Appendix D Guidance on Three Vector Attraction Reduction Tests

This appendix provides guidance for the vector attraction reduction Options 2,3, and 4 to demonstrate reduced vector attraction (see Chapter 8 for a description of these requirements).

1. Additional Digestion Test for Anaerobically Digested Sewage Sludge

Background

The additional digestion test for anaerobically digested sewage sludge is based on research by Jeris et al. (1985). Farrell and Bhide (1993) explain in more detail the origin of the time and volatile solids reduction requirements of the test.

Jeris et al. (1985) measured changes in many parameters including volatile solids content while carrying out additional digestion of anaerobically digested sludge from several treatment works for long periods. Samples were removed from the digesters weekly for analysis. Because substantial amount of sample was needed for all of these tests, they used continuously mixed digesters of 18 liters capacity. The equipment and procedures of Jeris et al., although not complex, appear to be more elaborate than needed for a control test. EPA staff (Farrell and Bhide, 1993) have experimented with simplified tests and the procedure recommended is based on their work.

Recommended Procedure

The essentials of the test are as follows:

- Remove, from the plant-scale digester, a representative sample of the sewage sludge to be evaluated to determine additional volatile solids destruction. Keep the sample protected from oxygen and maintain it at the temperature of the digester. Commence the test within 6 hours after taking the sample.
- Flush fifteen 100-mL volumetric flasks with nitrogen, and add approximately 50 mL of the sludge to be tested into each flask. Frequently mix the test sludge during this operation to assure that its composition remains uniform. Select five flasks at random, and determine total solids content and volatile solids content, using the entire 50 mL for the determination. Seal each of the remaining flasks with a stopper with a single glass tube through it to allow generated gases to escape.

- Connect the glass tubing from each flask through a flexible connection to a manifold. To allow generated gases to escape and prevent entry of air, connect the manifold to a watersealed bubbler by means of a vertical glass tube. The tube should be at least 30-cm long with enough water in the bubbler so that an increase in atmospheric pressure will not cause backflow of air or water into the manifold. Maintain the flasks containing the sludge at constant temperature either by inserting them in a water bath (the sludge level in the flasks must be below the water level in the bath) or by placing the entire apparatus in a constant temperature room or box. The temperature of the additional digestion test should be the average temperature of the plant digester, which should be in the range of 30°C to 40°C (86°F to 104°F). Temperature should be controlled within + 0.15°C (0.27°F).
- Each flask should be swirled every day to assure adequate mixing, using care not to displace sludge up into the neck of the flask. Observe the water seal for the first few days of operation. There should be evidence that gas is being produced and passing through the bubbler.
- After 20 days, withdraw five flasks at random. Determine total and volatile solids content using the entire sample for the determination. Swirl the flask vigorously before pouring out its contents to minimize the hold up of thickened sludge on the walls and to assure that any material left adhering to the flask walls will have the same average composition as the material withdrawn. Use a consistent procedure. If holdup on walls appears excessive, a minimal amount of distilled water may be used to wash solids off the walls. Total removal is not necessary, but any solids left on the walls should be approximately of the same composition as the material removed.
- After 40 days, remove the remaining five flasks. Determine total and volatile solids content using the entire sample from each flask for the determination. Use the same precautions as in the preceding step to remove virtually all of the sludge, leaving only material with the same approximate composition as the material removed.

Total and volatile solids contents are determined using the procedures of Method 2540 G of Standard Methods (APHA, 1992).

Mean values and standard deviations of the total solids content, the volatile solids content, and the percent volatile solids are calculated. Volatile solids reductions that result from the additional digestion periods of 20 and 40 days are calculated from the mean values by the Van Kleeck equation and by a material balance (refer to Appendix C for a general description of these calculations). The results obtained at 20 days give an early indication that the test is proceeding satisfactorily and will help substantiate the 40-day result.

