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Abstract

I will discuss how time and frequency information can be distributed using satellites. I will
focus on using the signals transmitted by the US global positioning system satellites, but I will
also discuss other satellite-based systems such as the Russian GLONASS system, the proposed
European Galileo System and two-way satellite time transfer, which uses active ground stations
that communicate with each other through an active satellite.
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1. Introduction

In this paper, I will discuss how time and frequency information can be distributed using
satellites. I assume that the reader is familiar with the general definitions of the International
System of Units (SI) and the SI units for time and frequency. I also assume a familiarity
with the general principles of operation of atomic frequency standards and with the statistical
machinery (such as the Allan variance) that is used to characterize the noise processes in clocks
and in a transmission medium. For an introduction to these subjects, see [1, 2]. I will focus on
using the signals transmitted by the US global positioning system (GPS) satellites, since they
are very widely used for time and frequency distribution, but I will also discuss other satellite-
based systems in somewhat less detail. In particular, I will mention the Russian GLONASS
system and the proposed European Galileo system, both of which are similar to GPS. I will
also briefly discuss two-way satellite time transfer, which uses active ground stations that
communicate with each other through an active satellite, whose transponders re-transmit any
received signal (usually at a different frequency). This method, in which all sites are active, is
fundamentally different from the other systems in which only the satellites do the transmitting
while the ground stations are passive receivers.

In addition, there are a number of other satellite systems which I will not discuss. These
include operational systems, such as GOES, which transmits time signals from weather
satellites operated by the US National Oceanic and Atmospheric Administration (NOAA),
and systems proposed for the future, such as the Atomic Clock Ensemble in Space (ACES),
which will be based on a micro-gravity clock to be flown on the International Space Station.
The accuracy of the received GOES signals is significantly poorer than any of the systems
mentioned in the previous paragraph, and it is not clear at this time whether the cost of an
ACES ground station will be low enough to make it generally affordable.

Satellite-based systems are not the only way of distributing time and frequency
information, but they have two advantages that make them the systems of choice for many
applications. The first is that a signal broadcast from a satellite can be received over a wide
area, so that satellite-based systems can support time and frequency distribution over a large
region much more easily than can be done by any purely terrestrial system. The second is that
the path delay between a satellite-based transmitter and a ground-based receiver is usually
more stable and can be more accurately modelled than the corresponding delay between
the stations of a purely ground-based system. This is an important advantage, because the
accuracy of any distribution method is almost always limited by the uncertainty in whatever
method is used to compensate for the time it takes the signal to travel from the source to the
destination.

Methods for path-delay compensation fall into two broad categories, depending on whether
the signals travel in only one direction along the path, as is true for GPS, GLONASS and Galileo,
or in both directions, as is true for two-way transmissions using communications satellites.
If the signals travel only one way from the source to the receiver, then the path delay enters
the uncertainty budget for the process in first order. Since the signal can travel no faster than
the speed of light, the minimum travel time is 3.3 µs km−1 of path. The path delay in a real
system is generally larger than this value, since the signal propagates through a medium rather
than a vacuum. This excess path delay is characterized by the refractivity of the transmission
medium—the difference between the actual index of refraction and the value that it would have
in vacuum, which is 1. The refractivity can vary due to changes in ambient conditions (such
as temperature) and other factors. As we will see below, a typical value for the atmospheric
refractivity is 3 × 10−4, so that the presence of the atmosphere increases the delay by about
1 ns km−1 over what the path delay would have been if the signal had travelled over a vacuum
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path of the same length. The refractivity depends on atmospheric pressure and temperature,
and therefore can have significant variations in space and in time.

Instead of transmitting a signal between a single transmitter and a single receiver, it is also
possible to transmit a signal from a single transmitter to two (or more) receivers simultaneously.
Each receiver measures the time difference between its clock and the time as received from
the transmitter, and these measurements are transmitted to an analysis centre where they are
subtracted. If the receivers are approximately equidistant from the transmitter, then the path
delays are also roughly equal, and the clocks at the receiving stations can be synchronized
with an uncertainty that no longer depends in first order on the two path delays back to the
single transmitter. Instead, the uncertainty is a function of the difference between the delays
along the different paths, and both the magnitude of this difference and its fluctuations can be
much smaller and easier to estimate than the full path delays themselves. This method, which
is called ‘common view’, is very widely used both in satellite-based and terrestrial distribution
systems.

In practice, the common-view paths to the receivers are never exactly equal, so that some
ancillary corrections are necessary. The usefulness of this method depends on the equality
of the time delays along the paths, on the correlation between the fluctuations in these delays
and on how well any residual differences can be modelled or estimated. The method is very
useful for satellite-based systems, because the fluctuations in the path delays to the receivers
are often highly correlated so that these contributions cancel in the common-view difference.
Although the method has also been applied to ground-based transmitters, it is often less useful
in this situation because this correlation is often not nearly so high.

The common-view method has a number of other advantages. Since an offset in the time
of the satellite clock tends to contribute equally to the measurements at all of the receiving
stations, it cancels in the differences. This cancellation is not limited to static time offsets.
Fluctuations in the time of the satellite clock are also cancelled or very strongly attenuated
by the common-view subtraction process. This advantage of common view was especially
important in the past, when the clocks on the GPS satellites were intentionally dithered to
degrade their performance for non-authorized users. (The common-view method is not limited
to time transfer. It is also used in geodetic applications, where it is called differential GPS.)

When the signal is transmitted in both directions along the path, the usual strategy is to
assume that the delays are the same in both directions. There is no need to model the path delay
at all with this assumption—the one-way delay is simply one-half of the measured round-trip
value. Likewise, effects due to refractivity, fluctuations in the path delay and similar effects
are assumed to affect both directions in the same way so that the assumption of symmetry is
not affected. This assumption is most easily satisfied in the full duplex configuration, in which
signals are transmitted in both directions simultaneously. If the system supports transmissions
in only one direction at a time (half-duplex), then the transmission direction must be reversed
periodically to measure the round-trip delay. These reversals must be made rapidly enough so
that the path delay can be considered to be constant during the time interval required to make
the measurement in both directions.

Although the assumption that the delay is the same in both directions is simple, it is not
always correct. The largest contribution to the asymmetry usually comes from the hardware
at the stations. For example, it is difficult to match the temperature sensitivities of the
transmitter and the receiver at the stations, so that even if the delays in both directions are equal
initially, they do not remain equal as the ambient temperature changes. Furthermore, since
the satellite contains an active transponder rather than just a passive reflector, any asymmetry
in the satellite hardware also contributes to the uncertainty budget. (An uncertainty in the
delay through the station hardware or a variation in this delay caused by changes in the ambient
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temperature are not unique to the two-way method; GPS receivers obviously have the same
sort of problems, and these delay changes are not attenuated by a common-view subtraction.)

In the following discussion, I will start with the general considerations that are common
to all of the one-way satellite systems: GPS, GLONASS and Galileo. I will then discuss the
technical differences between these systems. The details of the Galileo system may change as
its design evolves, but the general principles of its design are likely to remain unchanged.

All of these systems are designed to have a constellation of satellites that are deployed so
that several satellites of the constellation are always visible from any point on the surface of
the Earth. About 24 satellites, in circular orbits whose radii are about 26 000 km (4.2 Earth
radii), are needed to implement this requirement. (The GPS constellation is the only one that
actually realizes this capability at the present time. The GLONASS system does not have a full
complement of active satellites at present, and the Galileo system is still in the design stage.)

2. The simple pseudo-range

I will discuss the signals transmitted by each satellite in detail below, but for now consider
that each satellite continuously transmits a signal whose carrier frequency and modulation are
derived from a single on-board frequency standard, which is usually a caesium or a rubidium
device. (Although GPS satellites contain several atomic clocks, only one of them is active at
any time, and the rest are kept in reserve as spares.) The modulation format includes a
signal that is logically equivalent to a periodic ‘tick’. The transmitted signal also contains
additional information including an estimate of the satellite orbit, the epoch of the transmission
(determined by counting cycles of the on-board frequency standard) and an estimate of the
relationship between the on-board clock and a system-wide average timescale (to be discussed
below).

A receiver measures the physical time difference, �T , between the tick received from
the satellite and the corresponding tick from a local clock. In first order, this measurement
is modelled as arising from several sources: the geometric path delay between the receiver at
position (xr, yr, zr) and the satellite at (xs, ys , zs), the delay through the receiver itself, δr, and
the offset between the satellite clock and the local clock, δtrs:

�T =
√

(xr − xs)2 + (yr − ys)2 + (zr − zs)2

c
+ δr + δtrs. (1)

Although equation (1) has units of time, it is called the pseudo-range, i.e. the geometrical
range delay that would correspond to the measured time difference if the signal had travelled
through a vacuum, the transmitter and receiver clocks were synchronized and the delay through
the receiver were 0. (The significant corrections for the additional path delays due to the
refractivities of the ionosphere and the troposphere are discussed below.)

The time difference in equation (1) above is measured with respect to the clock in the
satellite. This raw measurement is useful in some limited situations. For example, it can be
used for common-view measurements. The fact that parameters of the satellite clock are not
known in this case does not matter, since the satellite clock cancels (at least to first order)
in the common-view subtraction anyway. It can also be used to evaluate the satellite clocks
themselves. However, most receivers add the offset between the satellite clock and the system
time to this value and report the time difference between the local clock and the satellite system
time, �Ts:

�Ts = �T + δs, (2)

where δs is computed from the message transmitted by the satellite. (The ground control stations
compute satellite system time as a weighted average of the clocks in the satellites and the ground
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stations, where the weights are determined from the past performance of each clock. The offset
between this average system time and the clock in each satellite is estimated by the ground
control stations, and parameters that characterize this offset are periodically uploaded into the
satellite and are then retransmitted to users as part of the navigation message. The parameters
broadcast by the satellite are predictions based on past performance, and their accuracy depends
on the time since the last parameter update and the stability of the satellite hardware.)

The messages transmitted by the satellite contain another parameter that is often useful for
time distribution. This is an estimate of the offset between GPS time and UTC(USNO), the real-
time realization of coordinated universal time (UTC) maintained at the US Naval Observatory.
This parameter is estimated based on measurements made at the Naval Observatory; the data
are transmitted to the GPS control stations where they are uploaded into the satellite. This
parameter can be used to provide traceability between the time broadcast by the GPS satellites
and UTC, which is an international timescale maintained by the International Bureau of Weights
and Measures (BIPM). To provide traceability to UTC, a user would combine these data with
the offset of UTC(USNO) from UTC. This offset is published by the time section of BIPM
in its monthly Circular T [3]2. These offsets are not needed for common-view applications,
since the time of satellite clock cancels anyway. They are also not needed in purely geodetic
applications; as we will see below these applications depend only on the relationship between
the satellite clock and the system time and are independent of the relationship between GPS
time and any other timescale.

The coordinates of the satellite at the time of transmission are determined from parameters
in the broadcast message. If the location of the receiver is known a priori and if its delay has
been measured in some ancillary experiment then equations (1) and (2) determine the time
offset (in first order) between the local clock with respect to the satellite clock and with respect
to the average system time, respectively. The additional calculations to estimate the offset with
respect to UTC(USNO) or UTC can be incorporated as well, if necessary.

If the coordinates of the receiver are not known a priori, then it is possible to determine
both the offset of the local clock and the full three-dimensional position of the receiver by
tracking four satellites simultaneously. These four measurements can be used to solve for
four unknowns: the three coordinates of the receiver, (xr, yr, zr), and the time offset, �Ts,
between the local clock and the system time. (An important special case is determining the
coordinates of a point that is known to be on the surface of the Earth. This knowledge provides
a relationship among the three coordinates of the receiver that can be used to reduce the number
of satellites that must be tracked.) The accuracy of this solution will depend on the accuracy
of the broadcast orbits and on the consistency of the set of δs parameters transmitted by the
different satellites being tracked. All of these parameters are extrapolations based on previous
data obtained at the various tracking stations, so that the performance of the system depends on
the stability of the satellite orbits and clocks and on the frequency with which the parameters
broadcast by the satellite are updated.

The multi-satellite method, which is used when the position of the station is not known
a priori, also depends on the fact that the delay through the receiver either is the same for all
satellite signals or else is a known function of the satellite being tracked. The magnitude of
any constant and satellite-independent delay is not important in determining the position of
the station since it is absorbed into the clock solution, which is usually ignored in geodetic
applications anyway. Constructing a geodetic solution based on data from different GLONASS
satellites is potentially more difficult to do, since the satellites transmit at different frequencies
and the delay through the receiver may be frequency dependent.

2 See this reference for Circular T and for a description of the operation of the time section of the BIPM.
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Although time transfer and geodetic position determination are often thought of as different
applications, this is not always the case. For example, time transfer to a moving platform
requires a simultaneous solution for both the position of the platform and the time offset of
the clock. If the clock is moving rapidly or if it is not near the surface of the Earth, then
additional corrections may be necessary to account for the Doppler shift due to the rapidly
moving platform.

3. Coordinate systems and measurement frames

We must specify a coordinate system in order to evaluate equations (1) and (2). If we
consider a receiver at a fixed location on the Earth, then the position of that user is normally
specified in an Earth-centred, Earth-fixed (ECEF) system. This is a particularly convenient
choice because the coordinates of a stationary receiver are constants in this system and it is
straightforward (at least in principle) to relate these coordinates to the location of the receiver
in other coordinate systems, such as the ones that are used in surveying and other ground-based
civilian applications.

An example of such a system would be an ECEF system defined in terms of the WGS-84
model [4], which models the Earth as an ellipsoid whose major axis is in the equatorial plane of
the Earth. Cross-sections of the Earth parallel to the equatorial plane are circular, while those
normal to the plane are ellipsoidal. The z-axis of this model is normal to the equatorial plane
and points towards the geographic North pole. In an ellipsoidal cross-section that contains
the z-axis, the semi-major axis has a value of a = 6 378 137 m, which is equal to the mean
equatorial radius of the real Earth. The minor axis corresponds to the polar diameter of the
Earth, and the magnitude of the semi-minor axis is b = 6 356 752.3142 m. The model can
also be specified in terms of an eccentricity, e, and a flattening, f , given by

e =
√

1 − b2

a2
= 8.18 × 10−2

and

f = 1 − b

a
= 3.35 × 10−3, (3)

respectively. The +x- and +y-axes of the coordinate system are defined as pointing along the
direction of 0˚ longitude and 90˚ East longitude, respectively, so that the coordinate axes form
the usual right-handed system.

The WGS-84 Earth model is used by the GPS. The Russian GLONASS system uses a
similar coordinate system called PZ-90 [5]. The model is basically the same as WGS-84,
although the values of the parameters are slightly different. For example, the semi-major axis
is 1 m smaller than the WGS-84 value, and the other parameters are also slightly different.
There is no simple relationship between the coordinates of a given point in the two coordinate
systems (or between the two system times, for that matter).

The International Earth Rotation Service (IERS) was established in 1987 to provide
realizations of two coordinate systems: the International Celestial Reference System (ICRS)
and the International Terrestrial Reference Frame (ITRF) [6]. The IERS uses data from many
different techniques, including GPS observations, very long baseline radio interferometry
(VLBI), and satellite laser ranging to define an ECEF coordinate system, and to measure the
locations of reference stations with respect to it. The detailed operation of the IERS is described
on its web page at www.iers.org.

The ‘geodetic’ position of a receiver is expressed in terms of its latitude and longitude
with respect to the reference meridians of a model and its height above the reference ellipsoid.



