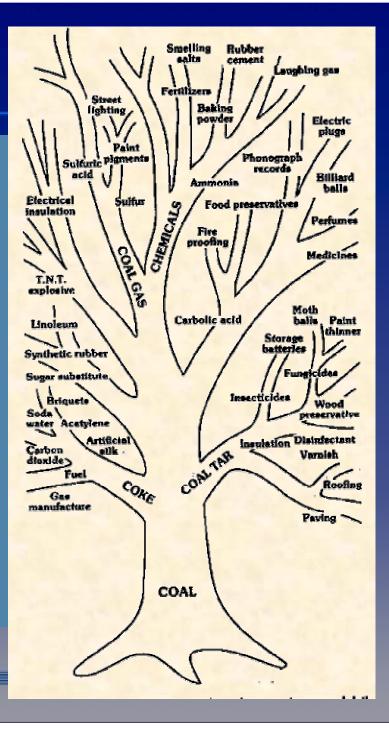
Low Severity Extraction of Coal for Production of Carbon Fuel for Direct Carbon Fuel Cells

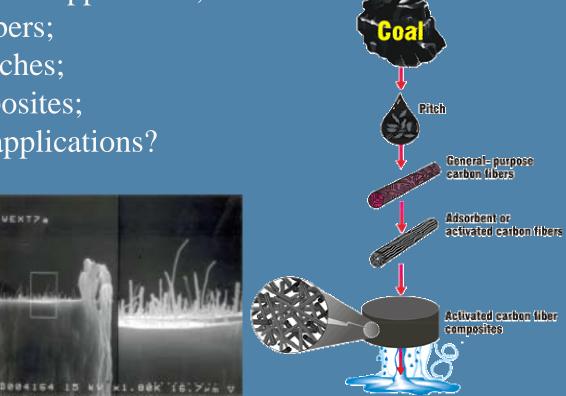
Adam J. Berkovich Center for Applied Energy Research University of Kentucky Lexington, KY, USA


Direct Carbon Fuel Cell Workshop, NETL, Pittsburgh, PA, July 30, 2003

Introduction

• Value-added products in light of:

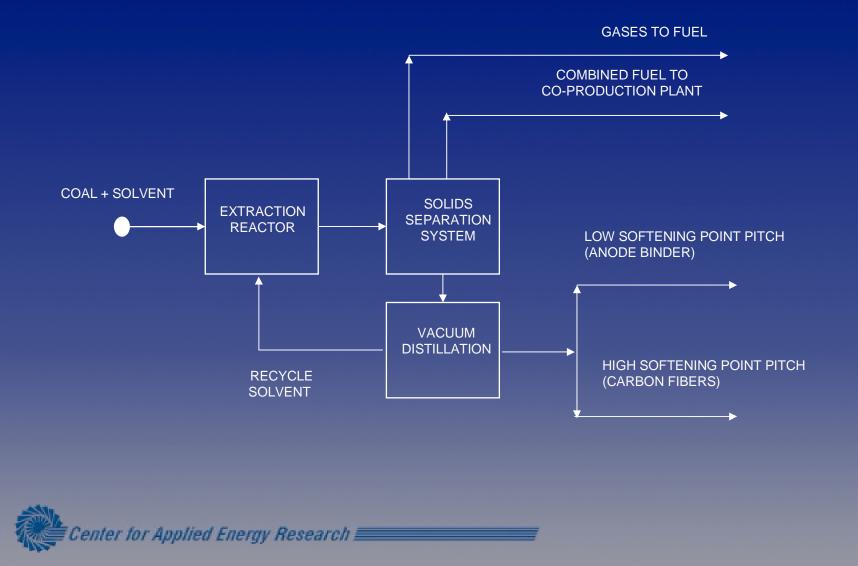
- Immerging technologies in carbon materials;
- Diminishing supply of coal tar pitch from traditional sources;
- Coal extract pitches as a feedstock for a variety of carbon materials.



Introduction *continued*

•Tailor pitches to suite application;

- Carbon fibers;
- Binder pitches;
- C/C composites;
- Fuel cell applications?



Objectives / Approach

- CAER solvent extraction method;
 - No exotic solvents;
 - Low temperature;
 - Self generated atmosphere;
 - Non hydrogenated process;
 - No catalysts;
- Economic viability;
- Power plant integration.

Extraction Process

IK

Process Conditions

- Coal and anthracene oil slurried (1:2 wt) into a 2L autoclave;
- Digestion Temperature = 425°C;
- Digestion Time = 60 min;
- Digestion Pressure = 200 psi;
- After digestion reactor cooled to ~260°C and the digest transferred to filtration apparatus;

K Process Conditions *continued*

- Digest filtered at approximately 250°C at pressures ranging 10 to 15 psi, filtering rates measured;
- Filtrate vacuum distilled to recover solvent and pitch (pot residue);
- Distillation pot temperature used to control softening point of the extracted pitch;
- Depending on application pitch softening point will range from 100 to 260 °C.

ter for Applied Energy Research 🖩

Coals

	Shoemaker Mine	W. Kentucky	Black Thunder
Moisture (%)	2.3	9.9	8.9
Ash (%)	11.5	10.1	5.8
Volatiles (%)	38.5	40.0	39.9
Fixed Carbon (%)	47.7	49.9	45.5
C (% daf)	82.8	70.2	65.8
H (% daf)	5.9	4.5	4.1
N (% daf)	1.6	1.7	0.9
O _{diff} (% daf)	6.3	9.9	19.7
Total S (% daf)	3.5	3.7	0.7
Pyritic S (% db)	1.3	2.0	
Sulfate (% db)	0.04	0.02	
Organic S (% db)	1.8	1.9	

Center for Applied Energy Research

Anthracene Oil ex Reilly Industries, Inc.

