Transient protection for PV power electronics

Michael Ropp Electrical Engineering Department South Dakota State University Brookings, SD 57007-2220

South Dakota State University

College of Engineering Electrical Engineering Department

The need for transient protection

Figure 9.1 Change of the level of energy needed for the destruction of electric and electronic components

The need for transient protection

Sources of transients

LightningSwitching

Types of transients

AC-side—fairly well quantified
DC-side—

Transient suppression devices

Most TSDs are shunt elements that operate by presenting a high impedance to low voltages, but low impedances to high voltages.

The most common ones in use today operate on the same principle as zener diodes.

PV array

Transient suppression devices

Varistor nost common TSD) MOV SC Silicon Avalanche Diodes (SADs) "transorbs **Ionizing gas tubes and spark gaps** (very high voltage DC) **Filters**

South Dakota State University Electrical Engineering Department

 \checkmark

 \checkmark

 \checkmark

Transient suppression devices

MOVs

- Generally the least expensive TSD option, and readily available from many manufacturers
- Consist of a matrix of metallic oxide (usually zinc oxide) or ceramic sandwiched between metal electrodes
- Grain boundaries in zinc oxide act as rectifying junctions, so the MOV is equivalent to an array of back-to-back diodes

- Back-to-back zener diodes; one forward, one avalanching
- Excellent clamping properties
- Also widely available in a range of energy/voltage ratings

Critical parameters for selecting TSDs

Clamping or pass-through voltage Surge current capability Energy (MOV) or power (SAD) dissipation Response to standard pulses

South Dakota State University Electrical Engineering Department

 \checkmark

 \checkmark

 \checkmark

 \checkmark

Device	Rel cost	Degradation	Effect on normal op	TS effectiveness
MOV	Low	High	High	Good
SAD	Moderate	Low/mod	Low	Excellent
lon tube	Moderate	Low	Low	Good
Filter	Moderate	Moderate	High	Moderate

Critical issues for transient suppression

- Proper device selection—need to know what you're protecting against. This is a problem for PV; DC-side transients aren't well specified.
- Lead is critical—at transient frequencies, L dominates, not R. Want very short, straight wires. (Story of our lives in power electronics....)
 - TSDs do affect circuit design—capacitance of TSDs can be significant. This is true for MOVs, less so for SADs.
 - Capacitors don't work well as TSDs—especially aluminum electrolytics—because of their tendency to look more like inductors at very high frequencies (ESL).

South Dakota State University Electrical Engineering Department

×

X

UL does list TSDs. Applicable standard: UL-1449.

UL suppression voltage ratings (SVRs) based on:

"...the average let-through voltage of two 6 kV 1.2/50m msec, 0.5 kA 8/20m msec impulses, separated by a duty cycle test of ten 6 kV 1.2/50m msec, 3.0 kA 8/20m msec impulses".

Also: IEEE-C62.41.1 and IEEE-C62.41.2—standard covering TVS in AC circuits of 1 kV or less

Future trends in TSDs

Doesn't appear to be a particularly active \mathbf{V} area of research, but some developments "New" materials \mathbf{V} ✓ Selenium? (actually used in 1928!) ✓ Nanostructured materials? New device structures based on $\mathbf{\Lambda}$ thyristors, cellular structures hcremental performance improvements \checkmark

Future trends in TSDs

Major issues remaining for TSD application:
✓ Lead length: finding ways to minimize inductance

End of life issues \checkmark ✓ SADs can fail open or shorted; monitoring? **Explosion** protection Monitoring MOV degradation over time Long-term energy absorption: GROUNDING Preventing "slow burn"; thermal control New structures with better long-term properties?