Time and frequency distribution using satellites 1125

This geodetic height is the minimum distance between the user and the reference ellipsoid,
and this straight line distance does not point towards the centre of the Earth unless the user
is at the Equator or at the poles. This geodetic height can be quite different from the height
above mean sea level, which defines the geoid. The quantities that parameterize the satellite
orbits are also transmitted in this system. Although an ECEF frame is convenient for users
because the coordinates of a stationary receiver are constants with respect to its origin, it is
rotating and is, therefore, not an inertial frame.

It is easiest to transform the coordinates of both the space vehicle and the receiver to an
Earth-centred inertial (ECI) frame—one that is fixed in the centre of the Earth, but not rotating
with respect to the ‘fixed’ stars, since light signals travel in straight lines with velocity c

(in vacuum) in such a frame. (This choice ignores the small radial and tangential accelerations
of the Earth in its orbit.) There are an infinite number of such frames, all of which differ
from each other by rotations about the coordinate axes; all of these frames are conceptually
equivalent, and the choice among them is based on computational convenience. At any instant
of time, it is always possible to find an inertial frame in which the coordinates of the receiver
are identical to their values in the standard ECEF frame, and this choice is often used since it
usually simplifies the transformations that are required. This equivalence is only valid for an
instant of time, since the ECEF is rotating whereas the equivalent ECI frame is not. Although
this instantaneous equivalence is simple in concept, the details can become complicated in
multi-channel receivers.

If a receiver is tracking multiple satellites simultaneously in order to solve for its position,
then there are two ways of measuring the various pseudo-ranges: (1) either the receiver uses
a tick transmitted at essentially the same instant from all of the satellites in view, in which
case the different pseudo-ranges result in the measurements being made at different reception
times or (2) the receiver makes all of the measurements at a given instant (as determined by
its clock), in which case the signals were transmitted by the satellites at different epochs. The
second method is conceptually easier, especially if the receiver is not stationary or if its local
clock has a significant offset from the satellite timescale. A natural choice in this case would
be to choose an ECI frame whose z-axis coincides with the polar axis of the WGS-84 system
and which coincides with the ECEF frame of the receiver at the instant the measurements are
made. The positions of the satellites could then be transformed into this frame using simple
rotations about the chosen z-axis. Since the signals left the satellites at different times, a
separate transformation may be needed for each satellite.

4. Relativistic effects

In addition to the requirement that measurements associated with clock synchronization be
performed in an inertial reference frame, there are other relativistic effects that affect satellite
transmissions: the first- and second-order Doppler effects, the gravitational frequency shift and
the effect of any eccentricity in the orbit of the satellite.

The magnitudes of these effects can be calculated once the radius of the orbit of the
satellite is given, and they will, therefore, vary somewhat from one design to another. The
orbital radius of the GPS satellites is 26 600 km (about 4.2 Earth radii), and the orbital speed is,
therefore, 3.87 km s−1; the GLONASS satellites have orbits of 25 460 km and their orbital speed
is about 3.95 km s−1. The Galileo satellites proposed by the Europeans will probably have a
somewhat smaller orbital radius of about 24 000 km; the orbital speed will be correspondingly
greater. I will use the GPS orbital parameters in the following calculations; the corresponding
GLONASS and Galileo values would not differ significantly.
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4.1. The first-order Doppler shift

The magnitude and sign of this correction depend on the projections of the instantaneous
velocities of the satellite and the observer onto the vector between them, where these velocities
must be evaluated in the frame used for the analysis. This effect must be estimated by
the tracking loop of the receiver in real time, since it changes the apparent frequencies of the
received signals. To estimate the maximum magnitude of this effect, imagine a satellite
travelling due West directly towards an observer on the Equator. The velocity of the receiver, vr,
is about 450 m s−1 towards the transmitting satellite—about 12% of the speed of the transmitter,
denoted by vt . Since both velocities are small compared to c, the first-order Doppler shift results
in a fractional frequency shift (relative to the transmitted frequency) of approximately

�f

f
= vr + vt

c − vt
≈ 1.4 × 10−5, (4)

where I have dropped terms proportional to quadratic and higher powers in v/c. The GPS
carrier frequencies are about 1.5 GHz, so that the maximum first-order Doppler shift would be
about ±19.4 kHz.

The next term in the expansion would have a magnitude of order (v/c)2 times the value in
equation (4), and this contribution might not be negligible in some situations. Using a fractional
frequency shift of 10−15 as a somewhat arbitrary threshold of significance, the quadratic term
must be considered for velocities greater than about 8.3 km s−1. As a practical matter, the
contribution of the uncertainty in the velocity to the linear term in equation (4) is usually much
larger than the size of the quadratic correction.

4.2. The second-order Doppler effect

This effect depends on the orbital speed of the satellites, and is therefore the same for all
satellites with the same orbital radius. It produces a fractional frequency shift whose magnitude
is given by γ , where

γ = 1√
1 − β2

≈ 1 + 8.3 × 10−11, (5)

and where β = v/c. The effect is always a ‘red’ shift—the clock in the satellite appears to
have a lower frequency compared to a reference clock at the location of the observer (whom
we imagine to be on the rotating geoid).

4.3. The gravitational frequency shift

This effect depends on the difference in the gravitational potential at the source and the observer.
If we take a clock on the rotating geoid as the reference, then the clock in a satellite appears to
this observer to be running faster by about

�f

f
= �φ

c2
= −GM

c2

(
1

4.2Re
− 1

Re

)
≈ 5.3 × 10−10, (6)

where M and Re are the mass and radius of the Earth, respectively, G is the gravitational
constant and c is the speed of light. This effect is also the same for all satellites in a given
orbit.

The second-order Doppler shift and the gravitational frequency shift are of opposite sign.
Taken together, they would result in an observer on the geoid measuring a net fractional
frequency increase of 4.47 × 10−10 relative to an observer in the satellite. The proper
frequency of the oscillator on each satellite is adjusted downward by this amount so that
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the signals received on the geoid appear to have their nominally correct coordinate value. For
the GPS, where the nominal frequency of the reference oscillator is 10.23 MHz, the actual
proper frequency of the oscillator is lower by about 4.573 MHz. Although this seems like a
small correction, if it were not applied the received time would diverge from its nominal value
by more than 38 µs day−1—an enormous offset rate in the time and frequency business.

Note that this correction is applied so that an observer on the rotating geoid sees the
clocks running at the nominal frequency. This is the standard reference frame in the time and
frequency business, but it is not an inertial frame, nor is it the obvious best choice if (or when)
space travel becomes common.

4.4. The eccentricity of the satellite orbit

The eccentricity contributes in two ways to the frequency as observed at the receiver. In the first
place, the eccentricity results in a varying radial acceleration which is equivalent to a varying
gravitational potential. In the second place, the eccentricity results in a varying orbital speed
which affects the second-order Doppler shift. These effects vary together with the period of
the satellite orbit. The apparent frequency of the satellite clock is lower at perigee and higher
at apogee. This frequency modulation is removed by the code and carrier tracking loops in the
receiver, and the magnitude of the effect is estimated based on the broadcast ephemeris.

5. The index of refraction of the transmission path

The signals broadcast by satellite systems do not travel in a vacuum, and their velocities are
less than c as a result. This effect is usually small enough, and the elevation angle of the path
with respect to the horizon is usually large enough that the signals from the satellites can be
considered as travelling along geometrical straight lines with a speed given by c/N , where N

is the index of refraction of the medium. Since the index of refraction is very nearly 1, it is
more common to speak of the refractivity, n, where n = N − 1.

The assumption that the paths are geometrical straight lines actually implies a limit on the
spatial gradient of the index of refraction rather than on its absolute magnitude. The spatial
gradient can be quite large near the surface of the Earth, so that using simple geometrical straight
lines is often not adequate in modelling ground-to-ground transmissions. In many cases, the
atmosphere can be approximated as composed of a series of horizontal layers of different
refractivities, so that the spatial deviation of the signals due to changes in the refractivity
becomes smaller as the elevation angle increases even when there are large variations in the
refractivity at the boundaries between the layers. It is quite common to restrict observations
to satellites with elevation angles of 20˚ or more for this reason. The bending effect is often
not negligible even for signals transmitted by satellites at these elevation angles, and this is
considered below in the discussion of obliquity factors.

The path from a satellite to a ground station can usually be divided into two parts: the
upper part through the ionosphere, where the refractivity is dominated by the contribution of
the free electrons, and the lower part where the refractivity is dominated by the contribution
of dry air, with smaller contributions from water vapour and other trace constituents. The
refractivities of the two portions of the path are discussed in the following sections.

5.1. The effect of the ionosphere on the path delay

The refractivity of the path from a satellite to a receiver through the ionosphere is a function of
position and of the frequency used to transmit the information. The dependence on frequency
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is dispersion, and the frequency is identified with a subscript on the refractivity. The variation
of the refractivity with position is written as n(r), where r is a parameter that measures the line-
of-sight distance between the transmitter and the receiver. As we will show in the following
discussion, it is possible to estimate the refractivity of the ionosphere by measuring its dis-
persion, i.e. by measuring the difference in the apparent pseudo-ranges at two different carrier
frequencies. The two different frequencies that are used for this purpose are called L1 and L2.
The GPS and GLONASS systems use different pairs of frequencies for this purpose, but the
concept of estimating the refractivity from the measured dispersion is the same for both systems.

5.2. The multiple wavelength method

If the refractivity can be expressed as a product of two functions, one of which depends only
on the frequency of the signal (which we call F ) and the second of which depends only on the
properties of the transmission medium (which we call G), then it is possible to determine
the refractivity of the transmission medium by measuring the time dispersion—the apparent
time difference between measurements made using two different frequencies. This idea can
be realized in two ways: the dispersion measurement can be used to correct the data at one
frequency, or the two measurements can be used to construct a ‘refractivity-free’ measurement.

If the length of the physical path between the transmitter and the receiver is D, then the
transit times measured using two different carrier frequencies f1 and f2 will be

t1 =
∫

(1 + n1(r))

c
dr = D

c
+

F(f1)

c

∫
G(. . .) dr (7)

and

t2 =
∫

(1 + n2(r))

c
dr = D

c
+

F(f2)

c

∫
G(. . .) dr, (8)

where the quantities n1(r) and n2(r) are the refractivities at the two frequencies at the coordinate
point r along the path. (The refractivity is the difference between the actual index of refraction
at a point and 1, which is its vacuum value.) The second form on the right-hand side of these
equations makes use of the fact that the refractivity at each frequency can be decomposed
into a known function F that is independent of the path and depends only on the frequency
of the carrier and a second known function G that depends only on the parameters of the
medium such as its density, pressure, temperature, etc. The integrals must be evaluated along
the transmission path. This would be difficult or impossible for a real-world path through
the atmosphere, since the required parameters are not known and cannot be easily measured.
However, since the integral of G is independent of the carrier frequency, we can eliminate G in
terms of the difference in the two measured transit times.∫

G(. . .) dr = c
t1 − t2

F(f1) − F(f2)
. (9)

Substituting equation (9) into equation (7),

t1 = D

c
+ (t1 − t2)

F (f1)

F (f1) − F(f2)
= D

c
+ (t1 − t2)

n1

�n
. (10)

The first term on the right-hand side is the time delay due to the transit time of the signal along
the path of physical length D, and the second term is the additional delay due to the refractivity
of the medium. (The second term can never be negative, since it is the product of two terms
both of which always have the same sign.)

The second term depends only on the measured time difference between the signals at
the two frequencies and on the known frequency dispersion of the refractivity. It does not
depend on the physical length D itself or on the details of the spatial dependence of G, and
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we would have obtained exactly the same result if only a small piece of the path D′ < D was
actually dispersive, while the rest of the path had a non-zero refractivity but no dispersion.
(Note the implicit requirement that the signals at both frequencies travel along the same physical
path, D. This requirement is usually satisfied except for optical signals transmitted over ground
to ground paths longer than about 50 km. The atmospheric dispersion can steer the two signals
in this configuration by enough so that the two beams diverge by more than the characteristic
size of a cell of constant refractivity. The two beams then sample different refractive indices,
and the assumptions of the calculation are no longer valid.)

The fact that the difference in the arrival times between signals of different frequency can
be used to estimate the refractivity of the path is an important conclusion, because it means
that a receiver can estimate the delay through the ionosphere by measuring the difference in
the arrival times of identical messages sent using two different carrier frequencies. The L1

and L2 frequencies transmitted by both the GPS and GLONASS satellites are used for this
purpose.

The additional time delay due to the refractivity of the ionosphere is given in first order
by [7]

�t = 40.3ρe

cf 2
, (11)

where c is the velocity of light, f is the signal frequency in Hz and ρe is the total electron content
integrated over the path through the ionosphere in units of electrons m−2. The magnitude of
the total electron content varies in time and in space. Typical values range from about 1016 to
1019. Using ρe = 1016 and f = 1 GHz, the additional time delay due to the refractivity of the
ionosphere is about 1.3 ns. The total electron content can vary by a factor of 50 or even 100
during the solar day, with a maximum that occurs usually in the early afternoon (local time).
Especially near sunrise and sunset, this diurnal variation can introduce a significant azimuthal
dependence to the effect of the ionospheric refractivity.

Using equation (10) with the two GPS signal frequencies L1 = 1575.42 MHz and
L2 = 1227.60 MHz, we find

n1

�n
= L2

2

L2
2 − L2

1

= −1.54, (12)

where the negative sign results from the fact that the refractivity decreases with increasing
frequency and is therefore smaller at L1 than at L2. Thus we also expect that t1 < t2.

Instead of substituting equation (12) into equation (10) and using the measured time
difference resulting from the dispersion to correct the measurement at L1, we can substitute
equation (12) into equation (10) and solve for the physical time delay D/c:

D

c
= 2.54t1 − 1.54t2, (13)

where the quantity on the right-hand side of equation (13) is the ‘ionospheric-free’
measurement, and the corresponding pseudo-carrier frequency is often referred to as L3 in
the literature.

Although equation (13) provides a measurement of the time delay that is independent
of the ionosphere (to first order, limited by the validity of equation (11)), these data will be
noisier than a single-frequency measurement using only L1. Assuming that the signal to noise
ratio is the same for both frequencies (which is often not true), the measurement noise at L3

should be poorer than at L1 by a factor of about
√

(2.542 + 1.542) ≈ 3. This trade-off between
signal to noise and accuracy is particularly important for common-view measurements (in
which two stations observe the same satellite at the same time). The ionospheric correction is
often ignored for short baselines in common-view applications, since the effect will cancel in
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common-view anyway and there is no need to pay the price of the degradation in the signal
to noise ratio that results from using the ionosphere-free combination. The correction is more
important over longer baselines, since the effects of the ionosphere tend to be different at the
two stations—especially near local sunrise and sunset at either site.

The refractivity and the dispersion of the ionosphere become negligible at optical
frequencies. The correction is usually ignored even at microwave frequencies above 10 GHz.
Although this would suggest that life would be easier at these higher microwave frequencies,
the effect of the troposphere becomes larger because of the presence of water vapour lines,
especially above 20 GHz. Conversely, the dispersion between the two carrier frequencies
would be larger (and therefore easier to measure) as the frequencies are moved further apart.
This would complicate the design of the receiver, and might also make it more difficult to
protect the frequency allocation from interference by other ground-based uses.

The height of the ionosphere is about 200–500 km, but there is appreciable diurnal and
seasonal variation in this value. Since the orbital radius of a satellite is usually much larger
than these values, the full effect of the ionosphere must be considered in a satellite to ground
configuration, while the effect of the ionosphere usually can be ignored in satellite to satellite
transmissions. This might not be true in all circumstances. Transmissions to and from a
low-flying satellite might be affected by only part of the ionosphere, and the effect might vary
during the orbit. The electron density in the various layers of the ionosphere varies by several
orders of magnitude both with altitude and with the time of day. The diurnal variation is usually
largest in the ‘E’ layer, which has a height of about 100 km. Typical electron densities might
be 109 electrons m−3 during the night and 5×1011 electrons m−3 during the day. The variation
with altitude is equally large: typical daytime values would be about 108 electrons m−3 at
an altitude of 50 km, increasing by a factor of 10 000 at 200 km. This spatial and temporal
variation would have to be folded into the detailed orbital parameters in order to estimate the
effect in a particular configuration. These variations do not invalidate the concept of estimating
the refractivity from the dispersion, but they introduce a temporal and spatial variation into the
coefficients of equation (11) that complicates practical analyses.

