

"ESCO Approach to Industrial Energy Efficiency Projects In International Markets" Thomas K. Dreessen

International Workshop on Energy Efficiency Services Industries Shanghai, China

September 08, 2003

Phone: 215-230-9871 Fax: 215-340-3972 Email: tkd@epscc.com

International ESCO Model Used

- Joint Venture Company between:
 - <u>Local Company</u> that provides market credibility and access to current customer distribution.
 - <u>US ESCO</u> with experience in industrial markets that provides key engineering, commercial, legal, financing and risk management training of local staff for key functions. Also provides access to new "proven" technologies

Signed Industrial Contracts

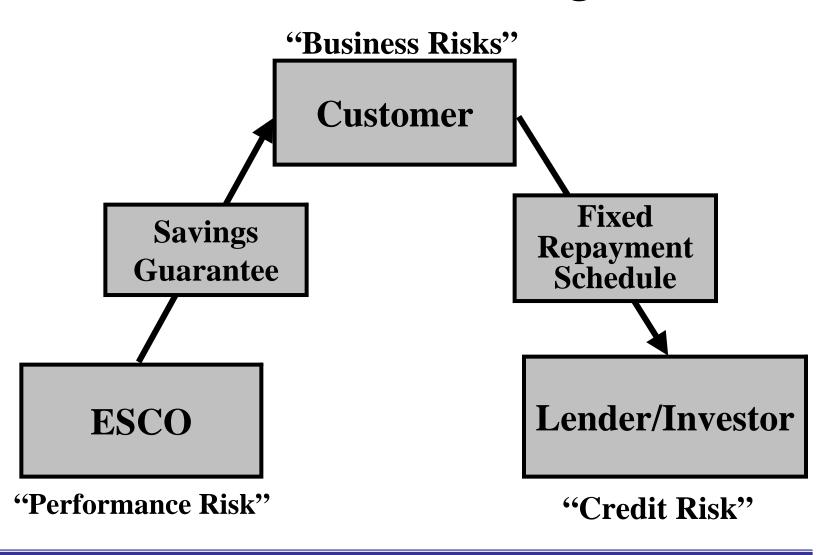
- Glass
- Textile Processing
- Textile Spinning & Weavings
- Pulp & Paper
- Food & Beverage
- High Tech Buildings

Technologies Implemented

- Furnace Combustion and Burner Upgrades
- Compressed Air Upgrade
- Material pre-heating
- Fan control
- Water recycling
- Chemical recovery (caustic soda)
- Effluent heat recovery
- Power Generation
- Paper machine Upgrades
- Pumping Upgrades

Key Project Management Aspects

- •Measured Baseline for each Project
- •Extensive interaction with Client Operators
- •Critical reviews with Client Executive Mgt.
- •Formal approval process
- Clearly defined M&V Protocol
- Implementation Details
- Financial Plan


Case Study – India Textile Mill

Seven (7) separate EEPs:

 Total Project Price 	US \$ 5,000,000
---	-----------------

Net Annual Cash Flow
 US \$ 600,000

Financing Structure Used "Guaranteed Savings"

Existing Energy Systems

- 2 Coal-fired Steam Boilers (30/35 Tonnes/hr)
- Steam Uses:
 - Manufacturing process heating
 - On-site electric power generation
- 2/3 of plant's kWh is self-generated
- 1/3 of plant's kWh purchased from utility

Existing Fuel Consumption

	COAL	ELECTRICITY
TYPE OF FUEL	(Tonnes/yr)	kWh/yr
Self-Generated kWh	68,073	39,400,000
kWh from Utility	-	19,350,000
TOTAL per Year	68,073	58,750,000

Summary of EEPs

	Price	Savings	Simple
MEASURES:	U.S.	U.S.	Payback
#1 Pocket Ventilation Pre-Heat	\$ 100,000	\$ 45,000	2.2
#2 Vacuum Pumps Power Reduction	696,000	253,000	2.8
#3 Refining Power Reduction	882,000	267,000	3.3
#4 WW Aeration Power Reduction	110,000	33,000	3.3
#5 Pumping Power Reduction	196,000	65,000	3.0
#6 Paper Machine Steam/Condensate	696,000	312,000	2.2
#7 On-site Generation Upgrade	2,320,000	790,000	2.9
Total	\$ 5,000,000	\$ 1,765,000	2.8 Yrs.

