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Abstract

A study of coherent structures and self-consistent transport is presented

in the context of a Hamiltonian mean field, single wave model. The model

describes the weakly nonlinear dynamics of marginally stable plasmas and

fluids, and it is related to models of systems with long–range interactions in

statistical mechanics. In plasma physics the model applies to the interaction

of electron “holes” and electron “clumps”, which are depletions and excesses

of phase-space electron density with respect to a fixed background. In fluid

dynamics the system describes the interaction of vortices with positive and

negative circulation in a two-dimensional background shear flow. Numerical

simulations in the finite–N and in the N → ∞ kinetic limit (where N is the

number of particles) show the existence of coherent, rotating dipole states.

We approximate the dipole as two “macroparticles” (one hole and one clump)
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and consider the N = 2 limit of the model. We show that this limit has a

family of symmetric, rotating integrable solutions described by a one-degree-

of-freedom nontwist Hamiltonian. A perturbative solution of the nontwist

Hamiltonian provides an accurate description of the mean field and rotation

period of the dipole. The coherence of the dipole is explained in terms of a

parametric resonance between the rotation frequency of the macroparticles

and the oscillation frequency of the self-consistent mean field. This resonance

creates islands of integrability that shield the dipole from regions of chaotic

transport. For a class of initial conditions, the mean field exhibits an elliptic–

hyperbolic bifurcation that leads to the filamentation, chaotic mixing and

eventual destruction of the dipole.

The study of active transport deals with the problem of interacting tracers.

This interaction can be of two types: Tracers can interact among themselves,

as in the case of the advection of chemical or biological species, or with the

advecting field. In the latter case, the advecting field is determined by the tracer.

An example of this type of transport, also known as self-consistent transport,

is an ensemble of charged particles when the self-generated electric field of the

particles is taken into account, other examples include point vortices in fluid

dynamics and the transport of gravitational interacting particles. A convenient

approach in the study of this type of self-consistent transport problems is the

use of mean field models. In these models the interacting tracers are treated

as independent tracers moving in an effective field determined self-consistently

from the tracers. Since the early studies on chaotic transport, the study of

transport by waves has been a problem of interest in fluid dynamics and plasma

physics. A relatively well-understood problem is the study of passive transport

in the presence of given, time dependent waves. Less studied is the problem of

active transport by waves. In this paper we study this problem in the context of
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the single wave model, which is a mean field Hamiltonian model describing the

dynamics of marginally stable fluids and plasmas. In the single wave model the

self-consistent interaction between the wave and the tracer is incorporated in a

time–modulation of the wave amplitude. Our specific objective is to understand

the role of chaotic transport and self-consistent dynamics in the formation and

destruction of coherent structures.
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I. INTRODUCTION

The study of transport in Hamiltonian systems is important because of its intrinsic

interest in nonlinear dynamics and its applications to fluid mechanics, plasmas physics, and

statistical mechanics. In a two-dimensional phase space, the problem is to determine the

evolution of an ensemble of N initial conditions (xj(0), uj(0)) such that

dxj

dt
=

∂ H

∂uj

,
duj

dt
= −∂ H

∂xj

, (1)

where H is the Hamiltonian of the system, and the index j = 1, 2, . . . N is a particle label.

Depending on the Hamiltonian, one can distinguish two different transport problems: passive

transport and active transport. In a passive transport problem, the Hamiltonian is given,

and it does not depend on the dynamics of the particles. However, in an active transport

problem, the Hamiltonian is determined by the dynamics of the particles.

The study of transport of passive scalars in a two–dimensional, incompressible fluid is a

typical example of a Hamiltonian passive transport problem. In this case, the fluid dynam-

ics streamfunction plays the role of Hamiltonian, and the (xj, yj) spatial coordinates of the

passive tracers correspond to the canonical phase space coordinates (xj, uj). Another exam-

ple of passive transport is the study of “test” charged particles in an external electrostatic

field in plasma physics. In this case, one refers to “test” particles to stress the fact that the

electric field created by the particles is neglected.

An example of an active transport problem is the transport of an ensemble of charged

particles in the case when the self-generated electric field of the particles, rather than being

neglected, is taken into account in addition to the external field. Another example is an

ensemble of gravitational interacting particles, a problem of interest to galactic dynamics. In

fluid dynamics, the transport of mutually interacting point vortices is also an active transport

problem. Active transport is also called self-consistent transport because the Hamiltonian of

the system is determined by a self-consistency relation between the particles and the fields.

This relation is Poisson’s equation in the plasma physics and galactic dynamics context, and

the vorticity–streamfunction relation in the fluid dynamics context.
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Passive transport in two dimensions has been extensively studied in the literature, see for

example Ref. [1] and references therein. This problem reduces to the study of the dynamics

of one-degree-of-freedom, time-dependent Hamiltonian systems. The case of periodic time

dependence is particularly well-understood. The problem of self-consistent transport is in

general a more demanding task and much less is known about it. In Refs. [2,3] the use of

mean field models was proposed to address this problem. The idea of the mean field approach

is to treat the interacting particles as independent particles moving in an average potential

determined self-consistently from the motions of all the particles. In this approach, the

equations governing the motion of N interacting particles reduce to the equation governing

the motion of a single particle under an effective potential. That is, the only influence

a particle has in the rest is through its contribution to the effective potential. Mean field

transport models lay between the relatively easy to understand but limited passive transport

models and the complex many–body self-consistent transport models.