This variation becomes more complicated if the receiver is moving. Both frequencies will
be Doppler shifted in this case, and these shifts must be removed by the tracking loop in the
receiver. If the dispersion is measured as a phase difference between the two carriers, then the
relationship between phase and time will be modified as a result of these Doppler shifts. In
addition, if the motion is through the dispersive portion of the path, the velocity modifies the
size of the dispersion (through the effective value for the total electron content in the case of the
ionosphere). This effect is most likely to be significant for satellite to satellite transmissions
when the two satellites are nearly on opposite sides of the Earth. It may be difficult in practice
to separate changes in the measurement dispersion due to temporal changes in the ionosphere
from changes caused by uncertainties in the position of one of the satellites or due to differential
cycle slips between the L1 and L2 phase meters in the receiver.

The total electron content of the ionosphere at any point is usually specified as a value at
the zenith. This value must be corrected for an obliquity factor if the satellite is not directly
overhead. An estimate of this factor for a receiver on the Earth is presented below; the model
we will present is unlikely to be adequate for satellite to satellite transmissions, and a direct
integration of the density of free electrons along the actual path is likely to be necessary.

5.3. Group and phase velocities

The previous discussion considered the effect on the ionosphere of two frequencies, L1 and
L2. In fact, most receivers do not use these carrier frequencies themselves, but rather the codes
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which are modulated on these carriers. The propagation speed of these codes is characterized
by the group index of refraction, which is not the same as the phase index of refraction that
characterizes the speed of the carrier. Using the first-order functional form for the refractivity
given above in equation (11), the group and phase refractivities have the same magnitude but
opposite sign. The group index of refraction uses the magnitude in equation (11) with a positive
sign, so that the effective group velocity is less than c, while the phase index of refraction uses
the magnitude with a negative sign, so that the effective phase velocity is greater than c. The
calculation above, which is based only on the magnitude of the refractivity, is valid for either
index. In order to distinguish measurements made using the code with those based on the car-
rier, the former are usually identified by P rather than L. Thus P1 is often used to designate the
pseudo-range measurement made using the code transmitted using the L1 carrier frequency, etc.

Since the group and phase delays will have opposite dependences on the total electron
content of the ionosphere, it is possible to estimate the time variation of the total electron
content of the ionosphere using a single frequency receiver that measures the variation in the
differential delay between the code and the carrier of a GPS signal. Although this method
has been tested by a number of groups, it is difficult to implement in practice because of
the ambiguities in calibrating the effective delay through a GPS carrier-phase receiver. This
effective delay is modified by cycle slips; for many common receiver designs it also changes
each time the receiver is re-started.

5.4. The troposphere

The refractivity of the troposphere at radio frequencies is given by [8]

n = 77.6 × 10−6 P

T
+ 0.373

e

T 2
, (14)

where P is the total atmospheric pressure in millibars, T is the temperature in kelvin and e is the
partial pressure of water vapour in millibars. The refractivity is independent of frequency, and
the group and phase indices of refraction are therefore the same. The lack of dispersion means
that the refractivity cannot be measured using two frequencies as in the case of the ionosphere
discussed above. For typical values (P = 1000 mb, T = 300 K, e = 10 mb), n = 300×10−6.
Using these parameters, the optical length exceeds the physical length by about 30 cm km−1

of path length, which corresponds to an increase in the travel time of 1 ns km−1.
The first term in equation (14) contributes about 85% of the total value. The ratio P/T is

proportional to the density of dry air, and the integrated effect of the first term on a nearly vertical
path, therefore, can be modelled pretty well (usually to within a few per cent) using values of
P and T at the surface (assuming that the atmosphere is in thermodynamic equilibrium, which
makes the calculation possible but is hardly ever exactly true). The effect of the second term is
smaller, but it is much harder to measure, since it usually varies in an irregular way with time,
azimuth and elevation. (Also note that it does not depend on the density alone and so cannot
be estimated using a single point measurement, even if we assume that the distribution is in
thermodynamic equilibrium.)

Some work has been done on measuring the water vapour contribution using radiometers.
A number of different types of radiometers have been tested, but the most common type
estimates the integrated density of water vapour (along a single line of sight) by comparing the
received power at one of the water vapour lines with the power at a nearby frequency [9, 10].
The frequencies that are used for this comparison are usually on the order of 25–30 GHz. The
sensitivity of the method depends on the noise temperature of the receiver and its surroundings,
while the accuracy depends on the calibration of the power measurements. This method is not
widely used because the instruments are expensive and can be difficult to calibrate. A second
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type of radiometer exploits the dispersion between an optical and a microwave frequency [11].
This method is potentially more accurate, but it is also much more complicated because the
dry air also contributes to this dispersion, and the two effects must be separated using ancillary
measurements.

Because of these difficulties in estimating the effect of tropospheric water vapour, the
second term is often ignored at locations that have low humidity. If the atmosphere is not
isotropic or is not in thermal equilibrium, its contribution is often smaller than the uncertainty
in the dry-air part of the refractivity.

The integrated effect of the atmosphere is to increase the path by about 2 m (7 ns) in the
zenith direction. If the atmosphere is isotropic in azimuth and elevation, then this excess path
delay will vary as the cosecant of the elevation angle, reaching a value of about 25 m (83 ns)
at an elevation of 5˚. Many analyses model the atmosphere in this way, using a single value
for the zenith delay and scaling this parameter by the cosecant of the elevation angle. (A more
complete discussion of this effect follows below.) This zenith delay can be obtained using a
real measurement, but is more usually estimated (at least in post-processed analyses) from the
data themselves by fitting a cosecant function to a long-arc track. As with the ionosphere, these
effects are usually not important in satellite to satellite transmissions, but this might not be true
for a satellite in a very low orbit or when two satellites are on opposite sides of the Earth.

5.5. Characterizing the troposphere using optical measurements

The dispersion of the troposphere is significant at optical frequencies, and it would be possible
to measure the refractivity in this way. Each component of the atmosphere makes a different
contribution to the overall refractivity. The simplest models ignore trace constituents (the most
important of which is usually CO2), and use only two components to model the refractivity:
one due to dry air and the second due to water vapour. Thus,

n = Fa(f )Ga(P, T ) + Fw(f )Gw(e, T ), (15)

where the subscript ‘a’ refers to the dry-air contribution, the subscript ‘w’ refers to the
contribution due to water vapour, and the other symbols are as defined above. The functions
F and G are quite complicated. (Note that atmospheric scattering and scintillation make
it impractical to use the phase of the optical carrier directly, and measurements are always
made using some form of modulation. The indices of refraction presented below are, therefore,
the group values.) Instead of using the frequency of the signal in these expressions, it is more
common to use the wave number, which is the reciprocal of the wavelength in micrometres and
is therefore directly proportional to the frequency. The relationship between the wave number
in inverse micrometres and the frequency f in Hz is approximately

σ = f

3 × 1014
. (16)

(The approximation in equation (16) comes from rounding the value that is used for the speed
of light to 3×108 m s−1). In these units, optical frequencies have wave number values of about
1.5 or 2. Using these parameters, approximate expressions for the parameters in equation (15)
are [12, 13]:

Fa(σ ) = 23.71 × 10−6 + 6389.4 × 10−6 130 + σ 2

(130 − σ 2)2
+ 45.5 × 10−6 38.9 + σ 2

(38.9 − σ 2)2
, (17)

Fw(σ ) = 64.87 × 10−6 + 1.74 × 10−6σ 2 + 0.03 × 10−6σ 4 + . . . , (18)

Ga(P, T ) = P − e

T

[
1 + 57.9 × 10−8 − 9.3 × 10−4

T
+ . . .

]
, (19)



Time and frequency distribution using satellites 1133

Gw(e, T ) = e

T
+

e2

T
− 8.7 × 10−7 e3

T
+ 8.3 × 10−4 e3

T 2
+ . . . . (20)

Using the same values for P , T and e as above, the refractivity of the atmosphere is 285×10−6

in the red (633 nm) and 298 × 10−6 in the blue (442 nm). Using these values for the optical
refractive indices, the factor that multiplies the time dispersion in equation (10) is∣∣∣∣ nred

nred − nblue

∣∣∣∣ ≈ 22. (21)

This factor is much larger than the corresponding value for the microwave dispersion of
the ionosphere given in equation (12) above, and it means that the uncertainty in a two
wavelength measurement of the atmospheric refractivity is dominated by the uncertainty in the
measurement of the dispersion. This measurement is made even more difficult by the fact that
light at blue wavelengths is more strongly attenuated by atmospheric scattering and absorption
than a lower-frequency red signal would be, so that practical dispersion measurements are
usually limited by the characteristics of the blue signal generator. It is also possible to
construct an ‘atmospheric-free’ analogue of equation (13). Since the value of the expression in
equation (21) is much larger than unity, the uncertainty of the resulting estimate is very nearly
a factor of 22 times less accurate than the uncertainty of a single-wavelength measurement.
This is an expensive penalty, and multiple wavelength optical systems are not commonly used
for this reason.

5.6. Obliquity factors

The corrections for both the ionosphere and the troposphere are normally specified in terms
of the increment in the path delay due to the refractivity of the medium when the satellite is
at the zenith. These values must be corrected using an obliquity factor for observations made
when the satellite is at a lower elevation angle. The simplest approach is to assume that the
refractive medium is both homogeneous and isotropic. This assumption tends to be poorest
for the troposphere, especially at stations where the nearby topography has significant relief.

If we assume that the ionosphere and troposphere are homogeneous concentric shells of
refractive material (see figure 1), then the obliquity factor for a satellite whose elevation angle

Figure 1. Obliquity factor assuming that the ionosphere is a spherical shell at a height h above the
Earth. The receiver, located at position R is receiving a signal from the satellite at position S. The
parameter Re is the radius of the Earth.



1134 J Levine

is φ (with respect to an observer on the ground) is given by

� = Re + h√
(Re + h)2 − R2

e cos2 φ
, (22)

where Re is the radius of the Earth and h is the average altitude of the refractive layer, measured
relative to a station on the surface of the Earth. This expression multiples the zenith value for
the refractivity. The fraction gives the ratio between the zenith path length and the path length
along the straight line path to the satellite.

Since the thickness of the troposphere is much smaller than the radius of the Earth, the
troposphere is often modelled using h = 0, as shown in figure 2. In this case the expression
reduces to

� = 1

sin φ
. (23)

This simpler expression could also be obtained using a model in which the Earth is flat and
both the ionosphere and troposphere are horizontal layers with a very small refractivity. The
obliquity factors computed using these two expressions differ by about 5% at an elevation angle
of 45˚, and this difference increases as the elevation angle decreases. Neither expression works
very well at elevation angles less than about 20˚ (because spatial inhomogeneities are usually
much important at these low elevation angles), and many receivers can be programmed to
ignore satellites whose elevation is this low. The problem at low elevation angles is especially
serious in models of the troposphere, since there is usually significant turbulence and spatial
inhomogeneity near the surface of the Earth.

Neither of these obliquity factors is adequate if the refractivity is not azimuthally symmetric
(i.e. if the refractivity is not symmetric about the zenith direction). It is possible to remedy
this deficiency by means of more complex functions which include an azimuthal dependence.
One such function would multiply the factors given in equations (22) and (23) by an additional
term proportional to the cosine of the azimuthal angle. This additional multiplicative term

Figure 2. Simplified model for the obliquity factor, assuming that the Earth is flat and the refractive
layer is a horizontal slab.



Time and frequency distribution using satellites 1135

would be of the form

1 + a cos(θ − θ0), (24)

where a and θ are the amplitude of the azimuthal variation and the azimuthal angle, respectively.
The amplitude, a, and orientation of this function with respect to the ECEF coordinate axes,
θ0, must be deduced from the data.

6. Detailed parameters of each system

In the previous sections, I presented the considerations that describe time transfer using any
of the satellite-based systems that I am considering. In the next sections I will describe the
detailed parameters of the GPS and GLONASS constellations. I will also discuss the design
for the Galileo system, although the details may change as the system design evolves.

6.1. GPS Orbits and signal formats

The GPS constellation consists of 24 satellites in six orbital planes, which are inclined at an
angle of 55˚ with respect to the Equator. The radius of the orbit is 26 600 km, the orbital speed
is 3.87 km s−1 and the orbital period is about 12 h. As seen by an observer on the Earth, the
satellites return to very nearly the same point in the sky once every sidereal day (23 h, 56 min).

The primary oscillator on each satellite operates at a frequency of 10.23 MHz. (As I
mentioned above, this is the frequency as seen by an observer on the Earth. The proper
frequency is lower by about 5 MHz.) This frequency is multiplied by 154 to produce the
L1 carrier frequency at 1575.42 MHz and by 120 to produce the L2 carrier frequency at
1227.60 MHz. Both carriers are modulated by a pseudo-random sequence with a chipping
frequency of 10.23 MHz (the ‘P’ code), and the L1 carrier is also modulated by a slower
pseudo-random sequence with a chipping frequency of 1.023 MHz (the C/A code). (The
signal used to modulate the L2 carrier can be changed by the control stations. The three
possibilities are: P code with data, P code with no data and C/A code with data; the data
message is described in the next paragraph.)

In addition, a navigation data message is transmitted on L1 and L2 at 50 bit s−1. This
navigation message is transmitted on L1 and L2 by combining it with both C/A code and
P code data streams using an ‘exclusive or’ operation. This means that a ‘1’ bit in the data
stream reverses the sign of the faster codes while a ‘0’ bit in the data stream leaves them
unchanged. The resulting bit streams modulate the carriers using a bi-phase shift key method.
The P code + data stream is modulated in phase quadrature with the C/A code + data stream on
the L1 carrier. The L2 carrier normally has only one modulation signal and the second phase is
not modulated. Using the frequencies defined above, there are 20 460 C/A chips and 204 600 P
chips between each data bit. Increasing the data rate would make the code acquisition more
difficult since the potential code reversals would be more frequent. However, the information
that is transmitted in the data messages could be increased by the same factor.

In addition, when ‘anti-spoofing’ mode (AS) is activated (which is the normal state of
affairs at present), the P code is encrypted, and the encrypted version is called the Y code.
The encryption makes the code unusable by non-authorized receivers, but does not change the
chipping rate. In addition to no change in the chipping rate, many other aspects of the GPS
signal also are not changed by this encryption. The clear and encrypted versions of the code
are often referred to by the single identifier P(Y) code for this reason.

The access to all of the signals can also be degraded for non-authorized users by encrypted
dithering of the frequency of the primary oscillator. This is called selective availability (SA). In
addition, SA can also be used to introduce an encrypted offset error into the navigation message.
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This introduces an error into the pseudo-range as calculated by a non-authorized user. Selective
availability is currently turned off, and its future is not known. The frequency dither introduced
when SA is on degrades using the signals for determining either position or time, but it can be
cancelled almost completely by using common view, since the dither is common to the signals
received at all of the stations and, therefore, cancels in the pairwise difference. When the
receiver can track more than one satellite at the same time, the cancellation is most effective
when the subtraction is performed separately for each satellite that is being tracked, since the
SA dithers applied to different satellites are uncorrelated. In general, this means that common-
view subtraction is more effective for time comparisons than for position determination, unless
the stations are quite close together so that they are all tracking the same group of satellites. In
general, errors in the navigation message due to SA would not be cancelled in common view,
since the dither usually affects the pseudo-ranges to the various stations by different amounts;
this type of dithering was not observed when SA was on in the past.