Alternative approaches are possible. The treatment works may already have versatile bench-scale digesters available. This equipment could be used for the test, provided accuracy and reproducibility can be demonstrated. The approach described above was developed because Farrell and Bhide (1993) in their preliminary work experienced much difficulty in withdrawing representative samples from large digesters even when care was taken to stir the digesters thoroughly before sampling. If an alternative experimental setup is used, it is still advisable to carry out multiple tests for the volatile solids content in order to reduce the standard error of this measurement, because error in the volatile solids content measurement is inflated by the nature of the equation used to calculate the volatile solids reduction.

Variability in flow rates and nature of the sludge will result in variability in performance of the plant-scale digesters. It is advisable to run the additional digestion test routinely so that sufficient data are available to indicate average performance. The arithmetic mean of successive tests (a minimum of three is suggested) should show an additional volatile solids reduction of \leq 17%.

Calculation Details

Appendix C, Determination of Volatile Solids Reduction by Digestion, describes calculation methods to use for digesters that are continuously fed or are fed at least once a day. Although the additional anaerobic digestion test is a batch digestion, the material balance calculations approach is the same. Masses of starting streams (input streams) are set equal to masses of ending streams (output streams).

The test requires that the fixed volatile solids reduction (FVSR) be calculated both by the Van Kleeck equation and the material balance method. The Van Kleeck equation calculations can be made in the manner described in Appendix C.

The calculation of the volatile solids reduction (and the fixed fractional solids reduction [FFSR]) by the mass balance method shown below has been refined by subtracting out the mass of gas lost from the mass of sludge at the end of the digestion step. For continuous digestion, this loss of mass usually is ignored, because the amount is

small in relation to the total digesting mass, and mass before and after digestion are assumed to be the same. Considering the inherent difficulty in matching mass and composition entering to mass and composition leaving for a continuous process, this is a reasonable procedure. For batch digestion, the excellent correspondence between starting material and final digested sludge provides much greater accuracy in the mass balance calculation, so inclusion of this lost mass is worthwhile.

In the equations presented below, concentrations of fixed and volatile solids are mass fractions--mass of solids per unit mass of sludge (mass of sludge includes both the solids and the water in the sludge)-- and are indicated by, the symbols lowercase y and x. This is different from the usage in Appendix C where concentrations are given in mass per unit volume, and are indicated by the symbols uppercase y and x. This change has been made because masses can be determined more accurately than volumes in smallscale tests.

In the material balance calculation, it is assumed that as the sludge digests, volatile solids and fixed solids are converted to gases that escape or to volatile compounds that distill off when the sludge is dried. Any production or consumption of water by the biochemical reactions in digestion is assumed to be negligible. The data collected (volatile solids and fixed solids concentrations of feed and digested sludge) allow mass balances to be drawn on volatile solids, fixed solids, and water. As noted, it is assumed that there is no change in water mass -- all water in the feed is present in the digested sludge. Fractional reductions in volatile solids and fixed solids can be calculated from these mass balances for the period of digestion. Details of the calculation of these relationships are given by Farrell and Bhide (1993). The final form of the equations for fractional volatile solids reduction (mass balance [m.b.] method) and fractional fixed solids reduction (m.b. method) are given below:

FVSR(m.b.)=
$$\frac{y_{f}(1-x_{b})-y_{b}(1-x_{f})}{y_{f}(1-x_{b}-y_{b})}$$
(1a)

FFSR(m.b.)=
$$\frac{x_f(1-y_b)-x_b(1-y_f)}{x_f(1-x_b-y_b)}$$
 (1b)

where:

y = mass fraction of volatile solids in the liquid sludge

x = mass fraction of fixed solids in the liquid sludge

f = indicates feed sludge at start of the test

b = indicates "bottoms" sludge at end of the test

If the fixed solids loss is zero, these two equations are reduced to Equation 2 below:

$$FVSR(m.b.) = (y_f - y_b)/y_f (1-y_b)$$
 (2)

If the fixed solids loss is not zero but is substantially smaller than the volatile solids reduction, Equation 2 gives surprisingly accurate results. For five sludges batch-digested by Farrell and Bhide (1993), the fixed solids reductions were about one-third of the volatile solids reductions. When the FVSR(m.b.) calculated by Equation 1a averaged 15%, the FVSR(m.b.) calculated by Equation 2 averaged 14.93%, which is a trivial difference.