The mean field model of interest here is the single wave model according to which the

dynamics evolves according to Eq. (1) with

H =
N∑

j=1

[
1

2
u2

j − a(t) eixj − a∗(t) e−ixj

]
, (2)

which is the Hamiltonian of an ensemble of N particles in the field of a time-dependent wave

with a single harmonic with wave-number k = 1. The nontrivial aspect of the model is in

the mean field a(t), which is determined by the self-consistency relationship

da

dt
− iUa =

i

N

N∑
j=1

Γj e
−ixj , (3)

where U and Γj are constants. The parameter U is the wave frequency in the absence of

particles and is of the order of the plasma frequency for plasmas. The parameters Γj are

usually taken positive (e.g., Refs. [4–7]). However, following the generalization of the single

wave model discussed in Refs. [2,3,8,9], we consider here the case in which these parameters

can be positive or negative.

In the kinetic limit (N → ∞), the Hamiltonian transport problem in Eq. (1) is described

by a phase distribution function f , evolving according to the Liouville equation
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∂tf + ∂uH ∂x f − ∂x H ∂u f = 0 . (4)

As before, one can distinguish in this case between passive transport and self-consistent

transport. In the first case, H is a given function of x, u and t, and Eq. (4) is a linear

equation. However, in the self-consistent case, H depends on f through a self-consistent

condition. In the single wave model:

H =
u2

2
− a(t) ei x − a∗(t) e−i x ,

da

dt
− iUa =

i

2π

∫
e−ix dx

∫
du f . (5)

The single wave model has its origins in the study of the beam-plasma instability in

plasma physics [4–6]. More recently, the model has been derived under more general condi-

tions, and its range of applicability considerably expanded. In Ref. [7] the mean field–particle

Lagrangian of the model was derived from the full N-body classical mechanics Lagrangian

for Coulomb interactions. In Refs. [8,9] a derivation of the single wave model in the context

of kinetic theory was presented using matched asymptotic expansions, and it was shown that

the model provides a universal description of the weakly nonlinear dynamics of marginally

stable plasmas and fluids. Single wave models have also been used in the study of free elec-

tron lasers [10], finite-amplitude non-axisymmetric perturbation of vortices [11], and critical

layer dynamics in shear flows [12–14]. There are also similarities between the single wave

model and models used in the study of systems with long-range interactions in statistical

mechanics [15,16].

The single wave model in Eqs. (4) and (5) describes the dynamics of localized perturba-

tions. Depending on their sign, perturbations are classified as clumps and holes. Clumps

correspond to f > 0 and represent perturbations that increase the equilibrium distribution.

Holes correspond to f < 0 and represent depletions of the equilibrium distribution [8,9]. For

finite N ,

f(x, u, t) =
2π

N

N∑
j=1

Γj δ[x− xj(t)] δ[u− uj(t)] , (6)

and particles with Γj > 0 correspond to clumps, and those with Γj < 0 correspond to holes.

The formation of holes and clumps in the nonlinearly saturated state of plasma kinetic
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instabilities in a dissipative medium has been studied in Ref. [17]. In fluid dynamics, the

interaction of vorticity clumps and vorticity holes with a background vorticity gradient was

considered in Ref. [18]. Here we present a study of holes and clumps in the context of the

single wave model. In particular, we focus on the formation and destruction of coherent

rotating dipole states. Because of the generality of the single wave model, we expect the

results discussed here to be relevant to plasmas and fluids. Also, the idea of allowing the

sign of the Γj parameters to change, might have interesting implications in the context of

mean field coupled rotators models in statistical mechanics.

The organization of the rest of the paper is as follows. In Sec. II we present numerical

solutions of coherent, rotating dipole states in the finite–N limit, and in the N → ∞ kinetic

limit. We describe these solutions as two macroparticles (one hole and one clump) and

study the N = 2 limit of the model. Section III presents a perturbative solution of the

N = 2 model and describes the mean field-dipole resonance. This resonance explains the

robustness of the dipole state and clarifies the connection between self-consistent chaos and

coherent structures. In Sec. IV we discuss an elliptic–hyperbolic bifurcation that leads to

the destruction of dipole states and to phase space mixing. The conclusions are presented

in Sect. V.

II. COHERENT, ROTATING DIPOLE STATES

The spontaneous formation of coherent structures has been observed in numerical simu-

lations and laboratory experiments in fluids and plasmas, see for example Ref. [19,20] and

references therein. Phase space “clustering” has also been observed in mean field models of

systems with long range interactions [15,21]. These structures typically coexist in a turbu-

lent background, and a problem of interest is to explain their coherence against the chaotic

advection induced by the background. In this section we explore this problem in the context

of the single wave model.