TheL1 andL2 transmissions are used to estimate the delay through the ionosphere using the
two-wavelength dispersion technique described in the previous section. Since the L2 frequency
normally is modulated only by the encrypted Y code (plus data), a non-authorized user cannot
directly measure the L1 − L2 dispersion to estimate the delay added by the ionosphere.
However, it is possible to measure this dispersion by noting that the P code + data bit stream is
the same on both L1 and L2 and by looking for a peak in the cross-correlation between these
two signals. This cross-correlation method can succeed even when the code is encrypted. One
way of doing this is to compute the cross-correlation using the squares of the code streams.
This effectively removes the navigation message without the need to actually parse it.

6.1.1. The GPS pseudo-random codes. Since all of the GPS satellites transmit using the same
pair of frequencies, identifying them must be based on the transmitted code. This arrangement
is called code division multiple access (CDMA). The concept is simple: the codes transmitted
by each satellite are orthogonal to each other, so that the receiver can identify any satellite by
constructing a replica of its code and computing the cross-correlation between the received
signal and the local copy. The process is a bit more complicated in practice, because each
satellite also has a unique Doppler frequency offset, which must also be measured. Therefore,
a real receiver must have two tracking loops that are linked: one that locks on the Doppler-offset
carrier and a second that locks on the code. The cross-correlation process that locks on the code
is further complicated by the bits of the navigation message. A ‘1’ bit in this message reverses
the sign both of the pseudo-random code and the cross-correlation with its local replica, while
a ‘0’ bit leaves the sign unchanged. (Since (−1)2 = (+1)2 = 1, this reversal can be removed
by squaring the signals.

Each of the pseudo-random noise (PRN) codes is a ‘Gold’ code [14]. The C/A codes
are synthesized by combining the outputs of two 10 bit shift registers using an exclusive-or
operation. The shift registers are clocked at the chipping frequency of the code. The first
register, G1, has taps to feedback stages 3 and 10 to the input. The output of the second
generator, G2, is delayed relative to the first one by a number of chips, unique to each
satellite and derived from the satellite ‘PRN number’. The code generators in all of the
satellites are the same except for this delay, so that specifying this number is sufficient to
identify the code and the satellite that transmitted it. (In addition to the PRN number, which
characterizes the transmitted codes, satellites also have a space vehicle (SV) number, which is
assigned by the controllers when it is launched. The two numbers are not necessarily identical.)

The P codes are synthesized using four 12 bit shift registers. These registers are combined
in pairs using exclusive-or logic, and the resulting pair of bit streams are handled in a manner
analogous to the C/A generator described above.
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The C/A code is 1023 bit long and repeats every 1 ms. The P code is about 38 weeks
long, but each satellite is assigned a unique week-long subsection of it. The P code transmitted
by each satellite repeats every week starting from midnight Saturday night/Sunday morning
(as measured by the clock on the satellite).

6.1.2. Using the GPS timescale. Since the P code is normally encrypted, most users have
access only to the C/A code and the navigation message, and the following description assumes
that the user does not have access to the P code.

The cross-correlation of the received C/A code with a local replica generated by the
receiver produces a series of ticks at 1 ms intervals which are synchronous with the transmitted
code, which is driven by the oscillator on the satellite. The navigation message is extracted
by using the fact that it can reverse the sign of the cross-correlation every 20th tick. After the
receiver has locked on the code and the carrier, it begins to assemble the bits of the navigation
message by looking for these phase reversals. These phase reversals specify the ticks of the
50 Hz navigation message clock.

The bits in the navigation message are assembled into 30 bit words. Since the message
is transmitted at 50 bit s−1, each word requires 600 ms to transmit. These words are
assembled into groups of 10. Each group of 300 bit is called a sub-frame and requires 6 s to
transmit.

The first two words in every sub-frame are the telemetry word (TLM) and the handover
word (HOW), and the receiver looks for these words to synchronize the phase of the navigation
message clock with respect to the corresponding clock in the satellite. The TLM is identified
by its 8 bit preamble: 1000 1011, and the remainder of the word contains parameters used
by authorized users. The first 17 bit of the HOW contain the most-significant 17 bit of the
epoch which will occur at the start of the next following sub-frame. The full time parameter
is 19 bit long and is measured in units of 1.5 s relative to the start of the GPS week (midnight
of Saturday/Sunday). The value transmitted in the HOW is, therefore, the time relative to
the start of the week in units of 6 s (four 1.5 s intervals). The TLM/HOW combination has
significant redundancy to assist the receiver in identifying it. The preamble is always the same,
and consecutive times in the HOW differ by one (except during the rollover on Saturday night
as described below). Furthermore, both the TLM and HOW words contain parity-check bits,
which are calculated by the satellite and can be checked by the receiver to verify that the word
has not been corrupted in transmission.

A time value of 1 is transmitted in the HOW at the start of the week (midnight
Saturday/Sunday). It identifies the time of the next sub-frame as 6 s after midnight. (The full
19 bit time parameter at that point will have a value of 4.) The maximum value is 100 799,
which corresponds to a time of 604 794 s (6 days, 23 h, 59 min, 54 s), and points to the start of
the last 6 s frame of the GPS week. This maximum value is transmitted 12 s before midnight
on the following Saturday night. The next HOW, which is transmitted at 6 s before midnight,
contains the value 0, which signals that another GPS week is about to begin (at the start of the
next sub-frame).

In addition to the 19 bit time parameter, which measures the GPS epoch relative to the
start of each week, there is an additional 10 bit week count, which measures the number of
weeks since the origin of the GPS timescale. It is incremented by 1 each time the GPS time
rolls over to zero. The original origin of this counter was midnight 5 January–6 January 1980.
However, the maximum value of this parameter is only 1023, and it rolls over to 0 each time
this maximum value is reached. The first rollover occurred at midnight 21 August–22 August
1999, and a new origin was established at that time. Additional rollovers will occur about
every 19.7 yr, so that the GPS timescale is fundamentally ambiguous at this level.
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The impact of this ambiguity on a geodetic receiver is generally limited to the time period
during and immediately following the rollover. The first potential difficulty is that all of the
satellites will not transmit the rollover at the same instant, because the rollover is determined
by the clock in each satellite, and these clocks may differ by up to 1 ms. Even if the satellite
clocks were perfectly synchronized, the difference in the times of flight between different
satellites and a receiving station could make a contribution as large as 10 ms to the difference
in the times the signals were received. The second potential difficulty is that the position of
the satellite and the offset of its clock from GPS time are transmitted as functions of time,
and the receiver will have to take the rollover into account in evaluating these functions when
the extrapolation period crosses the rollover. (A smaller version of this problem occurs every
Saturday night when the time value in the HOW word rolls over to 0, and some receivers have
had problems at this time as well.)

Since the relationship between GPS time and the time kept by the rest of the world does not
enter into a position solution, the effects described above tend to be transients that disappear
once the rollover is over and the transmitted ephemeris parameters use a post-rollover reference
time. In the extreme situation, a permanent error of 19.7 yr in parsing the GPS time would
have no impact at all on position solutions.

The impact of the rollover on a clock display would also be limited. Although the epoch
would be wrong by 19.7 yr, both the day of the week and the time of day would be
correct, and users who did not compute a civil date from GPS time would not see the
problem.

The rollover problem has been addressed in a number of different ways. One solution uses
a hard-coded date in the receiver software (the date it was compiled, for example) to estimate
the number of rollovers that have occurred since 1980. Another solution tries to estimate the
year by looking at the number of leap seconds transmitted in the GPS message and noting that
(at least at present) there has been somewhat less than one leap second per year. Neither of
these solutions is really adequate for an application that uses GPS time to assign an epoch to
a datum for archival purposes, since these hints on estimating the rollover value are generally
not preserved.

6.1.3. The GPS navigation message. In addition to providing synchronization signals for the
receiver clock through the HOW and TLM, the navigation message contains other parameters
that are important for time and frequency users. The parameters are identified by the sub-frame
ID code, which is transmitted in bits 20–22 of the HOW. The following paragraphs describe
the parameters that are most useful for time and frequency users.

Sub-frame 1 contains the GPS week number, 6 bit describing the health of the satellite,
an estimate of the L1 − L2 dispersion due to the ionosphere (which can be used by single-
frequency receivers), and the coefficients of a polynomial that estimates the difference between
the satellite clock and GPS time. The polynomial coefficients give the predicted time offset,
frequency offset and frequency ageing with respect to an origin time that is also part of the
message. Any error in this prediction enters directly into the error budget for a position solution
using several satellites, since multiple satellite pseudo-ranges can be related only through GPS
time. The error is less serious for a common-view observation (see below), since that technique
cancels or attenuates offsets in the satellite clock. The receiver must deal with the possibility
that a week rollover has occurred since the transmitted origin time. The implication of the
documentation is that these parameters will be updated at least once during each GPS week
because there is no provision for detecting a double week rollover.

Sub-frames 2 and 3 contain the ephemeris parameters, which are used by the receiver to
compute the position of the satellite. As with the time parameters in the first sub-frame, this
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computation is with respect to a transmitted origin time, and the receiver must deal with the
possibility that a rollover has occurred since that epoch.

The ephemeris for each satellite is described using six Keplerian elements. These
parameters would be strict constants of the orbit in the simple ‘two-body’ case, which assumes
that the gravitational potential of the Earth can be represented as a simple 1/r function (where r

is the radius vector from the centre of mass to the satellite) and that other perturbing influences
(gravitational effects of other bodies, solar radiation pressure, etc) are not present. The actual
orbit is still described using the same elements, but they are no longer strict constants of the
motion. Instead they vary slowly with time, and this variation must be estimated by the tracking
stations and inserted into the navigation message that is broadcast by each satellite.

The first three Keplerian elements define the shape of the orbit. They are: the length of
the semi-major axis of the ellipse, a, the eccentricity, e, and the time, τ , at which the satellite
crosses the perigee, which is the point on the orbit nearest the Earth. (The semi-major axis
crosses the ellipse at perigee.) The GPS actually uses the mean anomaly instead of the time at
perigee; the definition of this parameter in terms of the ‘true’ anomaly is discussed below.

The ‘true’ anomaly at any instant is the angle (conventionally measured counter-clockwise)
between the direction of perigee defined above and the actual position of the satellite at that
instant. This true anomaly varies linearly with time if the orbit is exactly circular. However,
it has a more complex variation for an elliptical orbit. The changing radius vector in an
elliptical orbit combined with conservation of angular momentum implies a variable angular
velocity. The mean anomaly is defined so that it varies linearly with time with a variation that
agrees with the variation of the true anomaly averaged over a complete orbit. The relationship
between the mean anomaly, M , at some time t and its value at some reference time t0 is
given by

M − M0 =
√

µ

a3
(t − t0), (25)

where µ is the reduced mass of the Earth/Satellite system multiplied by the gravitational
constant, G. By definition, both the mean and the true anomalies are 0 at the time of passage
through the point of perigee, so that the relationship between the mean anomaly at the reference
time t0 and the time of perigee passage is given by

M0 = −
√

µ

a3
(τ − t0). (26)

The quantity
√

(µ/a3) plays the role of an angular velocity in these expressions, and is called
the mean motion of the satellite, usually represented by n. From this definition, the orbital
period of the satellite is simply 2π/n.

The second three Keplerian elements define the orientation of the orbit in space with
respect to the ECEF coordinate system in which the x–y plane is the equatorial plane of the
Earth and the z-axis is perpendicular to this plane. The three parameters are then the inclination
of the orbit, i, which is the angle between the normal to the plane of the orbit and the z-axis, �,
the longitude (or right ascension) of the ascending node (the point at which the orbit crosses the
equatorial plane moving upward towards positive z- and the x-axes) measured in the equatorial
plane, and ω, the angle between the ascending node and the direction of perigee measured in
the orbital plane.

These parameters are not quite constants of the motion because of the various additional
perturbations mentioned above. The navigation message contains estimates of the time
derivatives of these parameters and other information to permit the receiver to estimate the
actual position of the satellite between message updates.
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Sub-frames 4 and 5 contain an almanac giving a set of reduced-precision ephemeris
parameters for the other satellites in the constellation. Once the signal from a single satellite
has been parsed, these data enable a receiver to compute which other satellites to look for.

Finally, sub-frame 4 includes parameters that relate GPS time to UTC(USNO) and also
gives information regarding current and future scheduled leap seconds. The leap seconds are
added to UTC but not to GPS time, so that the difference between the two timescales changes
by 1 s each time a leap second occurs. As we mentioned above, the leap second parameter
can be used to estimate the approximate value for the civil year, which is useful for detecting
a rollover back to zero of the GPS week.

The difference between GPS time and UTC(USNO) is a slowly varying function of time
whose magnitude is usually less than 10 ns. This parameter is needed only by users who need
traceability to UTC(USNO) using a one-way signal. It is not needed for a position solution or
for users who use the common-view method for time distribution (see below).

The accuracy of GPS time (i.e. the absolute magnitude of the difference between it and
UTC(USNO)) is not important for many users. For example, the accuracy of a position
determination depends on the accuracy of the offset transmitted by each satellite between its
internal timescale and GPS time and not on the accuracy of the system time itself with respect to
UTC(USNO). In the same way, the accuracy of the traceability to UTC(USNO) depends on
the accuracy of the transmitted value for the offset between GPS time and UTC(USNO), and
there is no absolute requirement for the magnitude of this parameter to be small. While it is not
an absolute requirement for the operation of the satellite system, the fact that it is kept small
(by steering GPS time to UTC(USNO)) is a convenience for many users, who can approximate
UTC(USNO) using GPS time. On the other hand, the stability of the GPS time is important
because this stability defines the accuracy of the extrapolation for a given interval between
message updates. Alternatively, improving the stability can be used to decrease the number
of messages updates needed to realize a given level of performance. Therefore, the method
of steering GPS time to UTC(USNO) must be something of a compromise between time
accuracy, which would favour more aggressive steering, and frequency smoothness, which
can be compromised if the steering adjustments are too large.

6.2. GLONASS orbits and signal formats

The GLONASS system is similar to GPS in general concept. The full constellation consists
of 24 satellites arranged as eight satellite slots in each of three orbital planes which are spaced
120˚ apart along the Equator. The slots are defined based on their mean anomaly (the angular
position of the slot with respect to the Earth’s Equator measured along the orbit). The orbits
are circular with a radius of 25 460 km and are inclined 64.8˚ with respect to the Equator.
The period is about 11 h, 15 min, so that each satellite appears to move into the adjacent slot
every day, and returns to its initial apparent position after every 8 sidereal days (approximately
191 h, 28 min). Eight satellites are operating as of May 2002, but one of them has been declared
temporarily unusable.

The GLONASS P code has a chipping frequency of 5.11 MHz and a repetition period of
1 s; the C/A code chipping frequency is 511 kHz and repeats every millisecond. Both codes
are pseudo-random sequences generated using methods analogous to those used in the GPS.
The GLONASS C/A code has one-half the chipping rate and one-half the length of its GPS
equivalent. It is thus easier to find by exhaustive search, but has only one-half the resolution.
Similarly, the shorter length and more rapid repetition period for the GLONASS P code relative
to its GPS counterpart mean that while it is easier to acquire the GLONASS P code in principle,
the code will have somewhat poorer correlation properties. Since the GLONASS P code is
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much shorter than its GPS counterpart, a HOW, which is used by a GPS receiver to acquire
the P code after it has locked onto the C/A code and the bit clock of the data message is not
really necessary. The GLONASS P code can be acquired by exhaustive search, since there are
only of order 10 offsets to test once the receiver has locked onto the C/A code.

