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What Is the Role of Oxidative Stress in the Mechanism of Particulate Matter Toxicity?

Antioxidant consumption by PM in a tunnel

Sample DTT |Ascorbate |Sali cylate (DHBA)
nmoles consumed or formed /min*micrg

Coarse 0.0200 0.0510 0.00049

Fine 0.0510 0.0410 0.00038

Ultrafine 0.1250 0.1168 0

DEP 0.1000 0.0430 0

Reactiuity

Metals (Cu, Fe) No Yes Yes

Quinone (PQ, NQ) | Yes Yes Not detectible

*In the presence of ascorbate and salicylate, hydroxyl radical,
generated by the Fenton reaction will form dihydroxy benzoic
acids (DHBA). This reaction is catalyzed by metals.

*The results show that the coarse and fine fractions contain
metals that catalyze the Fentonreaction whereas the
contribution by metals to ascorbate consumption by the ultrafine
fraction is minimal.

CONCLUSIONS:

Chemical/toxicological properties of PM

Contrasting features of coarse, fine, and ultrafine particles®

Parameters Particle mode

Coarse (FM,,) Fine (PM. ) Ultrafine
Size 2,510 pm 25015 pm <0.15

i

Organic carbon content + ++ +++
Elemental carbon content + ++ +4+4
Metals as % of total elements +4++ ++ +
PAH content =+ + +++
Redox activity (DTT assay) + ++ +4++
HO-1 Induction + ++ +++
GSH depletion + +++ +++
Mitochondrial damage MNomne Some Extensive
Hydroxyl radical formation ++ 4+ Mot detectable

The chemical species of PM varies with size,
source, and location of the particle.

Chemical reactivity vs. toxicity

The ability to induce oxidative stress is related
to the redox activity of the PM sample.

*Exposure to PM results in the depletion of cellular
antioxidants (GSH, ascorbate) and the induction of
antioxidant proteins (HO-1, SOD).

«Cellular toxicity is related to changes in the redox
status of the cell, i.e. thiol changes. Depending on the
potency of the PM sample, cells as well as mitochondria
exhibit different levels of toxicity. The ultrafine fractions
of PM exhibit the greatest potency.

*Metals, organic compounds as well as the particle core
itself are capable of catalyzing redox reactions that
generate reactive oxygen.
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Future Research

1. Development of highly sensitive biochemical assays

for key thiol containing proteins: Assays for chemical
reactivity and PM-induced biochemical alterations extend the ability to
characterize PM from a range of sources in terms of potential for
redox activity, oxidative stress, and cellular toxicity.

2. In vivo studies: New animal models are expected to be
sensitive to the pro-inflammatory effects of PM exposure. Nrf2
knockout mice are an excellent model for studying the effects of
defective phase Il antioxidant response on the induction of airway
inflammation. ApoE deficient mice can be used to study the role of
PM-induced oxidative stress in arterial inflammation and apoptosis,
and the development of early cardiovascular lesions following PM
exposure.

3. Characterization of PM samples from varied sources,

seasons, and photochemical conditions: Coordinated
application of chemical assays, biochemical assays and in vivo
studies will allow a wide range of PM to be tested and ultimately
characterized in terms of potential to cause health harms. A battery
of assays can be applied to compare PM from different emissions
sources, atmospheric conditions, seasons, and co-pollutant
concentrations.

Impact and Outcomes

While the adverse effects from PM have historically been
associated with its airborne concentrations, it is necessary to
develop chemical/biological approaches to quantitatively
measure the ability of PM to catalyze the induction of
oxidative stress to fully understand the resulting health
effects. The measurement of redox and electrophilic activity
represents a first step in better understanding the
subsequent downstream processes.

This ability of PM to generate oxidative stress could be
related to different sources, chemical composition, physical
and spatial/temporal characteristics in the ambient
environment. By linking the results of chemical/biological
reactivity assays with in vivo based adverse responses to PM,
it may be possible to identify the most harmful exposure
sources and scenarios.

To be useful in setting standards and policies, quantitative
information on source emissions, chemical/biological
characteristics of PM, and exposure must be linked with the
mechanistically-based assays and in vivo studies to identify
the sources and characteristics of greatest health
consequence. The work reported here addresses those
issues and works to provide a roadmap for identification of
the most important characteristics of PM that are
responsible for health effects and form a scientific basis for
regulatory intervention.
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