Figure 1 shows an example of a coherent, rotating dipole in the kinetic (N → ∞) limit,
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obtained by integrating numerically Eqs. (4)–(5) with periodic boundary conditions in x,

f → 0 as u → ±∞, and initial condition

f(x, u, t = 0) = f1 − f2 , a(t = 0) = a0 , (7)

where

fj = γ exp

[
−

(
x− xj

σx

)2

−
(
u− uj

σu

)2
]
, (8)

with γ = 5, x1 = x2 = π, u1 = −u2 = 0.4, a0 = −0.2, σx = 0.2, σu = 0.1, and U = 0.

For the numerical integration we used an operator splitting scheme [22], spectral in x and

finite difference with cubic splines interpolation in u. Figure 2 shows the corresponding

time periodic dependence of the real part of the mean field a(t). Because Eqs. (4)–(5) are

invariant under the symmetry transformation (x, u, f, a) → (−x+2π,−u,−f, a∗) for U = 0,

symmetric initial states like the one in Eqs. (7)–(8) remain symmetric and the imaginary

part of a vanishes for all t.

The relationship between kinetic simulations and finite–N particle simulations is not

trivial. In particular, kinetic simulations inevitably introduce some sort of numerical dissi-

pation. In addition, as discussed in Refs. [23–25], if the limits t → ∞ and N → ∞ do not

commute, there might be discrepancies in the long–time limit. As a first step to address these

issues we performed finite–N numerical simulation of the single wave model in Eqs. (1)–(3)

using a fourth-order symplectic algorithm [26]. Figure 3 shows an N = 1000 (half holes and

half clumps) simulation of a coherent rotating dipole with U = 0 and a(t = 0) = −0.2. The

initial conditions of the particles and the Γj’s were chosen according to a finite–N discretiza-

tion of f(x, u, t = 0) in Eqs. (7)–(8) with the same energy and momentum as the kinetic

simulation in Fig. 1. Consistent with the kinetic result, the finite–N dipole rotates main-

taining its coherence. A plot of the mean field a over one rotation period shown in Figure 4,

indicates that the finite–N result (dashed line) lags slightly behind the kinetic result (solid

line). This might indicate a possible finite–N dependence of the dipole rotation frequency.

The circles in this plot are the N = 2, macroparticle analytical result to be discussed in
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Sec. III-A. Preliminary results indicate that finite–N effects might also be present in the

long-time modulation of the oscillating mean field a.

The rotating dipole can be viewed, in a first approximation, as two “macroparticles”

rotating around the (x, u) = (π, 0) equilibrium fixed point. Based on this idea, we focus

in the N = 2 case of the single wave model. Equations (1)–(3) are invariant with respect

to the transformation (xj, uj,Γj, a) → (−xj,−uj,−Γj, a
∗) provided U = 0. Motivated by

this result we consider two-particles (N = 2) symmetric solutions consisting of one clump

and one hole with Γ1 = −Γ2 = Γ, U = 0, and symmetric initial conditions x1(0) = −x2(0),

u1(0) = −u2(0), and a(0) = a∗(0). Substituting x1(t) = −x2(t) = x(t), u1(t) = −u2(t) =

u(t), and a(t) = a∗(t) into Eqs. (1)–(3), we get:

dx

dt
= u (9)

du

dt
= −2 a sin x (10)

da

dt
= Γ sinx . (11)

Thus, whereas the phase space of a general N = 2 system is six-dimensional, the phase

space of a symmetric hole-clump configuration is three-dimensional, and the dynamics is

determined by the real function a(t) and the state (x, u) of one of the particles. The system

in Eqs. (9)–(11) can be further reduced using conservation laws. There are two conserved

quantities in the single wave model, the momentum P and the energy E defined as

P =
1

N

N∑
j=1

Γj uj + |a|2 (12)

E =
1

N

N∑
j=1

Γj

(
u2

j

2
− a eixj − a∗ e−ixj

)
− U |a|2 . (13)

For a symmetric system

P = Γu + a2 , (14)

and E = 0.

Equation (14) allows the reduction of Eqs. (9)–(11) to the one-degree-of-freedom Hamil-

tonian system
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dx

dτ
=

∂H

∂A
,

dA

dτ
= −∂H

∂x
, (15)

with

H = αA− A3

3
+ cosx , (16)

where we have introduced the rescaled variables:

A = aΓ−2/3 , τ = Γ1/3 t , α = PΓ−4/3 . (17)

Being time independent, the Hamiltonian system in Eqs. (15)-(16) is completely integrable.

In Ref. [6] it was shown that the single wave model with one particle is integrable. Here we

add to this integrable solution a new one consisting of two symmetrically located particles.