Unlike the GPS, all satellites transmit the same pair of codes, but the carrier frequencies
are different (frequency division multiple access (FDMA)). These frequencies are given by

f1 = 1602 + 0.5625k MHz (27)

and

f2 = 1246 + 0.4375k MHz, (28)

where k is an integer that is assigned to each satellite. In the initial design, k was an integer
from 0 to 12 that was unique to each satellite. The resulting frequencies interfered with radio
astronomy observations, and a lower set of frequencies, including negative values of k (down to
−7) and eventually up only to +4, will be phased-in over the next few years. Neither the original
range of integers nor the new lower-frequency set contains enough values to assign a unique
one to each satellite, so some sharing of frequencies will be needed if the full constellation
of satellites is deployed. One possibility would be to assign the same value for k to satellites
on opposite sides of the Earth. This would not present a problem for ground-based observers,
since they could not see both of them simultaneously, but satellite-based receivers would
require additional processing (similar to the tracking loops in GPS receivers) to distinguish
between the two signals.

These rather widely spaced frequency allocations complicate the design of the front-end
of the receiver, especially the temperature stability of the filters that are usually needed to
reject strong out-of-band interference. The calibration of GLONASS receivers is both more
difficult and less accurate because of this; in some early multi-channel receivers the effective
delay varied from channel to channel even for the same carrier frequency. On the other hand,
cross-talk between signals from the different satellites is much less of a problem; interference
from a single-frequency source is also less of a problem with GLONASS, since the interfering
signal is less likely to affect the signals from the entire constellation.

Apart from the requirement for a tunable front-end, the operation of a GLONASS receiver
is basically the same as for GPS hardware, and there are commercial units that can track
satellites from either constellation. The only practical difficulty with tracking satellites from
both constellations at the same time is that the GLONASS system uses the PZ-90 reference
frame instead of the WGS-84 frame used by GPS, and the GLONASS system time is traceable
to international standards through UTC(SU), rather than through UTC(USNO).

7. The Galileo system

A consortium of European agencies have begun working on a satellite constellation similar to
GPS that will be called Galileo. Although the system is still in the design phase, the preliminary
configuration will have 30 satellites in three orbital planes. The radius of the orbit will be about
24 000 km. This is somewhat less than either GPS or GLONASS, so that the orbital period will
be correspondingly shorter. Unlike both GPS and GLONASS, which were initially designed
for military applications, the initial system design of Galileo emphasizes civilian applications,
including interfaces to emergency locator beacons, public transport, etc. The constellation
may also include one or more geostationary satellites for real-time monitoring of the active
constellation. The system time will be referenced directly to International Atomic Time (TAI),
but the details of how this is to be done are not yet finalised.
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8. Civil navigation overlay

The function of this overlay is to complement the existing satellite systems by providing
additional services. Three most important of these services are:

(a) evaluating the health of each satellite in the GPS and GLONASS constellations and
transmitting this health information in real time to help users avoid using unhealthy
satellites for navigation;

(b) transmission of additional GPS-like ranging signals to provide improved reliability and
redundancy;

(c) transmitting differential corrections to GPS and GLONASS signals to permit users to
cancel or mitigate the effects of errors in the broadcast orbits and the satellite clocks.

The focus of these efforts is to support real-time precision navigation, including automatic
landing of aircraft and similar applications. The combination of these overlay services is called
Wide Area Augmentation System (WAAS). Unlike GPS and GLONASS satellites, which have
transmitters and code generators in the satellite, the geostationary satellites in this system will
carry transponders that rebroadcast signals that originate at a ground control station.

The constellation will consist of four (eventually five) geostationary satellites. The signals
broadcast from these satellites will be similar to the GPS format and will be transmitted at a
single frequency (GPS L1 at 1575.42 MHz). The transmissions will be synchronized to GPS
time so as to emulate a GPS satellite. In addition to the usual C/A code, message symbols
are transmitted to provide the additional information outlined above. The symbol rate of 500
symbols per second is synchronized with the 1 kHz repetition rate of the GPS C/A code.
The C/A code broadcast by these satellites will use PRN numbers starting with number 120;
the code generators will use G2 delays that produce codes that are orthogonal to the codes
generated by ‘real’ GPS satellites (see the discussion of GPS codes above).

The navigation overlay is much more important for assisting applications that depend on
position determination than it is for applications involving time and frequency distribution. The
reason is that once the position of a receiving station is known, a multi-channel receiver has the
ability to make several independent estimates of the time difference between the local clock
and GPS time by using different satellites. Using these independent measurements to detect an
outlier is often realized in a receiver autonomous integrity monitoring (RAIM) algorithm. This
procedure usually can detect outliers much more effectively than can be done using WAAS
transmissions from a remote station. Both the local clock and much of the receiver hardware
are common to the measurements using different satellites in a single receiver, and a bad
satellite stands out more clearly. (A RAIM algorithm can also be used to detect and remove a
bad satellite in a position solution, but it usually takes at least five satellites in view to be able
to do this reliably.)

9. Measurement strategies

9.1. The single station method

Although there are a number of variations, there are two basic strategies for using a satellite
system such as GPS to distribute time and frequency information: single-station methods and
common-view methods. (I am assuming in this discussion that the receiving stations are fixed
with respect to an ECEF frame and that the coordinates of the stations in that frame have been
determined by a previous measurement. If the station is moving or if its coordinates are not
known a priori, then the simple time-transfer methods described here would not be appropriate,
since both the offset of the station clock and its coordinates would need to be determined as
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part of the satellite solution.) The choice between these two strategies is a trade-off between
performance and complexity, although many of the most important errors and problems are
present in both techniques. I will discuss these methods in detail using the GPS as an example,
but the general techniques would be equally applicable to GLONASS or Galileo. (In principle,
these strategies might also be implemented using a satellite constellation that included a mix of
the different types of satellites. This is not practical at present because the GPS and GLONASS
coordinate systems and time references are different, and solving for these differences in the
receiver is not a trivial job.)

The single-station method is conceptually very simple: a user at a known location measures
the difference between the station clock and the time code as received from one or more
satellites. Since the coordinates of the station are known, the user can compute the pseudo-
range to each satellite being tracked once each broadcast ephemeris message has been parsed.
For the GPS, this requires reading sub-frames 1, 2 and 3. Once the hardware has measured
the time difference between the local clock and the transmitted time code, the data in the
broadcast message can be used to compute the difference between the station clock and GPS
time or UTC(USNO). If the receiver can track several satellites at once, then the data from
each one can provide an independent estimate of either of these differences, and it is possible
to detect a bad satellite or a measurement outlier by comparing these differences using a RAIM
algorithm. The sensitivity of a RAIM algorithm will depend on any satellite-dependent (or
receiver–channel-dependent) offsets, especially if those offsets are time varying. The largest
effect of this type is usually multi-path reflections of the primary signals by objects near the
receiver, although frequency-dependent variations in the channel delays can also be a problem
in the GLONASS system. An impedance mismatch at either end of the cable between the
antenna and the receiver will result in reflections in the antenna cable which have many of the
same characteristics as atmospheric multi-path reflections.

The receiver can estimate the effect of the ionosphere using either the measured L1 − L2

dispersion (if the receiver can process both wavelengths) or using the model of the ionosphere
that is part of the broadcast message. As we discussed above, the two-wavelength dispersion
data generally will be noisier than the single-wavelength data by about a factor of 3. Most
users do not correct for the refractivity of the troposphere, primarily because there is no easy
way to estimate the size of this effect.

The single-station method is sensitive in first order to any error that affects the pseudo-
range, including errors in the broadcast ephemeris, in the model of the ionosphere and in the
refractivity of the troposphere. If the user is trying to recover GPS time or UTC(USNO),
then any errors in the broadcast estimates of those parameters also enter directly into the error
budget. During the 1990s, however, the largest contribution to the error budget by far for a
non-authorized user was the intentional clock dither imposed as part of SA. The amplitude of
this dither was of order 100 ns—in practice, this was about a factor of 10–15 larger than the
combined contributions of all of the other problems mentioned above. The frequency dither of
the satellite clocks due to SA is currently turned off, and its future use is unclear. At least for
now, the fact that it is turned off means that one-way non-authorized users can realize stabilities
that were previously obtainable only with common-view methods.

9.2. The common-view method

In the common-view method, two stations agree to observe the same satellite at the same
time and to process the measurements in the same way. (Many stations follow the Technical
Directives published by the BIPM to acquire and analyse common-view data. The details of
these directives are discussed in more detail below.) The basic measurement strategy is the
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same as in the single-station case, with the additional step of subtracting the data from the
stations point by point after each observing session is finished. Assuming that the two stations
have comparable noise levels, this subtraction implies that such measurements will always be
noisier than the underlying single station data by a factor of

√
2. The advantages are worth the

price in most cases, since the data are rarely limited by white phase noise anyway.
The primary advantage of the common-view method is that many of the effects that limit the

accuracy of the GPS transmissions are cancelled or significantly attenuated by the subtraction
at the end of the observations. This cancellation is nearly perfect for stations that are reasonably
close to each other, since the effects of the troposphere and the ionosphere tend to affect both
paths in the same way. The same thing is true for the parameters in the broadcast ephemeris—
especially the clock model parameters and the parameters that define the radial distance between
the stations and the satellite. Single frequency (i.e. L1 only) receivers are usually adequate for
common-view measurements over relatively short baselines (up to several hundred km long),
since the effect of the ionosphere tends to be the similar on both paths so that it cancels in the
difference. There is no point in paying the increase in the noise of about a factor of 3 that
results from processing the two wavelengths at each station. There is often no advantage in
incorporating the broadcast model of the ionosphere for the same reason.

A second advantage of the common-view method is that it can provide traceability3

to a particular National Metrology Institute (NMI) or timing laboratory, when that is an
important requirement. A number of NMIs and timing laboratories (including NIST) offer
this type of service, which provides traceability to the official timescale of the laboratory using
common-view comparisons between the user and the timing laboratory. These comparisons
are substantially independent of the performance of the GPS itself.

The common-view method was particularly powerful in dealing with the effects of SA,
since subtracting the observations at the two stations cancelled the satellite clock almost
perfectly, thereby removing the effects of the frequency dither of the satellite clock.

Although the common-view method is useful in cancelling or attenuating many of the
sources of noise in the GPS, it is important to keep in mind that it does not provide any
improvement for problems that are not common to the receiving stations. There are a number
of significant sources of error that are in this category, including the delay through the receiving
equipment (and especially its variation with temperature) and the effect of multi-path reflections
caused by a time-varying combination of the direct signal from the satellite with other signals
that are first reflected from objects near the antenna.

10. Measurement details

Since many frequency standards produce pulses at 1 Hz, most timing receivers are designed
to make a measurement of the time difference between the local clock and the received time
code at this rate. The 1 Hz pulses from the receiver are derived from the clock that drives
the C/A code correlator. The fundamental C/A code correlation process produces a series
of pulses at the repetition rate of this code, which is 1 kHz. The pulse from this series that
is associated with the transition to the next second is chosen based on the HOW in the data
stream as described previously.

If the receiver can track several satellites simultaneously, then there will be several such
pulses, which differ because of the noise in the measurement processes in each channel and

3 By ‘traceability’ I mean that there is an unbroken chain of measurements between the signal received by an end-user
and a national or international standard. Each measurement in the chain has an associated uncertainty. The adequacy
of any chain of measurements is normally evaluated based on the requirements of the end-user, and some methods
may be deemed adequately traceable only by some users (or only for some applications).
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the systematic offsets associated with each satellite. Multi-channel receivers generally use the
data from all of the satellites in view to construct a composite 1 Hz tick; the individual satellite
data that are used to construct this composite are transmitted on a separate output channel so
that the times of the ticks from each satellite that is being tracked can be computed. Not all
multi-channel receivers produce these data—in some cases only the composite tick and its
epoch are output.

Since the common-view method depends on each station observing the same satellite at the
same time, a multi-channel timing receiver that produces only a composite output tick cannot
be used for applications requiring strict common-view processing. There are two exceptions
to this limitation. The first is when two receivers are close enough to each other so that they
track the same ensemble of satellites. The composite output ticks from both receivers are
derived from the same ensembles, and tend to have fluctuations that are well correlated as
a result. The second application is where the primary need for common view is traceability
rather than the highest possible accuracy. Although the two stations may be tracking different
ensembles of satellites, the variation among the ensemble of satellites is small enough that
it can be ignored. It is not possible to provide absolute values for the ranges of validity of
these exceptions, but they will generally be satisfied for receivers separated by no more than
a few tens of km or for applications requiring traceability with an uncertainty of about 1 µs or
greater.

The epoch associated with the tick produced by the receiver is computed from the data
messages received from each satellite. Timing receivers generally use the UTC second as the
time tag, so that the received epoch must be converted to UTC using the parameters described
in the previous sections. It is possible for there to be some ambiguity in this conversion in a
multi-channel receiver, since the parameters in the messages from different satellites may not
be completely consistent with each other. These discrepancies can arise, for example, because
the data messages in the various satellites that are being tracked were uploaded at different
times. One strategy would be to use the most recently uploaded data message that is available,
but not all receivers do this. Some receivers use the simpler strategy of always using the data
message from the lowest-numbered channel that is actively tracking a satellite.

Since the input from the local clock is usually just a 1 Hz tick, the measured time differences
are expressed, at least initially, modulo 1 s. There is an inevitable discontinuity in the output
data, which can be either at 0 and 1 s or at ±0.5 s depending on the design of the receiver. In
principle, this discontinuity can be removed for subsequent measurements by keeping track
of the previous data so as to detect a rollover through the discontinuity, but this function is
generally performed by the analysis programs rather than by the receiver itself.

These 1 Hz measurements have significant white phase noise, and averaging these data
to reduce the contribution of this noise is almost always the optimum strategy. (This was
true even in the days when SA dominated the variance at somewhat longer averaging times.)
This strategy obviously remains optimum as long as the data continue to be characterized
by white phase noise. Typical averaging times in practice are about 15 or 30 s. The BIPM
technical directives specify that fifteen 1 s measurements are to be averaged by fitting them with
a quadratic function of time using conventional least squares, implying that even the variance
at this level has significant coherence. The value of the fitting function at the midpoint of the
interval is then used in the next step of the averaging process, as described below. Although
this is the standard method used by all timing laboratories, it is not necessarily better than other
methods that are simpler to implement and require fewer computing resources to evaluate. In
experiments conducted at NIST, a least-squares fit using a simpler linear function and a straight
average with a simple outlier detector worked about as well as the procedure outlined in the
BIPM Technical Directives.
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Whatever method is chosen, deterministic variations in the pseudo-range become
significant for averaging times longer than a few seconds, so that the details of the processing
are going to affect the answer. It is particularly important to standardize these details, especially
if the full common-view cancellation of the satellite clock and errors in the broadcast ephemeris
is to be realized.

To further complicate the problem, early receivers intended for common-view service
could track only one satellite at a time, and they needed some time to receive the full ephemeris
message after switching to a new satellite. Since the full ephemeris message requires 12.5 min
to be received, the standard observation period was initially set to 13 min to guarantee that
every receiver would have had a chance to read the full ephemeris message during the track
time. This 13 min track length is still used by all NMIs, timing laboratories and their customers,
even though it is less important for multi-channel receivers and may be longer than optimum
in some cases.