Naphthalene 2	
Acenaphthene 4	
Fluorene 6	
Phenanthrene 16	
Anthracene 4	
Carbazole 4	
Fluoranthene 8	
Pyrene 6	

Anthracene Oil continued

H ₂ O (<i>max.</i>)	0.5 %			
Density (min)	1.12 g cm^{-3}	Temperature	Mass Distilled	Mass Distilled
Flash Point (min)	104 °C	(°C)	wt % <i>minimum</i>	wt % maximum
DRY BASIS		0-315		3.0
С	91.5 %	0-355	5.0	20.0
Н	6.0 %	0-400	40.0	65.0
Ν	1.0 %	0-500		98.0
0	1.0 %			
S	0.5 %			

Digestion

UK

%

	S.maker	W.Ky	B.T	units
Coal IN (daf) =	250.5	224.5	247.5	g
Solvent IN =	579.4	584.9	576.6	g
Slurry IN (daf coal) =	829.9	809.4	824.1	g
Extraction Distillates OUT =	41.5	53.3	139.0	g
Digest OUT (daf coal) =	769.6	727.3	676.9	g
\mathbf{QI} =	18.3	21.3	32.1	%
THFI =	26.2	24.8	34.4	%
% Conversion [based on QI] (daf coal) =	76.9	68.7	60.8	%
Conversion [based on THFI] (daf coal) =	67.0	63.5	61.8	%
Mass Balance Extraction (daf coal) =	97.7	96.4	98.0	%

Filtration

	Shoemaker	W.Ky	B.T	units
Filter Charge (daf coal) IN =	769.6	727.3	676.9	g
Cake (daf coal) OUT =	72.9	56.2	102.1	g
Filtrate (daf coal) OUT =	675.5	624.3	430.5	g
Distillates OUT =	0.8	4.7	3.9	g
Specific Cake Resistance =	4.2	2.1	4.4	10^{10} m/kg
Filter Rate =	170.0	214.5	96.8	kg/m²/h
QI Filtrate =	0.6	0.8	0.4	%
Mass Balance (daf coal) =	96.5	97.6	97.5	%

Distillation

	Shoemaker	W.Ky	B.T	units
Distillation Charge IN =	675.5	624.3	430.5	g
Distillate OUT =	399.7	391.2	220.3	g
Pitch (daf coal) OUT =	273.2	230.4	205.5	g
Pitch Softening Point =	215	255	110	°C
Mass Balance (daf coal) =	99.6	99.6	98.9	%

Solvent Balance

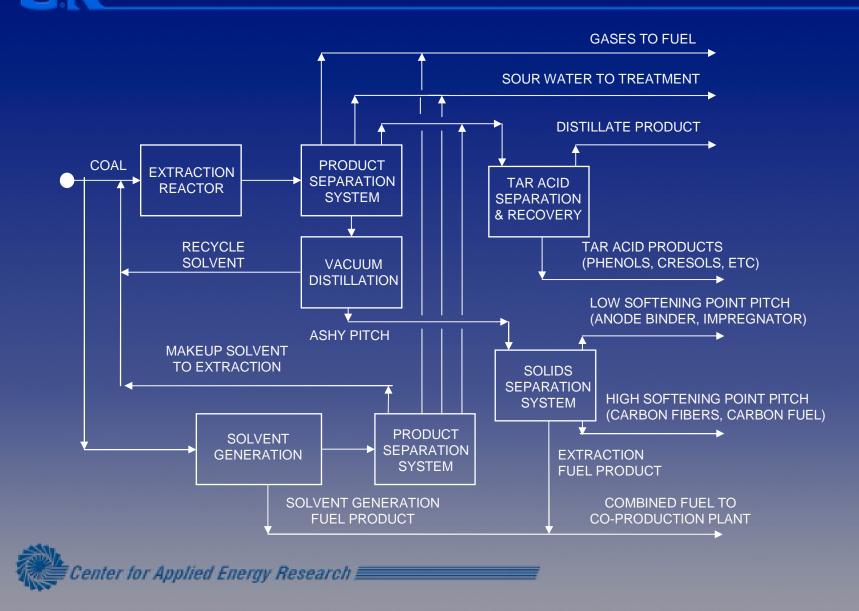
	Shoemaker	W.Ky	B.T	units
Solvent IN =	579.4	584.9	576.6	g
Distillate OUT =	441.9	449.2	363.2	g
Solvent Balance =	90.2	89.8	72.5	%

- Solvent losses:
 - Filter cake;
 - Aducted into pitch.

Pitch Properties

	Shoemaker	Western Kentucky	Black Thunder
S.Point (°C)	215	260	110
Moisture (%)	0.03	0.11	0.04
Ash (%)	0.06	0.07	0.1
Volatiles (%)	52.9	53.5	71.2
Fixed Carbon (%)	47.1	46.5	28.8
C (% daf)	90.0	90.7	91.8
H (% daf)	4.7	5.4	5.0
N (% daf)	1.7	1.7	1.1
O diff (% daf)	2.0	0.7	1.7
Total S (% daf)	1.7	1.5	0.5

Center for Applied Energy Research 🔳


Pitch Carbonization

Pitch	Carbon Yield (%)
Shoemaker	59-69
Western Kentucky	64-73
Black Thunder	47-63

UK

Process Development

Summary

- CAER solvent extraction method;
 - Low temperature, low pressure, non-hydrogenative process;
 - Pitch can be tailored to suite a number of applications;
 - Amenable to carbonization;
 - ? Possible to produce carbon fuels.

