent permafrost thaw and thermokarst compared to where there 

has not. These hotspots have extremely high emission rates but account for only a small 

fraction of the total lake area. Methane released from these hotspots appears to be 

Pleistocene age, indicating that climate warming may be releasing old carbon stocks 

previously stored in permafrost (Walter et al., 2006). At smaller scales, there is strong 

evidence that thermokarst development substantially increases CH4 emissions from high-

latitude ecosystems. Mean CH4 emission rate increases between permafrost peatlands and 

collapse wetlands of 13-fold (Wickland et al., 2006), 30-fold (Turetsky et al., 2002), and 

up to 19-fold (Bubier et al., 1995) have been reported. 

A number of groups have attempted to predict changes in natural wetland methane 

emissions on a global scale. These studies broadly suggest that natural methane emissions 

from wetlands will rise as the world warms. Shindell et al. (2004) incorporate a linear 

parameterization for methane emissions, based on a detailed process model, into a global 

climate model and find that overall wetland methane emissions increased by 121 Tg CH4 
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y-1, 78% higher than their baseline estimate. They project a tripling of northern high-

latitude methane emissions, and a 60% increase in tropical wetland methane emissions in 

a doubled CO2 simulation. The increase is attributed to a rise in soil temperature in 

combination with wetland expansion driven by a positive P-E trend predicted by the 

model. About 80% of the increase was due to enhanced flux rates, and 20% due to 

expanded wetland area or duration of inundation. The predicted increase in the 

atmospheric methane burden was 1,000 Tg, ~20% of the current total, equivalent to an 

increase of ~430 ppb, assuming a methane lifetime of 8.9 years. Utilizing a similar 

approach but with different climate and emission models, Gedney et al. (2004) project 

that global wetland emissions (including rice paddies) will roughly double, despite a 

slight reduction in wetland area. The northern wetland methane emissions, in particular, 

increase by 100% (44 to 84 Tg CH4 yr-1) in response to increasing soil temperatures and 

in spite of a simulated 10% reduction in northern wetland areal extent. Using a more 

process-based ecosystem model, which includes parameterizations for methane 

production and emission, Zhuang et al. (2007) model a doubling of methane emissions 

over the 21st century in Alaska, once again primarily in response to the soil temperature 

influence on methanogenesis, and secondarily to an increase in net primary productivity 

of Alaskan ecosystems. These factors outweigh a negative contribution to methane 

emissions related to a simulated drop in the water table. It is important to note that these 

models simulate only the direct impacts of climate change (altered temperature and 

moisture regimes, and in one case enhanced vegetation productivity) but not indirect 

impacts, such as changing landscape hydrology with permafrost degradation and 

changing vegetation distribution. At this time, it is not known whether direct or indirect 

effects will have a stronger impact on net methane emissions. These models all predict 

fairly smooth increases in annual wetland emissions, with no abrupt shifts in flux. 

6.5 Conclusion About Potential for Abrupt Release of Methane From Wetlands 

Tropical wetlands are a stronger methane source than boreal and arctic wetlands and will 

likely continue to be over the next century, during which fluxes from both regions are 

expected to increase. However, four factors differentiate northern wetlands from tropical 

wetlands and make them more likely to experience a larger increase in fluxes: (1) high-

latitude amplification of climatic warming will lead to a stronger temperature impact, (2) 
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for regions with permafrost, warming-induced permafrost degradation could make more 

organic matter available for decomposition and substantially change the system 

hydrology, (3) the sensitivity of microbial respiration to temperature generally decreases 

with increasing temperatures (e.g., Davidson and Janssens, 2006), and (4) most northern 

wetlands have substantial carbon as peat. On the other hand, two characteristics of 

northern peatlands counter this: (1) northern peatlands are complex, adaptive ecosystems, 

with internal feedbacks and self-organizing structure (Belyea and Baird, 2007) that allow 

them to persist in a relatively stable state for millennia and that may reduce their 

sensitivity to hydrological change, and (2) much of the organic matter in peat is well-

decomposed (e.g., Frolking et al. 2001) and may not be good substrate for methanogens. 

The balance of evidence suggests that anticipated changes to northern wetlands in 

response to large-scale permafrost degradation, thermokarst development, a positive P-E 

trend in combination with substantial soil warming, enhanced vegetation productivity, 

and an abundant source of organic matter will likely conspire to drive a chronic increase 

in CH4 emissions from the northern latitudes during the 21st century. Due to the strong 

interrelationships between temperature, moisture, permafrost, and nutrient and vegetation 

change, and the fact that negative feedbacks such as the draining and drying of wetlands 

are also possible, it is difficult to establish how large the increase will be over the coming 

century. Current models suggest that a doubling of CH4 emissions from northern 

wetlands could be realized fairly easily. However, since these models do not realistically 

represent all the processes thought to be relevant to future northern high-latitude CH4 

emissions, much larger (or smaller) increases cannot be discounted. 

It is worth noting that our understanding of the northern high-latitude methane cycle 

continues to evolve. For example, a recent field study suggests that prior estimates of 

methane emissions from northern landscapes may be biased low due to an 

underestimation of the contribution of ebullition from thermokarst hot spots in Siberian 

thaw lakes (Walter et al., 2006). Another recently discovered phenomenon is the cold 

adaptation of some methanogenic microorganisms that have been found in permafrost 

deposits in the Lena River basin (Wagner et al., 2007). These microbes can produce 

methane even in the very cold conditions of permafrost, often drawing on old soil organic 
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matter. The activity levels of these cold-adapted methanogens are sensitive to 

temperature, and even a modest soil warming can lead to an accumulation of methane 

deposits which, under scenarios where permafrost degradation leads to thermokarst or 

coastal erosion, could be quickly released to the atmosphere. 

These recent studies highlight the fact that key uncertainties remain in our understanding 

of natural methane emissions from wetlands and their susceptibility to climate change as 

well as in our ability to predict future emissions. Among the most important uncertainties 

in our understanding and required improvements to process-based models are (1) the 

contribution of ebullition and changes in ebullition to total methane emissions; (2) the 

rate of change in permafrost distribution and active layer thickness and associated 

changes in distribution of wetlands and lakes as well as, more generally, terrestrial 

ecosystems; (3) model representation of soil thermal and hydrologic processes and their 

response to climate change; (4) the contribution that shifts in vegetation and changes in 

peatland functioning will have on the methane cycle; and (5) representation of the highly 

variable and regionally specific methane production and emission characteristics. Even 

with resolution of these issues, all predictions of future methane emissions are based on 

the accurate simulation and prediction of high-latitude climate. Improvements of many 

aspects of modeling the high-latitude climate system are required, including 

improvements to the treatment of snow, polar clouds, subsoil processes, sub-polar 

oceans, and sea ice in global climate models. 

7. Final Perspectives 

Although the prospect of a catastrophic release of methane to the atmosphere as a result 

of anthropogenic climate change over the next century appears very unlikely based on 

current knowledge, many of the processes involved are still poorly understood, and 

developing a better predictive capability requires further work. On a longer time scale, 

methane release from hydrate reservoir is likely to be a major influence in global 

warming over the next 1,000 to 100,000 years. Changes in climate, including warmer 

temperatures and more precipitation in some regions, will likely increase the chronic 

emissions of methane from both melting hydrates and natural wetlands over the next 

century. The magnitude of this effect cannot be predicted with great accuracy yet, but is 
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likely to be equivalent to the current magnitude of many anthropogenic methane sources, 

which have already more than doubled the levels of methane in the atmosphere since the 

start of the Industrial Revolution. 
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