11. The BIPM Technical Directives for averaging GPS data

All data that are to be used for international time and frequency coordination are averaged
as specified by the BIPM (Bureau International des Poids et Mesures), and many timing
laboratories also use the same averaging process in common-view calibrations with their
customers [15]. We have already identified a number of aspects of this averaging process: the
13 min total track time and the quadratic least-squares fit to groups of fifteen 1 s measurements.
There will be 52 groups of these 1 s measurements in the 13 min track time. The quadratic
function that is used to fit each group is evaluated at the midpoint time of the corresponding
group, and the resulting 52 values are fit again with a linear function of time using standard
least squares. The final result is the value of this linear fit at the midpoint of the 13 min track
time. Additional parameters (the slope of the line, the RMS of the residuals, etc) are also
reported. The report format is also specified as part of the standard.

Tests at NIST have shown that while there is nothing very wrong with the analysis method
presented above, it is not obviously optimum either [16]. The performance at very short times
(on the order of a few seconds) tends to be dominated by white phase noise, and any method
that averages this noise is adequate to the job. The performance at times longer than a few
seconds tends to have deterministic variations, which are not necessarily well modelled by the
quadratic and linear fits that are part of the standard, so that these fits do not necessarily produce
unbiased estimates of the least-squares parameters. (This is still true today when SA is off, and
it was particularly true in the days of SA, because the SA clock dither was a pseudo-random
function that was not well modelled by any polynomial function of the time.) For example, an
important problem is the systematic variation in the observations that results from multi-path
reflections or from a small error in the assumed ‘known’ position of the receiving antenna.
These variations interact with the standard fitting procedure in a complicated way that depends
on the position and velocity of the satellite and the amplitude and phase (relative to the direct
signal) of any reflections.

The common-view analysis process tends to work pretty well in spite of these limitations
because the biases and inadequacies of the fitting procedure tends to produce systematic effects
that are similar at all stations. In other words, the fact that all of the stations are doing the
same thing is more important than the statistical robustness of the process itself. However,
there would be a number of advantages to using shorter tracks with a simpler analysis method.
Two of the most significant advantages would be the detection of outliers and the estimation
of multi-path (which we discuss below). The increase in the size of the resulting data sets is
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not nearly so serious today as it would have been 15+ yr ago when the current analysis method
and track formats were developed.

The final aspect of the track schedule is the daily advance of 4 min in each of the track
times. As we discussed above, the GPS satellites return to very nearly the same apparent
position in the sky every sidereal day (23 h, 56 min), and a track schedule that is synchronous
with the sidereal day automatically preserves the same common-view geometry from day to
day. As we show in the next section, this method has the unfortunate side effect of making
it more difficult to evaluate the magnitudes of multi-path reflections; this evaluation would
be facilitated if shorter and more frequent tracks were used. Such a strategy would not have
been feasible in the days of single-channel receivers, but it would be very straightforward
today.

In the initial implementation of the receiver hardware, the tracking schedules had to be
entered manually into each receiver, and a receiver that did not ‘know’ the tracking schedule
could not participate in the common-view procedure. The reason for this is that combining
a track length of 13 min with a daily advance of the start time of 4 min results in start times
that have no simple relationship to each other or to the time the satellite actually becomes
visible at a particular site. This was not a serious limitation in the days of single-channel
receivers, since the receiver had to be told which of the several satellites that were visible
at any epoch should be tracked. However, it is an unnecessary restriction on an all-in-view
receiver.

The newer tracking schedules use a fixed 16 min grid of start times. Since the grid of
tracking times advances 4 min every day, the schedule repeats exactly after 4 days, and a
receiver that is synchronized to the origin time of this 16 min grid does not need to know the
actual tracking schedule for its location. While not all 16 min slots are assigned to the tracking
schedule of a particular location, every assigned track will have a start time that matches one
of the 16 min slots. The advance in the track times of 4 min every day means that there are
only four possible distinct 16 min grids, and the entire schedule can be calculated from a single
start time on the reference day in the past. This newer system is particularly advantageous
for multi-channel receivers, since it means that they do not have to be re-programmed each
time a new tracking schedule is published. There is no particular advantage for single-channel
receivers, since they have to be told which satellite to track in any case.

The combination of a predictable track schedule and the increased availability of multi-
channel receivers has made possible a number of hybrid measurement strategies, which
are somewhere between the single-station and common-view techniques described above.
In one strategy, all multi-channel receivers are programmed to track all satellites in view
(up to the capacity of the receiver) using 13 min tracks aligned to the 16 min grid specified
above. Since all receivers are on the same time grid, it is a simple matter to find the satellites
that were in common view between any pair of stations using a simple post-processing
algorithm.

An alternative method is to combine the data from all satellites at each station, much as
is done in a multi-channel receiver that produces only a single composite output pulse. These
‘melting-pot’ techniques estimate the time difference between the local clock and GPS time.
A bad satellite or a measurement outlier can be detected using a RAIM algorithm as described
above. These composite estimates can then be combined with the corresponding data from
a second station. The result is not as good as same-satellite common view, since the two
composite signals may be formed from different groups of satellites, but it can be considerably
better than a simple one-way measurement, especially over baselines that are short enough
that many of the same satellites are observed at both stations. This method was not effective
against SA, which can only be cancelled by strict same-satellite common view.
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12. Measurement uncertainties and offsets

Although errors in computing the pseudo-range and noise in the receiver contribute to the
overall error budget of satellite time and frequency distribution, many systems are limited in
practice by two effects that we have not discussed in detail: multi-path reflections and changes
in the receiver calibration.

There are two types of multi-path reflections that are important.

1. Reflections of the received signal from objects that are near the antenna. These signals
travel longer paths than the direct line-of-sight distance and therefore arrive at the antenna after
the direct signal. The phase of the composite received signal is delayed relative to its line-of-
sight value as a result. The magnitudes and phases of these reflections relative to the direct
signal are complicated functions of the position of the satellite in the sky, the size and location
of nearby reflecting objects, the sensitivity of the antenna to signals arriving from below or
from the side and similar factors. Since the resolution of a typical GPS receiver is a few ns,
which is on the order of 0.1% of a C/A code chip period, even weak reflections can produce
significant offsets. Although the effects of multi-path reflections vary as the satellite moves
across the sky and the geometry changes, it is difficult to see these changes using a receiver
that follows the published BIPM tracking schedules. Since these schedules are intentionally
synchronized to the sidereal day, the time-varying effect of multi-path reflections tends to be
converted to a static time offset (generally different for each satellite) that varies only very
slowly over several months as the approximate 4 min daily advance in the track time becomes
less accurate in producing the same geometry day after day. The result is a slow change in the
time-difference data which can be hard to distinguish from flicker and random-walk processes
in the clock, changes in the effective delay through the receiver and other long-period errors.

2. Reflections in the cables that connect the receiver to the antenna and to the local
reference clock. These reflections are produced by impedance mismatches at connectors or
cable junctions. These problems are most serious in receiver designs where the cable between
the antenna and the receiver carries information at the L1 and L2 carrier frequencies, and they
are less serious if the signal is mixed with a local oscillator at the antenna and converted to
a lower frequency for transmission to the receiver. Although this effect can be minimized
by careful design, the complex impedance of the system components can be temperature
dependent, so that it is effectively impossible to eliminate these reflections in a real-world
environment where the temperature of the cable cannot be stabilized.

There are no easy solutions to these multi-path problems. Antennas with choke rings and
ground planes and better antenna cables can help. Another solution would be to use a more
directional antenna which had a smaller side-lobe response than the usual omni-directional
design. This type of antenna could be realized by combining the signals from several antennas
that are mounted on a common frame and are separated by not more than a few wavelengths at
the L1 frequency. Different combinations could be used to track satellites at different azimuths
simultaneously. The usefulness of this strategy would depend on how well the delay and gain
of the different elements could be balanced. Multi-element antennas are still being developed,
and multi-path effects often remain the most serious problem at many sites even when choke
ring antennas and better cables are used.

The impact of reflections in the antenna cable can be minimized by installing an attenuator
in the cable. The goal is to have any reflected signal pass through the attenuator 3 (or more)
times, while the direct signal passes through only once. If the attenuator is installed very
close to the receiver, then any reflection back into the receiver from the attenuator itself has
only a small phase shift with respect to the primary signal. If the antenna cable is not too
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long (30 m or less), many GPS receivers can detect signals even when a 30 db attenuator is
inserted in the antenna cable. Some receivers require a booster amplifier to function in this
configuration. Both this optional booster amplifier and the antenna itself may require power to
function; this power is usually transmitted through the antenna cable itself, and the attenuator
must be designed to pass this voltage from the receiver back up the cable to the active devices.

The calibration of the effective delay through satellite receivers is a second important
factor that is difficult to address. Two calibration methods are used.

1. Calibration using a satellite simulator. A simulator is a device that generates signals
that mimic real satellites. Since these signals are driven by a local reference clock in the
simulator, the response of the receiver to these signals can be compared to the output of the
reference clock to establish the effective delay through the receiver. A potential difficulty is
that the test configuration may not include the real antenna and cable, so that the test conditions
may not reflect the actual operating environment of the system. The antenna and its cable can
be tested using a chamber specially designed for this purpose, but it is difficult to reproduce the
exact outside environment in this way. A second difficulty with this method is that simulators
are complex and expensive, and not many laboratories have them.

2. Calibration using short-baseline common view. In this method, the receiver to be
calibrated is operated near a second standard receiver. Two antennas are placed near each
other, and the two receivers are driven by a common reference clock. This method obviously
tests the receiver in a more realistic environment, but it produces a relative (rather than an
absolute) calibration, and even a small distance between two antennas can produce a significant
difference in the responses of the two systems to multi-path reflections.

The calibration of GLONASS receivers is generally more difficult because of the FDMA
format that is used by these satellites (see above). The front end of GLONASS receivers
usually contain filters and other frequency-sensitive elements, and the delays through these
components often vary with frequency and temperature. Different satellites may have different
effective delays for this reason, and the whole business may be temperature sensitive in addition.
A GLONASS receiver may therefore require a matrix of effective delay parameters, which
specify the delay as a function of which satellite is being observed and which hardware channel
is being used for the observation.

These effects of multi-path reflections and receiver calibration (and other effects that are a
function of the hardware at a particular station) are not removed or attenuated in common view,
and these effects tend to dominate the error budgets of common-view observations. A number
of laboratories (including NIST) operate a number of different types of GPS receivers in parallel
from the same reference clock. This strategy is obviously not perfect, but it provides a rough
estimate of the magnitudes of these local effects.

13. Carrier-phase methods

The L1 and L2 carriers from every satellite are referenced to the same oscillator that produces
the time codes. Since the frequency of the L1 carrier is about 1500 times the chipping frequency
of the C/A code, a phase measurement of the carrier has potentially much greater resolution
than the corresponding measurement using the time code. Carrier-phase methods have been
used for many years in geodetic studies, and a number of groups are experimenting with using
them for time and frequency distribution. The initial results are quite promising, although a
number of problems remain. In the following sections, we describe time and frequency transfer
using the phase of the carrier from GPS satellites; signals from other satellites could be used
as well if the required infrastructure (precise orbits, etc) becomes available.
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13.1. Carrier-phase model

The basic idea of the carrier-phase method is simple: instead of measuring the time difference
between the 1 Hz ticks of the local clock and the corresponding events derived from the PRN
code transmitted by the satellite, the receiver makes a phase measurement between an oscillator
at the receiving station and the GPS carrier frequency [17]4. The phase difference between the
received signal and the local oscillator at some epoch t is δφ(t). It is modelled in first order by

δϕ(t) = f s r

c
+ f sδs − frδr − (f s − fr)t + N, (29)

where f s is the transmitted carrier frequency (either L1 or L2), r is the geometrical distance
between the position of the satellite (at the instant of transmission) and the receiver, δs is the
time offset between the satellite clock and the GPS time, fr and δr are the frequency offset
and time offset of the oscillator in the receiver, respectively and c is the velocity of light. The
integer N is the number of complete cycles in the phase difference and is included to make the
computed phase difference have a value between 0 and 1.

The first term on the right-hand side of equation (29) models the advance in the measured
phase due to the transit time of the signal from the satellite to the receiver, assuming that the
path is in vacuum. This term must be evaluated in an inertial reference frame, and the previous
discussion about how to choose this frame is applicable here as well. The second term models
the advance in the measured phase due to the fact that the clock on the satellite has a time offset
with respect to GPS time, and the third term is the corresponding phase offset resulting from the
time offset of the receiver clock. The second and third terms are usually ignored, since carrier-
phase analyses are always done in common view, and the offset frequencies that contribute
to both terms are small. The fourth term results from the frequency difference between the
two oscillators. Since the phase is only measured modulo a full cycle, the last term includes
the unknown integer number of cycles, which must be determined during the post-processing.
This unknown integer includes the integer parts of all of the other terms; both its initial value
and any subsequent phase rollovers must be estimated during the post-processing analysis.
This first-order model must have additional terms to model the refractivities of the ionosphere
and the troposphere, which are computed using the same basic methods discussed above for a
code-based measurement.

13.2. Carrier-phase receiver measurements

Although the required phase measurements are simple in concept, there are a number of
practical difficulties. A typical laboratory frequency standard produces outputs at frequencies
of 5 or 10 MHz; some masers also have an output at 100 MHz. The frequency of the GPS
carrier, on the other hand, is about 1.5 GHz. It is very difficult to construct a phase meter
that can operate at the carrier frequency directly, and so the usual arrangement is to mix the
carrier with a local oscillator and to make the phase measurement at a lower intermediate
frequency. The phase offset resulting from this mixing process is usually not important in
a geodetic solution or in an application involving a frequency comparison (provided it does
not change during the observing session). However, the offset must be determined for a time
comparison. One way of insuring that this offset will be a constant is to derive the local
oscillator signal that drives the mixer in the receiver from the external oscillator that is being
measured, and some commercial receivers do this. A receiver that does not do this may report a
step in the measured phase difference if its operation is interrupted (because of a power failure,
for example).
4 See also the many references to other carrier-phase experiments at the end of this paper.
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The frequency of the carrier as seen by the receiver varies as the satellite moves through
the sky because of changes in the Doppler shift and similar effects, and these effects must
be removed by the receiver if it is to stay locked on the signal from the satellite. This is
usually accomplished by mixing the output of the first mixer described above with a second
local oscillator whose frequency and phase are adjusted by the tracking loop firmware in
the receiver. If the receiver can track several satellites simultaneously, then there are several
copies of this oscillator running in parallel, each having a different frequency and phase. These
parallel oscillators are often synthesized using digital techniques to minimize the number of
independent components that are needed to track several satellites.

Since all GPS satellites transmit using the same pair of carrier frequencies, the tracking
loop of each channel in the receiver must utilize input from its own distinct code correlation
processor to be sure that it remains locked on a single satellite. (This would not be necessary
for a GLONASS receiver in principle, although it will be necessary in practice if more than one
GLONASS satellite shares the same pair of carrier frequencies. Even if it were not necessary
in principle, it would probably be useful to use the output of the code tracker to improve the
noise performance of the carrier-phase measurement.)

The carrier phase estimates are usually obtained by integrating the error signal that is
applied to the local oscillator that drives the second mixer stage. This error signal is usually a
sum of contributions from both the code and carrier loop, with most of the weight assigned to
the carrier loop. This second local oscillator is often realized using digital synthesis, so that the
output datum would be the numerical value corresponding to the origin of the clock generator
that drives the digital synthesizer. Any static phase offset in the first mixer stage is usually not
included in this datum. In addition to the integer phase ambiguity in the model (equation (29)),
an integration process has a constant which is related to the epoch at which the measurements
were begun, and this constant will be different for each satellite. It cannot be determined by
the tracking loop, and it is estimated during the post-processing phase of the analysis.