The disappearance of fixed solids unfortunately has a relatively large effect on the calculation of FVSR by the Van Kleeck equation. The result is lower than it should be. For five sludges that were batch-digested by Farrell and Bhide (1993), the FVSR calculated by the Van Kleeck method averaged 15%, whereas the FVSR (m.b.) calculated by Equation 1a or 2 averaged about 20%. When the desired endpoint is an FVSR below 17%, this is a substantial discrepancy.

The additional digestion test was developed for use with the Van Kleeck equation, and the 17% requirement is based on results calculated with this equation. In the future, use of the more accurate mass balance equation may be required, with the requirement adjusted upward by an appropriate amount. This cannot be done until more data with different sludge become available.

2. Specific Oxygen Uptake Rate *Background*

The specific oxygen uptake rate of a sewage sludge is an accepted method for indicating the biological activity of an activated sewage sludge mixed liquor or an aerobically digesting sludge. The procedure required by the Part 503 regulation for this test is presented in Standard Methods (APHA, 1992) as Method 2710 B, Oxygen-Consumption Rate.

The use of the specific oxygen uptake rate (SOUR) has been recommended by Eikum and Paulsrud (1977) as a reliable method for indicating sludge stability provided temperature effects are taken into consideration. For primary sewage sludges aerobically digested at 18°C (64°F), sludge was adequately stabilized (i.e., it did not putrefy and cause offensive odors) when the SOUR was less than 1.2 mg O_2 /hr/g VSS (volatile suspended solids). The authors investigated several alternative methods for indicating stability of aerobically digested sludges and recommended the SOUR test as the one with the most advantages and the least disadvantages.

Ahlberg and Boyko (1972) also recommend the SOUR as an index of stability. They found that, for aerobic digesters operated at temperatures above 10° C (50° F), SOUR fell to about 2.0 mg O₂/hr/gVSS after a total sludge age of 60 days and to 1.0 mg O₂/hr/g VSS after about 120 days sludge age. These authors state that a SOUR of less than 1.0 mg O₂/hr/g VSS at temperatures above 10° C (50° F) indicates a stable sludge.

The results obtained by these authors indicate that long digestion times--more than double the residence time for most aerobic digesters in use today--are needed to eliminate odor generation from aerobically digested sludges.

Since the industry is not being deluged with complaints about odor from aerobic digesters, it appears that a higher SOUR standard can be chosen than they suggest without causing problems from odor (and vector attraction).

The results of long-term batch aerobic digestion tests by Jeris et al. (1985) provide information that is helpful in setting a SOUR requirement that is reasonably attainable and still protective. Farrell and Bhide (1993) reviewed the data these authors obtained with four sewage sludges from aerobic treatment processes and concluded that a standard of 1.5 mg O₂/hr/g TS at 20°C (68°F) would discriminate between adequately stabilized and poorly stabilized sludges. The "adequately digested" sludges were not totally trouble-free, i.e., it was possible under adverse conditions to develop odorous conditions. In all cases where the sludge was deemed to be adequate, minor adjustment in plant operating conditions created an acceptable sludge.

The SOUR requirement is based on total solids rather than volatile suspended solids. This usage is preferred for consistency with the rest of the Part 503 regulation where all loadings are expressed on a total solids basis. The use of total solids concentration in the SOUR calculation is rational since the entire sludge solids and not just the volatile solids degrade and may exert some oxygen demand. Making an adjustment for the difference caused by basing the requirement on TS instead of VSS, the standard is about 1.8 times higher than Eikum and Paulsrud's recommended value and 2.1 times higher than Ahlberg and Boykos' recommendation.