#4 Wastewater Aeration Power Reduction

- 12 surface aerators used to treat wastewater
- Replace all 12 with new diffused aeration technology to improve oxygen absorption
- Savings from reduced Electricity

#6 Paper Machine Steam/Condensate Optimization

- Upgrade three main energy intensive systems that remove water from the pulp
 - 1) Press Section
 - 2) Steam Dryers
 - 3) Hoods
- Savings from reduced Steam

#7 On-site Power Generation & Distribution Upgrade

- Current System inefficient due to:
 - 1) Poor Combustion Control on Boilers
 - 2) Poor steam to power ratio on 1 Turbine
 - 3) Limitations of electrical distribution system

#7 On-site Power Generation & Distribution Upgrade

- Reduce Self Generation Inefficiencies by:
 - 1) Install New Combustion Control on Boilers
 - 2) Replace inefficient condensing Turbine
 - 3) Upgrade electrical distribution system to permit flexible load management

M & V Protocols Used

- Use of newly-installed meters & instruments
- Each EEP has specific measurements against the Baseline
- Steam-savings direct meter to measure BTUs
- Electric-savings direct meter to measure kWhs

Environmental Benefits Achieved

• Reduce 31,217 Metric Tonnes (MT) of CO2 per year or 312,170 MT over the estimated ten-years of the Project for a very low cost of approximately \$0.313 per MT of CO2 equivalent.

Project Benefits Achieved

- Provides Positive Cash Flow to Owner
- Financed out of Existing Operating Expenses
- Owner receives newest "Proven" Technologies
- Reduces Greenhouse Gas Emissions
- Reduces Work Stoppages Reliable Power
- Improves Product Quality
- Provides Additional Production Capacity

Customer Benefits Received

- Increase Company's Competitiveness
- Improved Profitability & Cash Flow
- More Production Capacity
- Deemed an Environmental "Player"
- Ability to Pursue New Markets
- Introduction to New Financial Sources

International ESCO Lessons Learned: <u>Determine Marketing Strategy</u>

- By Technology (Boilers/Controls)
- By Sales Approach (Existing Distribution)
- Vertical Market (Only Steel or Hospitals)
- Utility Provider (District Heating/Cooling)

International ESCO Lessons Learned: <u>Determine Market Focus</u>

- Industrial: Industry Specific Sales calls
- Institutional: General Mktg. RFP responses
- Commercial: General Mktg. Sales calls

International ESCO Lessons Learned: Develop Technical Core Compentency

CUSTOMER TECHNOLOGY

Institutional Building Services

Commercial Building Services

Industrial Process Services

Building Services

Focus on technologies that improve energy utilization of building needs:

- Lighting & Motors
- Heating, Ventilation Air Conditioning
- Controls
- Boilers (heating)
- Chillers (cooling)

Industrial Process Services

- Requires Specialized Expertise with focus on technologies that improve per-unit energy costs
 - Furnace upgrades (steel)
 - Fans & Motors
 - Production controls
 - Cogeneration
 - Production equipment upgrades

International ESCO Lessons Learned: <u>Required Industrial Resources</u>

- Relationship Sales Process
- Experienced Industrial "Deal Making"
- Sophisticated Contract & Legal Negotiations
- Project Finance Structure is Key
- Cost Tracking is Critical to Profitability

International ESCO Lessons Learned: <u>Required Industrial Resources</u>

- Industry-Specific Engineering
- Industry-Specific Project Management
- Technology-based Measurement & Verification
- Industry-Specific Operating Knowledge
- Technology Training

SUIMMARY

- Quality of people is the key to success
- Partnerships have to be managed
- Controlling Project Development 'Time'
- Corrective Action & Decision Making "Fast"
- Market demands specialization
- Market forces favorable to ESCO service