13.3. Carrier-phase analysis

The integrated Doppler offset reported by the receiver is compared to the predicted variation
derived from a model of the motion of the satellite and the station. Since the wavelength of the
carrier is about 19 cm, the variation predicted by the model must be at least this accurate, and
a precise, post-processed ephemeris is usually required to do this. In addition to the motion of
the satellite, the ephemeris contains estimates of the motion of the station with respect to the
reference frame due to polar motion, and similar factors. A carrier-phase analysis comparing
the clocks at two stations usually also includes observations from several additional stations.
These additional data are very helpful in detecting cycle slips (a discontinuous change in the
integer N in equation (29))—especially when the additional stations have very stable clocks
and are near the primary stations of interest. This close proximity attenuates any inadequacies
in the precise ephemerides and greatly facilities the process of detecting cycle slips.

Since a cycle slip looks like a time step, our ability to detect it improves as the interval
between data points is decreased. This is true for two reasons. In the first place, decreasing
the interval between data points also decreases the time dispersion due to the frequency noise
of the local oscillator. A slip of one cycle at L1, for example, is equivalent to a time step of
about 670 ps. If the interval between samples is 30 s (a typical value), then the frequency of
the local oscillator must not vary by more than about 2.2 × 10−11 over this time interval if
the step is to be identified with 50% probability. This tolerance would be correspondingly
less stringent for more rapid data sampling. In the second place, more rapid data recording
provides increased averaging of the white phase noise that characterizes the data at short time
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intervals. Both of these considerations must be balanced against the increased storage and
computing requirements needed to handle the additional data.

The precise orbits that are required for a carrier-phase analysis are available from the
International GPS Service for Geodynamics (IGS). The IGS offers a number of different
products with varying post-processing delays. At present, these delays are not a significant
factor in carrier-phase comparisons between timing laboratories, which are not done in real
time anyway. The IGS products and a description of the IGS analysis methods and services
are available over the Internet from the IGS central bureau at: http://igscb.jpl.nasa.gov.

The additional delay due to the refractivity of the ionosphere can be estimated using
the measured dispersion between the L1 and L2 carriers as described above. In normal
circumstances, the L2 carrier is modulated by the encrypted P code. In spite of this fact,
the dispersion between the two transmitted carriers can be estimated using the fact that both
carriers have the same code, and all carrier-phase receivers operate in this ‘cross-correlation’
mode. In addition to the factor of three penalty in signal to noise ratio discussed above in
connection with the ionospheric-free combination of the two signals, a multiple wavelength
analysis has an additional complication in detecting cycle slips. This is because the phase step
in the ‘ionospheric-free’ measurement (equation (13)) is no longer an exact integral value.
The magnitude depends on which carrier frequency had the cycle slip, and there are obviously
more complicated situations when both frequencies have simultaneous cycle slips.

The pseudo-range measurements have no measurement ambiguity, and the usual strategy
is to combine carrier-phase data with code-based pseudo-range data so as to resolve the
ambiguities in the former. Since the pseudo-range data have much lower resolution, a common
strategy is to weight the pseudo-range data by a factor of 0.01 relative to the carrier-phase
measurements. Although this strategy resolves the ambiguity in the carrier-phase data, it
cannot be more accurate than the noise in the pseudo-range measurements themselves. Given
this limitation, it is possible that carrier-phase analysis will offer no significant improvement
over more conventional code-based receivers for time transfer applications.

Carrier-phase analyses are often performed on consecutive 24 h blocks of data, and
the ambiguity resolution is computed independently in each block. Since the noise in the
pseudo-range measurements enters into the ambiguity resolution algorithm, consecutive blocks
generally have time offsets whose magnitudes are of the same order as the noise in the pseudo-
range measurements averaged over 24 h. These apparent time steps are not important in
geodetic applications, since such applications do not make use of the clock solution anyway.
However, the absolute value of this delay is important in time distribution, and insuring that
it remains constant is important in frequency measurements—especially when a frequency
comparison spans a significant period of time (several days or longer). These are significant
problems in practice, and it can be hard to remove a time step at a block boundary due to noise
in the pseudo-range because of the time dispersion due to random-walk frequency noise of the
clock. Even if the errors at each block boundary are randomly distributed with a zero mean,
they introduce a random-walk time step at each block boundary which degrades the robustness
of a multi-block frequency estimate.

14. Two-way satellite time transfer

This method is fundamentally different from the methods described above, all of which use
passive receivers listening to the signals generated by and transmitted from a constellation of
satellites, each of which contains an on-board frequency standard. The orbital periods of the
satellites we have been discussing are approximately 12 h, so that many satellites are required
to provide continuous global coverage.
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Two-way satellite methods, on the other hand, use active transmitters on the ground, which
transmit data to a transponder on a geostationary satellite (a satellite whose angular speed in
its orbit exactly matches the angular speed of the Earth, so that it appears to remain in the same
position relative to an observer on the Earth). A number of different satellites can be used for
this purpose; the details depend on which one is chosen, but the general method is the same
for all of them. The satellites are usually used for re-transmitting television broadcasts and
similar information, which are transmitted up to the satellite from ground stations in real time.

Pulses from a local reference clock at 1 Hz are used to drive a PRN code generator. The
system which has been used at NIST for some time uses eight selectable codes which are
all 104 chips long. The clock in the code generator runs at a frequency of 2.5 MHz, so that
the period of each chip is 400 ns. The entire code, therefore, requires 4 ms to transmit, so
that there are 250 codes transmitted per second. The clock in the code generator is coherent
with the 1 Hz ticks, and each tick synchronously inverts the sign of the PRN code. Although
the numerical details are different, note that the modulation system is essentially identical
to the scheme used by the GPS: the C/A code of that system has a slower chipping rate of
1.023 MHz but a faster repetition period of 1000 codes per second. The code that corresponds
to the rollover to a new second is also identified by a data bit that reverses the sign of the
C/A code in the GPS (see the previous discussion of the TLM and HOW in the GPS data
stream).

The modems modulate a 70 MHz carrier with these PRN codes, so that there are 28 cycles
of this carrier in each PRN chip. The carrier is up-converted to a frequency of about 14 GHz by
the transmitting electronics. The 14 GHz signal is transmitted to a transponder in the satellite,
where its modulation is re-transmitted on a second carrier with a frequency of about 12 GHz
(this frequency range is called the Ku band). The 12 GHz signal is received at the remote end,
where it is down-converted to 70 MHz. The 70 MHz carrier is passed to the modem where the
PRN code is extracted.

The process of extracting the PRN code is conceptually the same as in the GPS. The
receiving modem generates a local copy of the code, and the correlation between the local
copy and the received signal is computed. The correlation process typically compares the
received signal with two copies of the code: one is 0.5 chips early and the second is 0.5 chips
late. The phase of the local oscillator is adjusted until the outputs of the two correlation
processes are equal; the frequency of the local oscillator is kept locked to the incoming signal
by maximizing the sum of the outputs of these two correlators. The correlation process is
simpler than in the GPS case, since there is no need to adjust the frequency of the clock in this
system once the modem has locked onto the received signal. (A GPS correlator must be ready
to cope with a varying frequency caused by first-order variation in the Doppler shift.)

A conventional time interval counter at each station measures the time difference
between the output tick from the modem and the corresponding pulses from the local clock.
A measurement session usually lasts several minutes and therefore contains several hundred
1 s measurements. The measurements at each station are then exchanged after the fact using
any convenient technique.

The analysis of the measurements to extract the time difference between the clocks at the
two stations is straightforward. Suppose that a 1 s tick corresponding to some epoch occurs
at stations A and B at times tA and tB, respectively. The goal in a time-transfer experiment
would be to measure tA − tB; if the goal is to compare the frequencies of the clocks at the two
stations, then the time evolution of this difference (rather than its value at some epoch) would
be the desired result.

If the one-way delay from A to B is dAB, then the pulse that leaves station A at time tA
arrives at station B at time tA + dAB, and the time interval counter at station B, connected to
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measure local—remote, will measure TB = tB − (tA + dAB). Most systems are full duplex
and can transmit simultaneously in both directions. Therefore, while this measurement is in
progress, an identical signal is going the other way. The time interval counter at station A is
measuring TA = tA − (tB + dBA), where dBA is the reverse one-way delay from B to A. Note
that these one-way delays are composite values which include the delays through the station
hardware, the troposphere, the ionosphere and the transponder in the satellite.

The delay through the transmitter section of the modem is the sum of two contributions:
the actual delay through the hardware and the phase relationship between the 1 Hz ticks and
the chipping clock, since the tick cannot have any effect until the start of the next chip (at the
earliest). Since the two signals have a stable phase relationship to each other, the second
contribution to the phase delay can be any constant value up to 400 ns (the period of one chip).
The hardware delay is likely to be smaller but also less stable, since it will probably depend
on the ambient temperature and similar effects.

The receiver will detect the inversion in the code that marks a tick as part of the correlation
process. The number of chips that are required to detect this inversion varies with the signal to
noise ratio of the measurement. A typical value might be a few hundred chips. These delays
must be measured using loop-back and similar calibration procedures.

The analysis partitions the delays into two parts: a symmetric part that is the same in
both directions, and an asymmetric part that is not. Apart from any hardware asymmetries
(which are measured using ancillary measurements and then removed from the data), the most
important contribution to the asymmetric part is due to the fact that the stations and the satellite
are moving during the measurements (the Sagnac effect). The signal travelling West to East is
in the same direction as this motion while the reverse direction is opposite to it. This asymmetry
due to the Sagnac effect can be calculated from the locations of the stations and the position
of the satellite, and this calculation need only be done once for any satellite/station path.

The analysis subtracts the two measurements TA − TB, to obtain �T = TA − TB =
2(tA − tB) + 2(dAB − dBA). The symmetrical part of the delay cancels, and the asymmetries
due to the hardware delays and the Sagnac effect are removed as described above. The
magnitude of the symmetric path delay is not important; the method depends only on the fact
that the delay must be the same in both directions. The uncertainty (and any time variation)
of the calibration of the delay through the hardware at each station (and any asymmetry in the
satellite transponders) will limit the accuracy of the method. Although all ground stations have
some kind of calibration procedure, the station is a complex system, and it is very difficult
to eliminate temperature-dependent effects. There is no way of evaluating the symmetry of
the transponder in the satellite; this is not a problem in some satellites, which use the same
transponder for transmissions in both directions.

The resolution of the method is a function of the chipping frequency, and newer modems
that use a 20 MHz chipping frequency are being tested at NIST. In principle, this should increase
the resolution (but not necessarily the accuracy) by a factor of 8. The resolution would also
be increased if the number of ticks per second was increased, since the current system does
not make optimum use of the 2.5 MHz chipping frequency—most of the 250 codes that are
transmitted each second are not used.

Since the clock that drives the PRN generator is derived from the same system that provides
the 1 Hz ticks, it is also possible in principle to exploit this commonality using the equivalent of
a GPS carrier-phase analysis on the phase of the 70 MHz carrier. As in the GPS analogue, this
method is likely to be most useful for frequency comparisons, since the time tags that are an
essential part of time difference measurements must still be estimated using the lower-frequency
code transitions.
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15. Time transfer data

In this section I will illustrate the principles of the preceding discussion using typical data.
The first group of figures illustrate some of the aspects of time transfer using the GPS satellites
that we have discussed. All of these figures use data from the same 10 day period—these data
were chosen because they were the most recent data available when the manuscript was being
prepared. On each plot the individual data points are connected by simple straight lines which
are not otherwise significant. Unless otherwise noted in the figures, the data represent 13 min
tracks computed as specified in the BIPM technical directives. No additional averaging or
smoothing of the individual tracks has been applied and no tracks have been dropped.

Figure 3 illustrates the use of the GPS in a one-way code-based mode. This data set shows
the output from a single-channel receiver, which can track only one satellite at a time. (This
receiver was originally designed at the US National Bureau of Standards (NBS) about 20 yr ago.
In addition to the receivers constructed by NBS, a nominally identical commercial version also
exists. These receivers are widely used by many timing laboratories and NMIs.) The receiver
measures the time difference between a local clock and GPS time once per second and then
averages these data for 13 min using the BIPM tracking schedule and averaging method as
discussed in the text. The reference clock for these data is UTC(NIST), a time signal derived
from a weighted average of an ensemble of caesium standards and hydrogen masers located
at the NIST laboratory in Boulder, Colorado. The details of the realization of UTC(NIST) are
not important for this discussion, except that almost all of the variance in the figure is GPS
measurement noise of one sort or another, and the contribution of noise in the local timescale
is very small on the scale of the plot.

The very short-term noise in this figure (i.e. the variation between adjacent tracks) is
approximately white phase noise with an amplitude of a few ns, and it represents the noise in

GPS time - UTC(NIST)

52390 52391 52392 52393 52394 52395 52396 52397 52398 52399 52400

Modified Julian Day, 52390 = 26 April 2002

T
im

e 
di

ff
er

en
ce

 in
 n

s

–30

–20

–10

0

10

Figure 3. GPS time—UTC(NIST) measured using a single channel receiver. The time difference
is measured every second, and these measurements are averaged as specified in the BIPM technical
directives to produce a single value for each 13 min track.
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the receiver and the time interval counter that is used to measure the time differences between
the local 1 Hz ticks and the corresponding ticks derived from the GPS signal. The longer-term
structure in these data is a combination of contributions due to errors in the broadcast ephemeris
(which is used in the receiver to construct the pseudo-range), errors in the model of the satellite
clock, the inadequacy of the model of the ionosphere, the lack of any model of the troposphere,
multi-path reflections from objects near the antenna, a variation in the response of the receiver
due to changes in ambient temperature and probably other things as well. Most of the observed
variance in this figure does not have a visible long-term component, and it can, therefore,
be averaged to reduce the variance. Since the longer-term structure of the data are quite clearly
not characteristic of a white noise process, an average is unlikely to be statistically robust or
stationary. That is, both the details of the averaging method and the subset of the data that are
used to construct the average will affect the result. In addition to these constraints, the local
clock must have enough stability to support whatever averaging process is used. For example,
a very good quality commercial caesium standard has a time dispersion of about 2 ns day−1,
so that a clock of this caliber would be very useful in removing almost all of the observed
variance by an appropriate averaging scheme whose time constant was on the order of a few
days. Another way of saying this is that the free-running stability of such a clock is better than
the signal received from the GPS for shorter averaging times.

A comparison between the free-running stability of some other clock and the variance of
the GPS data can be used to construct an optimum averaging algorithm for any other device.
Although the details will vary with the particular situation, most atomic frequency standards
will be more stable than the measured GPS time differences at sufficiently short times, so that
some averaging will always be appropriate.

The data in figure 3 represent the 13 min tracks specified in the BIPM tracking schedule
when only a single satellite is tracked at any time. These are only a small fraction of the
data that could be acquired during the same time period. Figures 4 and 5 show the data from

GPS time - UTC(NIST), multi-channel rcvr.

52390 52391 52392 52393 52394 52395 52396 52397 52398 52399 52400

Modified Julian Day, 52390 = 26 April 2002

T
im

e 
di

ff
er

en
ce

 in
 n

s

–125

–100

–75

–50

–25

0

25

50

Figure 4. GPS time—UTC(NIST) measured using a multi-channel receiver than can track up
to eight satellites simultaneously. The data are acquired and averaged as specified in the BIPM
technical directives.
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Figure 5. GPS time—UTC(USNO) measured using a multi-channel receiver that can track up
to eight satellites simultaneously. The data are acquired and averaged as specified in the BIPM
technical directives.

multi-channel receivers for the same time period. Each point represents the same 13 min
average, but these receivers can track up to eight satellites simultaneously, and it reports data
from all satellites in view. Figure 4 shows the data from a receiver at NIST and figure 5 shows
the data from an essentially identical receiver at the US Naval Observatory in Washington. In
both cases, the reference clock for the measurements is a local realization of UTC; the noise
in both local timescales can be ignored on the scale of these plots.