Unlike anaerobic digestion, which is typically conducted at 35°C (95°F), aerobic digestion is carried out without any deliberate temperature control. The temperature of the digesting sludge will be close to ambient temperature, which can range from 5°C to 30°C (41°F to 86°F). In this temperature range, SOUR increases with increasing temperature. Consequently, if a requirement for SOUR is selected, there must be some way to convert SOUR test results to a standard temperature. Conceivably, the problem could be avoided if the sludge were simply heated or cooled to the standard temperature before running the SOUR test. Unfortunately, this is not possible, because temperature changes in digested sludge cause short-term instabilities in oxygen uptake rate (Benedict and Carlson [1973], Farrell and Bhide [1993]).

Eikum and Paulsrud (1977) recommend that the following equation be used to adjust the SOUR determined at one temperature to the SOUR for another temperature:

$$(SOUR)_{T1} / (SOUR)_{T2} = \theta^{(T1-T2)}$$
 (3)

where:

 $(SOUR)_{T1}$ = specific oxygen uptake rate at T₁ (SOUR)_{T2} = specific oxygen uptake rate at T₂

θ = the Streeter-Phelps temperature sensitivity coefficient

These authors calculated the temperature sensitivity coefficient using their data on the effect of temperature on the rate of reduction in volatile suspended solids with time during aerobic digestion. This is an approximate approach, because there is no certainty that there is a one-to-one relationship between oxygen uptake rate and rate of volatile solids disappearance. Another problem is that the coefficient depends on the makeup of each individual sludge. For example, Koers and Mavinic (1977) found the value of θ to be less than 1.072 at temperatures above 15°C (59°F) for aerobic digestion of waste activated sludges, whereas Eikum and Paulsrud (1977) determined θ to equal 1.112 for primary sludges. Grady and Lim (1980) reviewed the data of several investigators and recommended that θ = 1.05 be used for digestion of waste-activated sludges when more specific information is not available. Based on a review of the available information and their own work, Farrell and Bhide (1993) recommend that Eikum and Paulsruds' temperature correction procedure be utilized, using a temperature sensitivity coefficient in the range of 1.05 to 1.07.

Recommended Procedure for Temperature Correction

A SOUR of 1.5 mg O_2 /hr/g total solids at 20°C (68°F) was selected to indicate that an aerobically digested sludge has been adequately reduced in vector attraction.

The SOUR of the sludge is to be measured at the temperature at which the aerobic digestion is occurring in the treatment works and corrected to $20^{\circ}C$ (68°F) by the following equation:

 $SOUR_{20} = SOUR_{T} \times \theta^{(20-T)}$ (4)

where

θ = 1.05 above 20°C (68°F) 1.07 below 20°C (68°F)

This correction may be applied only if the temperature of the sludge is between 10°C and 30°C (50°F and 86°F). The restriction to the indicated temperature range is required to limit the possible error in the SOUR caused by selecting an improper temperature coefficient. Farrell and Bhide's (1993) results indicate that the suggested values for θ will give a conservative value for SOUR when translated from the actual temperature to 20°C (68°F).

The experimental equipment and procedures for the SOUR test are those described in Part 2710 B, Oxygen Consumption Rate, of Standard Methods (APHA, 1992). The method allows the use of a probe with an oxygensensitive electrode or a respirometer. The method advises that manufacturer's directions be followed if a respirometer is used. No further reference to respirometric methods will be made here. A timing device is needed as well as a 300-mL biological oxygen demand (BOD) bottle. A magnetic mixer with stirring bar is also required.