Once A and x are found, u is determined from Eq. (14) according to

u =
P
Γ

(
1 − A2

α

)
. (18)

Because of the cubic dependence on A, the Hamiltonian in Eq. (16) is a nontwist Hamil-

tonian [27]. Nontwist Hamiltonians are degenerate Hamiltonians for which the frequency,

∂JH, is not a monotonic function of the action J . These Hamiltonians appear in the study

of transport in nonmonotonic shear flows (jets) and in the study of stochasticity of magnetic

field lines in plasmas with nonmonotonic q profiles [28]. From the dynamical systems point

of view, nontwist Hamiltonians are interesting because several well-known results, includ-

ing the KAM theorem and the Poincare-Birkhoff theorem, can not be applied to them (for

further discussion on nontwist systems see Ref. [27] and references therein.)

When α < 0 the system in Eq. (15) has no fixed points, and when α > 0 the system has

four fixed points: (x0, A0) = (0,
√
α) , (0,−√

α), (π,
√
α), and (π,−√

α), with eigenvalues

λ = ±iω, λ = ±ω, λ = ±ω, and λ = ±iω, respectively, where

ω =
√

2α1/4 . (19)

That is, the elliptic and hyperbolic fixed points come in pairs. The value α = 0 is the

bifurcation point at which an elliptic–hyperbolic doublet is created at x = 0, and another

10



elliptic–hyperbolic doublet is created at x = ±π. The symmetry in the stability properties

of the fixed point is related to the symmetry (xj, a) → (xj +π,−a) of the single wave model.

A generic property of nontwist Hamiltonians like the one in Eq. (16) is that they exhibit

separatrix reconnection, which involves the different ways in which the stable and unstable

manifolds of the hyperbolic fixed points can be connected [27]. The reconnection threshold

can be computed by observing that at the reconnection point, H(P0) = H(Pπ), where H

is the Hamiltonian in Eq. (16), P0 = (0,−√
α) and Pπ = (π,

√
α). This condition gives

the reconnection threshold α∗ = (3/2)2/3. For α < α∗ the Hamiltonian has an homoclinic

topology, and for α > α∗ it has an heteroclinic topology. The difference between these

topologies is illustrated in Fig. 5. Panel (a) shows the homoclinic topology with α = 0.5 and

panel (b) the heteroclinic topology with α = 1.95. Since the Hamiltonian in Eq. (16) is time

independent, the orbits of the system in Eqs. (9)–(11) correspond to contours of constant

H in Fig. 5.

These N = 2 results can be used to interpret the kinetic simulations. To do this, we

define the “effective”Γ and momentum P for the kinetic initial condition in Eqs. (7)–(8) as

Γ =
1

π

∫ ∫
f1 dxdu = γ σxσu , P =

1

2π

∫ ∫
f u dxdu + |a|2 = γ u1σxσu + |a0|2 . (20)

According to Eqs. (17) and (19), the linear approximation of the rotation period (in dimen-

sional units) is T =
√

2π/P1/4 where P is the momentum of the system. Treating the kinetic

dipole in Fig. 1 as two macroparticles with the same momentum we obtain the following

approximation for the rotation period:

T =

√
2π

P1/4
=

√
2π

(γ u1σxσu + |a0|2)1/4
. (21)

For the parameter values used in the kinetic simulation, Eq. (21) gives T = 8.35 close to

the period T = 8.66 according to Fig. 2. In Sec. III-A a second order correction to this

linear estimate is presented. Using Eqs. (20), the value of α = PΓ−4/3 can be computed,

and the topology of the reduced nontwist Hamiltonian of the macroparticles determined. In

particular, for the kinetic simulation in Fig. 1, α = 1.7235 > α∗, which corresponds to the

heteroclinic topology.
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III. MEAN FIELD–DIPOLE RESONANCE

In the previous section it was shown that the N = 2 hole-clump, symmetric system

is integrable. As observed in Fig. 5, in the (x,A) phase space there are trapped orbits

and untrapped orbits. These two types of orbits are divided by the separatrix. In this

section we focus on the trapped orbits. In particular, we consider perturbative solutions

of the symmetric dipole system in Eq. (15) in the vicinity of the equilibrium elliptic point

(x0, A0) = (0,
√
α). From the dynamical point of view, this calculation describes a linear

nontwist oscillator in the (x,A) variables.

A. Nontwist oscillator

Approximating sinx ≈ x− x3/6, and writing

A =
√
α− ε ω2 φ , x = ε ω3 ψ , T = ωτ , ω2 = 2

√
α , (22)

Eq. (15) becomes

dφ

dT
= −ψ + 2λ ε2 ψ3 , (23)

dψ

dT
= φ− ε φ2 , (24)

with

φ(0) = 1 , ψ(0) = 0 , ε =

√
α− A(0)

ω2
, λ =

(
α

α∗

)3/2

, (25)

where α∗ = (3/2)2/3 is the separatrix reconnection threshold. We assume that ε 
 1 and

write

φ = φ0 + ε φ1 + . . . , ψ = ψ0 + ε ψ1 + . . . . (26)