Although both of these figures show many more tracks, the data are not statistically better
than those in figure 3. There are periods when the short-term variance is about the same as on
figure 3, but there are also periods where the noise is much greater. These noisy periods are
usually caused by the receiver reporting data from satellites that have low elevation angles
so that the effect of multi-path is larger, the direct signal is weaker and the contributions of
both the troposphere and the ionosphere are largest. However, even in the best of times, the
variance is not much better than the variance for the data in figure 3. This should not be
too surprising—the contributors to the variance are largely due to slowly varying systematic
sources and not white phase noise or other random processes with similar power spectra that
are amenable to averaging.

Figure 6 shows the common-view time difference between USNO and NIST. It is
constructed using the data sets shown in figures 3 and 5. The corresponding tracks for each
satellite at each epoch are subtracted point by point. Since the data in figure 3 are from a single
channel receiver, it is this data set that really defines the number of common-view tracks that
are available. As we discussed above, a common-view difference cancels any effects that are
highly correlated in the two data sets, and the improvement is quite noticeable. The short-
term noise in figure 6 is from sources that are not well correlated between the two stations.
These include some portion of the contribution of the ionosphere, the effect of the troposphere,
multi-path effects at the two receivers and any sensitivity of the receivers to fluctuations in the
ambient temperature. In spite of these residual noise sources, the common-view cancellation
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Common View UTC(USNO) - UTC(NIST)
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Figure 6. Common-view difference between UTC(NIST) and UTC(USNO). These data are the
point by point differences between corresponding points in figures 3 and 5. (A corresponding point
is a 13 min track of the same satellite at the same time at both stations.)

is good enough so that it is now possible to see the frequency difference between UTC(USNO)
and UTC(NIST). The fractional frequency difference between the two timescales is usually
less than 1 × 10−14, which implies a slowly varying time dispersion on the order of a few ns
per day. (Both timescales are independently steered to UTC as defined by the BIPM so that
there is no long-term divergence between them.)

Figure 7 displays the best that common view can provide. The data on this plot show the
common-view time differences between two identical receivers at NIST that are referenced
to the same clock. The antennae are a short distance apart on the roof of NIST, so that the
contributions of the ionopshere and the troposphere are essentially identical and cancel in
the differences as a result. The residual variance is due to noise in the receiver, the effects
of fluctuations in the ambient temperature that are not identical and the effects of multi-path
reflections. The largest quasi-periodic outliers are probably due to differences in the multi-path.

The BIPM tracking schedule advances the time of a track by 4 min every day, so that the
geometrical relationship between the satellite and the receiving antennae is almost unchanged
from one day to the next. Since the effects of multi-path reflections depend on the geometrical
relationship between the receiving antenna, nearby reflectors and the line of sight to the satellite,
these reflections tend to be the same from day to day for each satellite that is tracked. This has
the unfortunate side effect of making it difficult to evaluate the contribution of these multi-path
reflections, since the algorithm used to define the tracking schedule converts them to nearly
constant offsets. Although these offsets obviously vary from satellite to satellite since each
one is at a different elevation and azimuth during a track, it is usually impossible to separate the
contribution of multi-path from other satellite-dependent errors, such as those that result from
orbit errors in the broadcast ephemeris or from errors in the assumed position of the receiving
antenna.

Figure 8 illustrates the problem. The data in this figure show the short-baseline common-
view time differences between two receivers at NIST. The raw 1 s time difference measurements
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Common view, 2 receivers at NIST
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Figure 7. Short-baseline common view between two identical receivers at NIST. The two receivers
measure the difference between GPS time and UTC(NIST), and the common-view data are
computed point by point as in the previous figure.
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Figure 8. Short baseline common view between two identical receivers at NIST. The plot shows
the differences between the raw, 1 s data with no averaging. Data from successive data are plotted
with a time shift of −4 min and are offset vertically for clarity.
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are shown with no averaging. The various traces in the figure are ‘stacked’, i.e. they show the
time differences obtained on consecutive days. Each plot is advanced in time by 4 min, and
each curve is offset vertically by an arbitrary amount for clarity. Note the very high correlation
in the variance from day to day. Also note how the character of the variance changes as the
satellite elevation decreases towards the end of the time period. As we would expect, the multi-
path reflections get larger and more rapid as the elevation of the satellite decreases. These data
show the differential effect between two receivers whose antennae are about 2 m apart. It is
not possible to compute the actual contribution of multi-path reflections to each station, but it
is reasonable to expect that the contribution is several ns on average and might be as large as
15 ns under some circumstances.

The horizontal lines on the plot shown as (*–*) and (!–!) show time intervals of 5 min,
and 13 min, respectively. Both of these time are commonly used for averaging GPS data.
(The 13 min interval is the one specified by the BIPM.) The multi-path variations displayed in
the figure are not characterized by white phase noise over either of these averaging intervals,
so that an averaging process using either of these time intervals is not statistically robust.
Although any averaging process over these time intervals will produce a value, the value will
depend on exactly which portion of the data are used and how the average is computed. The
bias implicit in this value will be nearly constant from day to day for any one satellite at any
one station, but it is generally not attenuated in common view because it is a strong function
of the locations of the reflectors at each site. However, any change in the averaging algorithm
(or combining data acquired using different algorithms) is likely to introduce a change in
the measured time difference because of the complex interaction between the details of the
algorithm and the time dependence of the multi-path reflections.

This argument suggests that the details of any algorithm used to average the 1 s time
difference measurements are less important than the fact that the same algorithm is used
every day at all sites. Since the data are characterized by white phase noise only for short
averaging times, this argument would suggest that the 13 min track time currently specified
by the BIPM is too long, and that more frequent and shorter tracks would be a better choice.
Furthermore, the rather complex least-squares fitting procedures that are part of the BIPM
technical specifications would seem to be besides the point—the data show in figure 8 are
simply not well modelled by these linear and quadratic functions of time, so that while the
slopes and intercepts that result from the BIPM averaging algorithm are well defined and
numerically stable, they have little physical significance. Simpler models and shorter tracks
would produce values that were different because they averaged the non-stationary variations
in a different way, but these models would not be statistically worse in any quantifiable way.

We would expect that the common-view method would tend to be less effective as the
distance between the two receivers is increased because of the corresponding decrease in the
correlation between the two path delays. Figure 9 shows the common-view time differences
between UTC(NIST) and the timescale UTC(PTB), which is maintained by the Physikalisch-
Technische Bundesanstalt in Braunschweig, Germany. The baseline between these two sites
is about one-third of the circumference of the Earth—about 4 times longer than the distance
between NIST in Colorado and the USNO in Washington. The short-term noise in the figure is
less apparent because the longer baseline means that there will be fewer satellites in common
view so that the mean interval between tracks is longer. As expected, the diurnal variations
are larger because these variations are less well correlated at this distance. The long period
variation is caused by the varying frequency offset between UTC(NIST ) and UTC(PTB). This
frequency offset produces time dispersions on the order of ns per day; as with the USNO,
UTC(PTB) is steered to UTC as defined by the BIPM so that there is no long-term divergence
between the timescales maintained at the different laboratories.
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Figure 9 also shows the time difference between UTC(PTB) and UTC(NIST) as measured
using two-way satellite time transfer. These measurements are made only 3 times per week
(usually on Monday, Wednesday and Friday) for 2 min, and there are five measurements
(identified with the symbol (∗)) during the period shown in the figure. The measurements are
made using the Intellsat 706 satellite, which is located on the Equator near longitude 53˚ W.
This satellite uses different transponders for signals going from East to West and from West to
East, and this difference might limit the accuracy of the time transfer, since the delays through
the transponders might not be identical. The measurements shown here use the Ku band
frequencies (14 GHz up-link, 12 GHz down-link). The same satellite also supports lower-
frequency communication in the C band (6 GHz up-link, 4 GHz down-link). The general
method would be the same using the lower frequency, although larger antennae would be
required to realize the same signal to noise ratio.

It is clear from this figure that two-way satellite time transfer has much less noise than
GPS code-based measurements, even with the advantages of common-view subtraction. Two-
way links are, therefore, replacing common-view GPS in international time and frequency
coordination, and in other applications requiring very good precision, such as comparing
primary frequency standards.

The current generation of primary frequency standards realize the SI second with an
uncertainty of about 2 × 10−15, and primary standards with even better performance are on
the horizon. This level of accuracy implies a time dispersion on the order of 0.2 ns day−1,
and it is clear that the noise in code-based GPS is too large to permit two such standards at
different laboratories to be compared in a reasonable averaging time. Such comparisons are
important in practice because data from these primary frequency standards are used to define
the length of the SI second. Comparing different standards, especially those that use different
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Figure 9. Difference between UTC(PTB) and UTC(NIST) measured using common-view GPS
and two-way satellite time transfer. The common-view data is acquired and processed as in the
previous figures. The two-way satellite time data are measured using three sessions per week. Each
session consists of hundred and twenty 1 s measurements using a Ku band system as described in
the text.
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techniques, is also useful as a check on the different implementations of the realization of the
standard frequency.

In addition to two-way satellite time transfer, carrier-phase GPS also has a resolution that
would be useful in primary frequency standard comparisons. Since the two methods are very
different, simultaneous comparisons between the two methods operating between the same two
stations would be very useful. A number of such experiments have been performed, and addi-
tional ones are currently in progress. One ongoing experiment is a comparison of the primary
frequency standards at PTB and NIST using both two-way satellite time transfer and carrier-
phase GPS simultaneously. The first results of this comparison [18] showed agreement between
the two methods to better than 2 × 10−15, which is less than the combined uncertainties of the
standards in the two laboratories. The contribution of the noise in the time transfer process itself
was about 4.2×10−16, which is somewhat less than 30% of the total uncertainty. This value is
the combined uncertainty in the two methods and it is not possible to know what fraction of this
uncertainty is due to each of the methods. The time difference between the two methods has a
possible secular trend of about 0.03 ns day−1, which corresponds to a fractional frequency offset
of about 3.5×10−16. The source of this trend is not known, but it is possible that it arises from
the details of the carrier-phase processing, and we are continuing to work on improving this.

16. Conclusions

In this paper I have outlined the principles of distributing time and frequency information
using navigation satellites (such as GPS) and communications satellites. Both of these types
of satellites are currently used both for international time and frequency coordination and in
more routine time and frequency distribution systems. Although it is difficult to provide a
single estimate of the performance of these systems in all of their different configurations, it is
generally true that it is easy to use them to transmit time with an uncertainty of 1 µs and it is very
difficult (perhaps impossible at the present time) to transmit time with an uncertainty of 1 ns.

Since frequency transfer is generally implemented as the difference between two
time transfer measurements separated by some averaging time interval, the corresponding
capabilities with respect to frequency transfer depend only on the stability of the various
parameters (such as the path delay) and not on their absolute values. This stability requirement
is somewhat weaker than the accuracy requirement needed for time transfer applications. For
example, the contribution of the communication channel to the uncertainty in the comparison
of the primary frequency standards at NIST and PTB was 4.2 × 10−16. This is equivalent to a
time deviation (σx) of about 0.2 ns over the averaging interval of about 3 weeks. It would be
very difficult to realize absolute time transfer at this level of uncertainty.

All of the time and frequency distribution methods I have discussed depend on using a
satellite system which was primarily designed for another purpose. Two-way satellite time
transfer, for example, uses communication satellites whose primary function is to transmit
television signals and similar information. This principal application does not require sub-
nanosecond stability in the symmetry of the delays through the station hardware or the
satellite transponders, and the equipment is, therefore, not primarily designed to satisfy this
requirement. Likewise, carrier-phase GPS measurements are often realized using receivers
and analysis software that were primarily designed for geodetic applications, where the delay
through the receiver and the accuracy of the local clock solution are not very important.

Even multi-path reflections, which would seem to be just as serious a problem for geodesy
as for time transfer, often have less of an impact on the former than on the latter. This is
because the statistics of the clocks at the receiver stations are much less favourable than the
statistics of the position of the antenna, so that geodetic determinations can support much
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longer averaging times than clock comparisons between the same sites. The effects of multi-
path are both quasi-periodic and bounded, and can therefore be attenuated by averaging times
that span several days. This is straightforward for geodetic solutions, but would be difficult
or impossibly long for general time transfer because of the flicker and random-walk noise
processes in many of the station clocks.

In spite of these limitations, both time and frequency comparisons are often characterized
by white phase noise at sufficiently short-time intervals, so that some amount of averaging is
almost always appropriate. The exact averaging interval depends on the stability of the clock
in the receiver and on the spectrum of the fluctuations in the delay along the path back to the
transmitter. Typical averaging intervals might range from a few seconds for a receiver with a
simple quartz-crystal oscillator to several days for a caesium standard. The long averaging time
that was used in the carrier-phase comparison of primary frequency standards described above
was a special case, since such standards are presumed to be characterized by white frequency
noise for all averaging times, an assumption that is very definitely not true for commercial
atomic frequency standards.

The most promising new techniques are carrier-phase GPS and two-way satellite time
transfer. As we discussed above, both of these techniques have been used to compare primary
frequency standards with a fractional frequency uncertainty in the transfer process itself of
less than 1 × 10−15. The averaging times required to realize these comparisons were several
weeks long, and future work in the field will be aimed at improving the short-term noise of the
comparisons so that the same level of uncertainty can be realized with much shorter averaging
times. These improvements will almost certainly be needed in order to support a new genera-
tion of frequency standards which will have fractional frequency uncertainties of significantly
less than 1 × 10−15.

Finally, there is the question of the traceability of satellite time signals to national and
international standards. (By traceability I mean that there is an unbroken chain of measure-
ments between the signal received by an end user and a national or international time standard,
such as a NMI or timing laboratory. Each of these measurements must be characterized by its
uncertainty.)

Using the methods that we have described above, it is clear that signals from any of
the navigation satellites can be made traceable to national standards. The GPS time is
steered towards UTC(USNO), and signals from the GPS satellites contain a prediction of
any residual time difference between these two timescales; the signals from GLONASS and
Galileo contain (or will contain) similar information. Although the parameters in the GPS
message are technically predictions rather than measurements, this is a technical distinction
without much of a practical difference for most users, since the errors in the predictions are
only on the order of tens of ns or less. Users who need the greater accuracy that can be realized
using actual measurements rather than these predictions can use common-view methods.
Many laboratories, including the US Naval Observatory and NIST publish GPS tracking data
(typically with a short delay of 1 day or less) to support these users. These data would allow
a user to realize direct traceability to many timing laboratories and NMIs with an accuracy
that was independent of the performance of the satellite system in first order. As a practical
matter, using any of these satellite systems in common view provides general users with the
highest-accuracy access to the real-time UTC timescales of most timing laboratories and NMIs.

For most users, the weakest link in the traceability chain is the calibration of the receiving
equipment, including an estimate of the effects of multi-path at the user’s site. These effects are
usually not important until the required uncertainty becomes less than 1 µs, and they usually
dominate all other sources of uncertainty when the accuracy requirement is on the order of ns.
They are not improved by using common-view techniques.
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Users who need legal (in addition to purely technical) traceability may face an additional
hurdle in that just doing the ‘right thing’ may not be adequate [19]. They may also have to
be able to prove that they did the ‘right thing’ in some future judicial proceeding. Although
there are few if any precedents in this area, it is possible that a simple broadcast-only system
may never be adequate in this case, and that an additional certification by a disinterested third
party may also be required [20]. This certification may require an additional communication
channel that cannot be realized by any broadcast type of time distribution system, whether it
is based on transmissions from satellites or from terrestrial sources.
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