The procedure of Standard Method 2710 B should be followed with one exception. The total solids concentra-

tion instead of the volatile suspended solids concentration is used in the calculation of the SOUR. Total solids concentration is determined by Standard Method 2540 G. Method 2710 B cautions that if the suspended solids content of the sludge is greater than 0.5%, additional stirring besides that provided by the stirring bar be considered. Experiments by Farrell and Bhide (1993) were carried out with sludges up to 2% in solids content without difficulty if the SOUR was lower than about 3.0 mg $O_2/g/h$. It is possible to verify that rnixing is adequate by running repeat measurements at several stirrer bar speeds. If stirring is adequate, oxygen uptake will be independent of stirrer speed.

The inert mineral solids in the wastewater in which the sludge particles are suspended do not exert an oxygen demand and probably should not be part of the total solids in the SOUR determination. Ordinarily, they are such a small part of the total solids that they can be ignored. If the ratio of inert dissolved mineral solids in the treated wastewater to the total solids in the sludge being tested is greater than 0.15, a correction should be made to the total solids concentration. Inert dissolved mineral solids in the treated wastewater effluent is determined by the method of Part 2540 B of Standard Methods (APHA, 1992). This quantity is subtracted from the total solids of the sludge to determine the total solids to be used in the SOUR calculation.

The collection of the sample and the time between sample collection and measurement of the SOUR are important. The sample should be a composite of grab samples taken within a period of a few minutes duration. The sample should be transported to the laboratory expeditiously and kept under aeration if the SOUR test cannot be run immediately. The sludge should be kept at the temperature of the digester from which it was drawn and aerated thoroughly before it is poured into the BOD bottle for the test. If the temperature differs from 20°C (68° F) by more than $\pm 10^{\circ}$ C ($\pm 18^{\circ}$ F), the temperature correction may be inappropriate and the result should not be used to prove that the sewage sludge meets the SOUR requirement.

Variability in flow rates and nature of the sludge will result in variability in performance of the plant-scale digesters. It is advisable to run the SOUR test routinely so that sufficient data are available to indicate average performance. The arithmetic mean of successive tests-a minimum of seven over 2 or 3 weeks is suggested-should give a SOUR of \leq 1.5 mg O₂/hr/g total solids.

3. Additional Digestion Test for Aerobically Digested Sewage Sludge

Background

Part 503 lists several options that can be used to demonstrate reduction of vector attraction in sewage sludge. These options include reduction of volatile solids by 38% and demonstration of the SOUR value discussed above (see also Chapter 8). These options are feasible for many, but not all, digested sludges. For example, sludges from extended aeration treatment works that are aerobically digested usually cannot meet this requirement because they already are partially reduced in volatile solids content by their exposure to long aeration times in the wastewater treatment process.

The specific oxygen uptake test can be utilized to evaluate aerobic sludges that do not meet the 38% volatile solids reduction requirement. Unfortunately, this test has a number of limitations. It cannot be applied if the sludges have been digested at temperatures lower than 10°C (50°F) or higher than 30°C (86°F). It has not been evaluated under all possible conditions of use, such as for sludges of more than 2% solids.

A straightforward approach for aerobically treated sludges that cannot meet either of the above criteria is to determine to what extent they can be digested further. If they show very little capacity for further digestion, they will have a low potential for additional biodegradation and odor generation that attracts vectors. Such a test necessarily takes many days to complete, because time must be provided to get measurable biodegradation. Under most circumstances, this is not a serious drawback. If a digester must be evaluated every 4 months to see if the sewage sludge meets vector attraction reduction requirements, it will be necessary to start a regular assessment program. A record can be produced showing compliance. The sludge currently being produced cannot be evaluated quickly but it will be possible to show compliance over a period of time.

The additional digestion test for aerobically digested sludges in Part 503 is based on research by Jeris et al. (1985), and has been discussed by Farrell et al. (EPA, 1992). Farrell and Bhide (1993) explain in more detail the origin of the time and volatile solids reduction requirements of the test.