Substituting Eq. (26) into Eqs. (23) and (24), it is observed that the perturbation series

leads to secular growth at second order in ε. This motivates the introduction of the slow
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time variable η = ε2 T . Treating φ and ψ as functions of these two variables we have

dT → ∂T + ε2 ∂η, and

∂φ

∂T
+ ε2 ∂φ

∂η
= −ψ + 2λ ε2ψ3 , (27)

∂ψ

∂T
+ ε2 ∂ψ

∂η
= φ− εψ2 . (28)

The solutions to zeroth and first order are given by

φ0 = C ei T + C∗ e−i T , φ1 = 2CC∗ − 1

3
cosT − C2

3
e2i T − C∗2

3
e−2i T , (29)

where C = C(η), and ψk = −∂Tφk for k = 0 and 1. To second order

∂2φ2

∂T 2
+ φ2 = −2 ei T

(
i
dC

dη
− 5

3
C2C∗ − 3λC2 C∗

)
+ c.c. + NR , (30)

where c.c. denotes the complex conjugate, and NR denotes all the nonresonant terms. That

is, terms of the form eimT with m �= ±1. To avoid secular growth, we kill the resonant term

on the right-hand side by choosing C such that

i
dC

dη
=

(
5

3
+ 3λ

)
C2C∗ , (31)

that is

C = ρ0 exp i
[
θ0 −

(
5

3
+ 3λ

)
ρ2

0 η
]
, (32)

where ρ0 and θ0 are integration constants. Choosing ρ0 = 1/2 and θ0 = 0 gives the desired

initial condition φ(0) = 1, ψ(0) = 0, and we conclude from (22), (29) and (32)

A(τ) =
ω2

2

[
1 − 2 ε cos Ω τ − ε2

(
1 − 2

3
cos Ωτ − 1

3
cos 2 Ω τ

)]
, (33)

x(τ) = ω3

[
ε sin Ω τ − ε2

3
(sin Ω τ + sin 2 Ω τ)

]
, (34)

where we have defined

Ω =

[
1 −

(
5 + 9λ

12

)
ε2

]
ω . (35)
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The second term inside the square bracket is the nonlinear correction to the nontwist linear

oscillator frequency ω in Eq. (19). Observe that this correction is proportional to λ ∼ α3/2.

That is, as α increases, the fixed point (0,
√
α) of the nontwist Hamiltonian moves towards

a region of high shear ∂AH, and this induces a larger frequency shift. This frequency shift is

unique of the nontwist oscillator, and does not occur in the linearization on non-degenerate

(twist) Hamiltonians.

Equation (35) provides a second order correction of the kinetic dipole rotation period in

Eq. (21). To compute this correction note that for the initial condition in Eqs. (7)–(8)

λ =
2

3γ2σ2
xσ

2
u

(γu1σxσu + |a0|)3/2 , (36)

which for the parameter values used in Fig. 1, gives λ = 1.5084. In the evaluation of ε in

Eqs. (25) we have to take the negative sign of
√
α because a(0) = −0.2 < 0. Doing this,

we get ε = 0.146 and Ω = 1.566, which gives T = 8.64; a value remarkably close to the

period T = 8.66 according to the numerical results in Fig. 2. As Fig. 4 shows, there is a very

good agreement between the analytic solution in Eq. (33) (circles) and the kinetic numerical

solution (solid line), whereas as mentioned before the finite–N result seems to oscillate with

a shorter period.

B. Parametric resonance

According to the previous results, an N = 2 dipole rotating in the vicinity of the elliptic

fixed point creates a periodic self-consistent field with frequency Ω given in Eq. (35). Since

this frequency is near the linear rotation frequency ω of the particles, there is the possibility

of wave-particle resonance [29]. To explore this, we study here the dynamics of test particles

in the mean field of an N = 2 symmetric dipole.

Let q denote the spatial coordinate of a test particle. Then, using the fact that for the

symmetric dipole a(t) = a∗(t), we have from Eqs. (2) and (17), q̈ = 2A(τ) sin q, where the

dots denote derivative with respect to τ . Approximating sin q ≈ q and using Eqs. (33) and

(35), we conclude
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d2q

dτ̂ 2
+

[
1 + 2

(
5 + 9λ

3

)
ε2 − 2 ε cos τ̂

]
q = 0 , (37)

where τ̂ = ωτ . The stability properties of this Mathieu equation are well-understood. In

particular, the equilibrium solution (q, dq/dτ̂) = (0, 0) is stable if λ > 5/9 and unstable if

λ < 5/9, see for example Ref. [30]. Using the definitions of λ and α, we can write this

stability condition in terms of the momentum P and Γ as follows:

P >

(
5 Γ2

6

)2/3

Stable , P <

(
5 Γ2

6

)2/3

Unstable . (38)

In terms of α, the origin is stable if α > αb, and unstable if α < αb, where αb = (5/6)2/3 =

0.8855 is the bifurcation point. Figure 6 shows the bifurcation of the stability of the (π, 0)

fixed point in the (q, q̇) Poincare section of the test particle dynamics, q̈ = 2A(τ) sin q, in

the mean field A(τ) of a symmetric N = 2 dipole for three values of α.