Jeris et al. (1985) demonstrated that several parameters-volatile solids reduction, COD, BOD, and SOUR--declined smoothly and approached asymptotic values with time as sludge was aerobically digested. Any one of these parameters potentially could be used as an index of vector attraction reduction for aerobic sludges. SOUR has been adopted (see above) for this purpose. Farrell and Bhide (1993) have shown that the additional volatile solids reduction that occurs when sludge is batch digested aerobically for 30 days correlates equally as well as SOUR with the degree of vector attraction reduction of the sludge. They recommend that a sewage sludge be accepted as suitably reduced in vector attraction when it shows less than 15% additional volatile solids reduction after 30 days additional batch digestion at 20°C (68°F). For three out of four sludges investigated by Jeris et al. (1985), the relationship between SOUR and additional volatile solids reduction showed that the SOUR was approximately equal to 1.5 mg O₂/hr/g (the Part 503 requirement for SOUR) when additional volatile solids reduction was 15%. The two requirements thus agree well with one another.

Recommended Procedure

There is considerable flexibility in selecting the size of the digesters used for the additional aerobic digestion test. Farrell and Bhide (1993) used a 20-liter fish tank. A tank of rectangular cross-section is suggested because sidewalls are easily accessible and are easily scraped clean of adhering solids. The tank should have a loose-fitting cover that allows air to escape. It is preferable to vent exhaust gas to a hood to avoid exposure to aerosols. Oil and particle-free air is supplied to the bottom of the digester through porous stones at a rate sufficient to thoroughly mix the sewage sludge. This will supply adequate oxygen to the sludge, but the oxygen level in the digesting sludge should be checked with a dissolved oxygen meter to be sure that the supply of oxygen is adequate. Oxygen level should be at least 2 mg/L. Mechanical mixers also were used to keep down foam and improve mixing.

If the total solids content of the sewage sludge is greater than 2%, the sludge must be diluted to 2% solids with secondary effluent at the start of the test. The requirement stems from the results of Reynolds (1973) and Malina (1966) which demonstrate that rate of volatile solids reduction decreases as the feed solitis concentration increases. Thus, for example, a sludge with a 2% solids content that showed more than 15% volatile solids reduction when digested for 30 days might show a lower volatile solids reduction and would pass the test if it were at 4%. This dilution may cause a temporary change in rate of volatile solids reduction. However, the long duration of the test should provide adequate time for recovery and demonstration of the appropriate reduction in volatile solids content.

When sampling the sludge, care should be taken to keep the sludge aerobic and avoid unnecessary temperature shocks. The sludge is digested at 20°C (68°F) even if the digester was at some other temperature. It is expected that the bacterial population will suffer a temporary shock if there is a substantial temperature change, but the test is of sufficient duration to overcome this effect and show a normal volatile solids reduction. Even if the bacteria are shocked and do not recover completely, the test simulates what would happen to the sludge in the environment. If it passes the test, it is highly unlikely that the sludge will attract vectors when used or disposed to the environment. For example, if a sludge digested at 35°C (95°F) has not been adequately reduced in volatile solids and is shocked into biological inactivity for 30 days when its temperature is lowered to 20°C (68°F), it will be shocked in the same way if it is applied to the soil at ambient temperature. Consequently, it is unlikely to attract vectors.

The digester is charged with about 12 liters of the sewage sludge to be additionally digested, and aeration is commenced. The constant flow of air to the aerobic digestion test unit will cause a substantial loss of water from the digester. Water loss should be made up every day with distilled water.

Solids that adhere to the walls above and below the water line should be scraped off and dispersed back into the sludge daily. The temperature of the digesting sludge should be approximately 20°C (68°F). If the temperature of the labora-

tory is maintained at about 22°C (72°F), evaporation of water from the digester will cool the sludge to about 20°C (68°F).

Sewage sludge is sampled every week for five successive weeks. Before sampling, makeup water is added (this will generally require that air is temporarily shut off to allow the water level to be established), and sludge is scraped off the walls and redistributed into the digester. The sludge in the digester is thoroughly mixed with a paddle before sampling, making sure to mix the bottom sludge with the top. The sample is comprised of several grab samples collected with a ladle while the digester is being mixed. The entire sampling procedure is duplicated to collect a second sample.