These results provide an intuitive understanding of the coexistence of phase space dipoles

and Hamiltonian chaos in kinetic and many-particles simulations like those in Figs. 1 and 3.

In particular, a natural next step in the macroparticle simplification of the dipole described

in Sec. II, is to model the dipole as to two macroparticles surrounded by a “cloud” of

particles which in a first approximation do not interact. This non-interacting (test particle)

assumption is reasonable provided the particle concentration in the cloud is small compared

to the particle concentration in the “core” of the dipole. The two upper panels in Fig. 7 show

contour plots of the instantaneous position of the dipole in Fig. 1. As the dipole rotates, it

creates a self-consistent mean field, which, as shown in Fig. 2, is periodic in time. The time

dependence of a(t) manifests in the “breathing” of the separatrix and explains the chaos

observed in the test–particle Poincare sections shown in the lower two panels of Fig. 7. The

mean field–dipole resonance creates two islands of integrability that contain the hole and

clump forming the dipole. In this case the (π, 0) fixed point is stable, a result consistent

with the fact that according to Eq. (36), λ = 1.501 > 5/9.
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IV. ELLIPTIC–HYPERBOLIC BIFURCATION

As discussed in the previous section, the hole-clump dipole can maintain its coherence in

the presence of a time-dependent mean field. However, this is not always the case, and an

important problem is to know how and when dipolar structures lose their coherence. Chaotic

transport certainly plays an important role in the destruction and eventual mixing of phase

space structures. In particular, dipole initial conditions with large values of Γj induce large

variations in the mean field amplitude and typically result in widespread chaotic mixing.

However, in addition to chaotic transport, the single wave model exhibits another transport

mechanism that leads to phase space mixing. The goal of this section is to discuss this

transport mechanism.

Panel (a) in Fig. 8 shows the initial condition in Eq. (7) consisting of two symmetric

Gaussian-distributed holes and clumps with γ = 12, x1 = π, x2 = π and u1 = −u2 = −0.4,

and a0 = −0.36. This is the same initial condition as the one used in Fig. 1 except that

the value of γ has been increased. Note also that the dipole in Fig. 8 (a) is rotated by π,

and that there is a corresponding phase shift in a(t). At the beginning the dipole rotates

around (x, y) = (π, 0), but eventually it loses coherence by filamenting into very small scale

structures difficult to resolve numerically. At this point it is more convenient to resort to

finite–N particle simulations like the one in Fig. 9. In this simulation the initial condition

of the mean field was a0 = −0.36, and the particles initial condition, shown in Fig. 9 (a),

consisted of an N = 1000 discretization of the continuous distribution function in Fig. 8 (a)

with the same energy and momentum. In this case it is observed that the dipole filamentation

due to the elliptic–hyperbolic bifurcation, is followed by the chaotic mixing of the holes and

clumps in the stochastic layer of the mean field.

To understand these numerical results we resort once more to the N = 2 macroparticle

description. According to Eq. (2), the Hamiltonian of the symmetric hole–clump system is

H (xj, uj, t) =
∑

j u
2
j/2+2a (t) sinxj. This Hamiltonian has two fixed points: (xj, uj) = (0, 0)

and (π, 0), and the stability of these fixed points is determined by the sign of A = aΓ−2/3.
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If A > 0, then (0, 0) is elliptic and (π, 0) is hyperbolic. However, if A < 0, then (0, 0) is

hyperbolic and (π, 0) is elliptic. Accordingly, a change in time of the sign of A is accompanied

with an elliptic–hyperbolic bifurcation. As shown in Figs. 5(a) (b), a fraction of the orbits

in the (x,A)–space experiences a change of sign in A while crossing the dashed line A = 0.

For a given initial condition (x0, A0), there will be elliptic–hyperbolic bifurcations provided

−1 < αA0 −
A3

0

3
+ cosx0 < 1 . (39)

This condition follows from the fact that at the bifurcation point (x,A) = (xb, 0) , H =

αA0 − A3
0/3 + cosx0 = cosxb. Assuming x0 = 0 and using the definition of α in (17), we

have the following condition for the bifurcation in terms of the initial conditions a0 = a(0),

u0 = u(0) and Γ

−6 Γ2 < 3 Γu0 a0 + 2 a3
0 < 0 . (40)

Figure 10 shows a plot of this condition in the (a0, u0) parameter space.

Figure 11 shows an example of an elliptic–hyperbolic bifurcation in a numerical integra-

tion of Eqs. (1)–(3) for one hole and one clump, N = 2. The empty (full) circle denotes the

instantaneous (x, u) position of the hole (clump) along its path plotted with a dashed (solid)

curve. The figure also shows the instantaneous position of the separatrix of the Hamiltonian

H = u2/2 + 2a sin x. In both cases Γ1 = −Γ2 = 1, and U = 0. The various panels display

the state of the system at successive instants of time. The initial conditions at t = 0 are

(x0, u0) = (0, 0.25) and a0 = −0.5. In the rescaled variables, they correspond to A0 = −0.5,

and α = 0.5 which are the initial conditions used in the trapped, hole-clump state in the

homoclinic topology in Fig. 5–(a). At t = 3.94 (first panel), A > 0, and the hole-clump pair

is trapped inside the wave separatrix. At t = 6.0745 (third panel), A vanishes, and following

this an hyperbolic point forms at the origin. The hole-clump pair moves along the stable

and unstable manifolds of the hyperbolic fixed point until t = 9.71851 when A vanishes

again, and an elliptic forms at the origin. This sequence repeats periodically in time. It is

also possible to have an elliptic–hyperbolic bifurcation for an untrapped hole-clump state.
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These results provide an explanation of the dipole destruction in Figs. 8 and 9. According

to Eqs. (20) and (21), the total momentum and effective Γ in this case are P = −0.2256

and Γ = 0.24. With a0 = −0.36 and x0 = π, it is seen that the inequality in Eq. (39)

is satisfied (−1 < 0.68 < 1) implying that the initial condition will develop an elliptic–

hyperbolic bifurcation. Figure 12 shows the evolution of the dipole in Fig. 8 along with the

evolution of the separatrix. As the dipole rotates, the amplitude of the mean field becomes

small and eventually vanishes. The vanishing of the mean field amplitude is accompanied

with a jump in phase of the mean field by π. This, as panel (c) of Fig. 12 shows, leads to

the creation of an hyperbolic point at (π, 0) that tears the dipole.

V. SUMMARY AND CONCLUSIONS

Understanding the coexistence of coherent structures and self-consistent Hamiltonian

chaos is a nonlinear dynamics problem of relevance to fluid dynamics, plasma physics, galac-

tic dynamics, and statistical mechanics. Two-dimensional, incompressible fluids and plasmas

are known to develop large–scale coherent structures that live in a turbulent background.

Another example is clustering in phase space, usually observed in models of long–range

interacting systems. From the Lagrangian point of view, the problem is to explain the self-

consistent formation of islands of integrability that shield the coherent structures from the

chaotic mixing of the background. In this paper we have addressed this problem in the

context of the single wave model.

The single wave model is a mean field Hamiltonian model in which interacting particles

are treated as independent particles moving in an average effective potential determined

self-consistently from the motion of all the particles. This model has its origins in the study

of the beam-plasma instability, but recently, its range of applicability has been considerably

extended to include a wider class of plasma instabilities. The model also describes the

dynamics of marginally stable shear flows, and bears similarities with models used in the

study of globally coupled rotators in statistical mechanics. From the dynamical systems
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perspective, the model is a useful laboratory to study chaos in Hamiltonian systems with

many degrees of freedom.

We focused on the study of dipole states consisting of one clump and one hole that

correspond to excesses and depletions in the phase space distribution function. Numerical

solutions in the kinetic (N → ∞) limit and in the finite–N case, indicate that, depending

on the initial conditions, the dipole rotates as a coherent structure or it is destroyed by an

elliptic–hyperbolic phase space bifurcation.

To explain these results we treated the dipole as two macroparticles and considered the

N = 2 limit of the model. In this case the single wave model Hamiltonian has three degrees

of freedom (one degree of freedom for the hole, one for the clump, and one for the mean field),

and the phase space is six-dimensional. However, symmetry considerations and conservation

of linear momentum allows the integrability of the problem by reducing the systems to

a one-degree-of-freedom nontwist Hamiltonian. We presented a perturbative analysis of

the nontwist Hamiltonian oscillator and observed that there is a self-consistent parametric

resonance between the rotation frequency of the dipole and the oscillation frequency of the

mean field. This resonance creates islands of stability that shield the hole and the clump from

the chaotic transport of the background. Depending on the parameter values and the initial

condition, the rotation of the dipole is interrupted by an elliptic–hyperbolic bifurcation in

which the amplitude of the mean field vanishes and its phase jumps by π. This bifurcation

tears the dipole and eventually leads to the rapid mixing of the distribution function in

phase space.

We restricted attention to trapped dipole states. However, there are also untrapped

dipole states consisting of one hole and one clump located above and below the separatrix.

These untrapped dipoles also exhibit an elliptic–hyperbolic bifurcation. The integrability

of the N = 2 system, and to some degree the robustness of the dipole states, depend on

the hole-clump symmetry, (x, u, f, a) → (−x + 2π,−u,−f, a∗), and an open problem is to

study the dynamics of coherent structures when this symmetry is broken. Another problem

of interest is to explore the role of the elliptic–hyperbolic bifurcation in the time evolution
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of general initial conditions. Numerical simulations show the existence of rapid relaxation of

far from equilibrium initial condition due to “violent” mixing driven by successive elliptic–

hyperbolic bifurcations.
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FIGURE CAPTIONS

FIG. 1. Kinetic simulation, N → ∞, of a rotating dipole obtained from the numerical in-

tegration of Eqs. (4)–(5) with initial condition in Eqs. (7)–(8). Red corresponds

to f > 0 (clump) and blue to f < 0 (hole). The panels show the dipole at

t = 0,∆, 2∆, . . . 7∆, where ∆ = 1.237 and 7∆ = 8.66 is the rotation period of

the dipole. Figure 3 shows the corresponding finite–N numerical simulation, and

Fig. 2 the mean field a(t).