Total and volatile solids contents of both samples are determined preferably by Standard Method 2540 G (APHA, 1992). Percent volatile solids is calculated from total and volatile solids content. Standard Methods (APHA, 1992) states that duplicates should agree within 5% of their average. If agreement is substantially poorer than this, the sampling and analysis should be repeated.

Calculation Details

Fraction volatile solids reduction is calculated by the Van Kleeck formula (see Appendix C) and by a mass balance method. The mass balance (m.b.) equations become very simple, because final mass of sludge is made very nearly equal to initial mass of sludge by adjusting the volume by adding water. These equations for fractional volatile solids reduction (FVSR) and fractional fixed solids reduction (FFSR) are:

FVSR(m.b.) =	(y _f - y _b) / y _f	(5a)
--------------	---	------

 $FFSR(m.b.) = (x_f - x_b) / x_f$ (5b)

where:

- y and x = mass fraction of volatile and fixed solids, respectively (see previous section on "Calculation details" for explanation of "mass fraction")
- f and b = subscripts indicating initial and final sludges

This calculation assumes that initial and final sludge densities are the same. Very little error is introduced by this assumption.

The calculation of the fractional fixed solids reduction is not a requirement of the test, but it will provide useful information.

The test was developed from information based on the reduction in volatile solids content calculated by the Van

Kleeck equation. As noted in the section on the additional anaerobic digestion test, for batch processes the material balance procedure for calculating volatile solids reduction is superior to the Van Kleeck approach. It is expected that the volatile solids reduction by the mass balance method will show a higher volatile solids reduction than the calculation made by using the Van Kleeck equation.

4. References

- Ahlberg, N.R. and B.I. Boyko. 1972. Evaluation and design of aerobic digesters. Jour. WPCF 44(4):634-643.
- Benedict, A.H. and D.A. Carlson. 1973. Temperature acclimation in aerobic big-oxidation systems. Jour. WPCF 45(1): 10-24.
- Eikum, A., and B. Paulsrud. 1977. Methods for measuring the degree of stability of aerobically stabilized sludges. Wat. Res. 11:763-770
- EPA. 1992. Technical support document for Part 503 pathogen and vector attraction reduction requirements in sewage sludge. NTIS No.: PB93-110609. Springfield, VA: National Technical Information Service.
- Farrell, J.B., V. Bhide, and Smith, J. E. Jr. 1996. Development of methods EPA's new methods to quantifying vector attraction of wastewater sludges, Water Envir. Res.,68,3,286-294
- APHA (American Public Health Association). 1992. Standard methods for the examination of water and wastewater. Greenberg, A.E., L.S. Clesceri, and A.D. Eaton (eds.). APHA, AWWA, and WEF, Washington, DC.
- Grady, C.P.L., Jr. and H.C. Lim. 1980. Biological wastewater treatment: theory and applications. Marcel Dekker, New York.
- Jeris, J.S., D. Ciarcia, E. Chen, and M. Mena. 1985. Determining the stability of treated municipal sludge. EPA Rept. No. 600/2-85/001 (NTIS No. PB 85-1471891 AS). U.S. Environmental Protection Agency, Cincinnati, Ohio.
- Koers, D.A. and D.V. Mavinic. 1977. Aerobic digestion of waste-activated sludge at low temperatures. Jour. WPCF 49(3):460-468.
- Malina, Jr., J.F. 1966. Discussion, pp. 157-160, in paper by D. Kehr, "Aerobic sludge stabilization in sewage treatment plants." Advances in Water Pollution Research, Vol. 2, pp 143-163. Water Pollution Control Federation, Washington, DC.
- Reynolds, T.D. 1973. Aerobic digestion of thickened wasteactivated sludge. Part 1, pp. 12-37, *in* Proc. 28th Industr, Waste Conf., Purdue University.