FIG. 2. Real part of mean field a as function of time corresponding to the coherent rotating

dipole solution shown in Fig. 1. In this case, the imaginary part of a vanishes

identically for all t.

FIG. 3. Finite–N discrete particle simulation of rotating dipole obtained from the numerical

integration of Eqs. (1)–(3). The initial condition consisted of a finite–N discretiza-

tion of f(x, u, t = 0) in Eq. (7) with N = 1000 particle, half of them clumps and

the other half holes. The red dots denote clumps and blue dots holes. The panels

show the dipole at t = 0,∆N , 2∆N , . . . 7∆N , where ∆N = 1.1793 and 7∆N = 8.255 is

the rotation period of the dipole. Figure 1 shows the corresponding N → ∞ kinetic

simulation, and Fig. 4 the mean field a(t).

FIG. 4. Mean field a as function of time over one period of the dipole oscillation. The solid

curve is the result from the kinetic simulation in Fig. 1, and the dashed line is the

finite–N discrete particle simulation in Fig. 3. The circles correspond to the second

order perturbative solution in Eq. (33).

FIG. 5. Contour plots of the symmetric dipole, reduced Hamiltonian in Eq. (16) for: (a)

α = 0.5, and (b) α = 1.95. Case (a) shows the homoclinic topology and case

(b) the heteroclinic topology. Orbits crossing the dashed line A = 0 give rise to

elliptic–hyperbolic bifurcations like the ones shown in Fig. 11.
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FIG. 6. Poincare sections in the (q, q̇) –plane of the test particle dynamics, q̈ = 2A(τ) sin q,

with A given by the perturbative analytical solution in Eq. (33) with ε = 0.1 and

three values of α. In (a) α = 2, and in (c) α = 0.2. Panel (b) corresponds to the

bifurcation point α = αb = (5/6)2/3 = 0.8855 according to Eq.(38).

FIG. 7. The two panels on the top show contour plots of the rotating dipole solution in Fig. 1

at two successive times t = 4.949, and t = 7.423. Also shown are the instantaneous

contour lines of the Hamiltonian in Eq. (2), with the sparatrix shown in red. The

two panels on the bottom show Poincare sections for test particles in the mean field

of the rotating dipole solution in Fig. 1.

FIG. 8. Dipole destruction through an elliptic–hyperbolic bifurcation in the N → ∞ kinetic

limit according to the numerical integration of Eqs. (4)–(5) for the initial condition

in Eq. (7) with γ = 12, x1 = x2 = π, u1 = −u2 = −0.4, a0 = −0.36, σx = 0.2,

σu = 0.1, and U = 0. Red corresponds to f > 0 (clump), and blue to f < 0 (hole).

FIG. 9. Dipole destruction through an elliptic–hyperbolic bifurcation, and phase space mix-

ing in the finite–N discrete particle case. Solution obtained from the numerical

integration of Eqs. (1)–(3), with initial condition corresponding to an N = 1000

discretization of the continuous initial condition f(x, u, t = 0) used in Fig. 8. Red

dots correspond to clumps and blue dots to holes. The panels show the phase space

at t = 0, 2.26, 3.89, 6.35, 11.91, 23.81, 31.75, and 39.69. The elliptic–hyperbolic

bifurcation occurs at t = 3.866.

FIG. 10. Elliptic–hyperbolic bifurcation diagram for Γ = 1. According to Eq. (40), when

x0 = x(0) = 0, there is an elliptic–hyperbolic bifurcation for initial conditions in the

shaded region. The shape of the shaded region for other values of Γ is qualitatively

the same.

FIG. 11. Elliptic–hyperbolic bifurcation generated by a symmetric, hole-clump pair. Each

panel shows the instantaneous positions of the hole (empty circle) and clump (full

24



circle), the trajectories of the hole (dashed curve) and clump (solid curve), and the

instantaneous wave separatrix, at successive times. The third and seventh panels

show the elliptic–hyperbolic bifurcations. This pattern repeats periodically in time.

FIG. 12. Elliptic–hyperbolic bifurcation and dipole destruction. The first five panels show

contour plots of the destruction of a dipole. Also shown are contour plots of the

instantaneous single wave model Hamiltonian in Eq. (2), with separatrix shown in

red. The last panel shows the wave amplitude ρ = |a| as function of time, with

the dots showing the times corresponding to the contour plots. The vanishing of ρ

around t ∼ 6 signals the onset of the elliptic–hyperbolic bifurcation.
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