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A Story about Nostradamus
• In Jan 2006, Nostradamus publishes an ad

in the New York Times:

– Claims to predict many things about future,
including closing stock prices for S&P500.

– Here’s the MD5 hash: H

• In Jan 2007, Nostradamus discloses his
predictions

– Including correct S&P 500 prices

– Other rambling predictions

– His predictions hash to H

Question: Is this evidence Nostradamus can
tell the future?
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Answer is NO, because of herding!

We can herd a 128-bit hash for 287 work!
The Game:

1. Precomputation: Alice does lots of work and
produces hash H.

2. Bob sends her prefix P of predefined length.

3. Herding: Alice produces suffix S s.t.
Hash(P||S) = H

Applies to DM-construction hash, not random oracle

For 128-bit hash:

• Precomputation costs 286

• Herding costs 286

• Suffix is 42 blocks = 2688 bytes.
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What does this mean?

I can commit to hash before I know full string I’m

hashing!

• With a collideable hash…

– Proof of knowledge doesn’t work

– Collisions could involve information not available

when original message signed

– Many other surprising things can be done with

collisions

• Even better results when prefix constrained!

Moral of the Story: Hash Collisions are Bad News
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How to Herd a Hash Function

(in one easy lesson)
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How Is It Done?

1. Precomputation (brute force)

• Build a binary-tree-like search structure

• 2k hashes at widest point

• Any message with one of those intermediate

hashes can be herded to hash H.

2. Herding

• Brute-force search for message block to reach

any intermediate hash in diamond: 2n-k work.

• Follow tree to produce rest of suffix S

To minimize work: set Wprecomp = Wherd,

solve for k=width of diamond!
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Precomputation:

Building the Diamond Structure
• Start with 2k hash values.

– Generate many message blocks from each

– Find collision btwn 1st & 2nd, 3rd & 4th, etc.

• Do again with those results till we have one final

hash.

– A Merkle tree built by brute force

Note: Arrows are message blocks, h[i,j] is hash value
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Precomputation: How Much Work?

• Speedup: Don’t decide which pairs of

values are to collide until you find collisions

• Diamond structure with width 2k costs about

2k/2+n/2+3/2 work.

• Diamond structure has total of 2k+1-2

intermediate hash values.

– Usually use only 2k in widest level!
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Herding a Prefix to a Hash:

Finding a Match

• We have 2k hashes in diamond structure.

• Try 2n-k next message blocks

– Match with any of 2k hashes in widest pt.
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Herding: Producing Suffix

• First block of suffix is Mlink

• Other blocks determined by diamond structure

Diagram: Hash(Prefix || Mlink || m0 || m1 || m2)=H
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Generalizing Results

2n-k-rAbout 2r(n-2r-3)/3n

2n-kk+lg(k)+1(n-5)/3n

29125515160

21085952160

WorkSuffix

Length

Lg(Tree Size) = kHash

Size

Note: Variants can be much cheaper!
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Using Herding to Build Attacks
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Will the Suffixes be Random Bits?

• We use Gideon Yuval’s trick to make the

suffix messages meaningful!

– Generate original text, n/2 variation points,

vary all 2n/2.

– Probably requires slightly longer suffixes,

perhaps 2-3 times size

– Result: suffixes look like normal English

ASCII text
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Using the Basic Attack
• Pretend to know future information

– Nostradamus Attack

– Impersonate someone with inside knowledge

– Attack the Guy Fawkes Protocol

• Steal inventions

– Get timestamps on diamond structure hash.

– To steal an invention, herd hash of its
description back to your diamond structure to
“prove” prior art.

• Rewrite history (despite hashes/signatures)

– Collisions contain information not available
when they were formed
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Variation: Precomputing the Prefix

• Precomputation: Start with possible prefixes.

• No matching step, so this can be much cheaper!

• Example: Predict next big terrorist attack

– 28=256 locations (some specific, some general)

– 211=2048 days (covers >5 years)

– 25=32 descriptions (some specific, some general)

• Total of 224 prefixes

– 277 work (128-bit hash)

– All work on precomputation; “matching” is free!
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Variation: Predicting an ordering

Predict order in which contestants will finish race

• Build diamond structure from contestant names

– For 2k contestants, 2n/2+k/2+3/2 total work.

• Append 8 message blocks to get 8 diff. hashes

• Commit to resulting hashes in order.



17

Routing “Bob” to “5th Place”

• Each arrow is a message block

– Choose sequence of arrows to get Bob to 5th place

• Do same for each contestant to get full ordering
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Using Joux Multicollisions

• “Which celebrities will marry this year?”

– Sequence of yes/no answers

– We can construct a Joux multicollision

– Precomputation (MD5) : 265 x R for
R celebrities.

• Can reveal answers immediately at end of
year

– In this list, Alice and Dave got married….
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Conclusions

• If I can find collisions on a hash function,

it’s hard to use securely

• Herding attack means a hash for which I can

find collisions can’t be used to commit to

anything, prove knowledge, etc.

• Joux multicollisions even more powerful for

special forms of commitment.
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Abstract. In this paper, we develop a new attack on Damg̊ard-Merkle
hash functions, called the herding attack, in which an attacker who can
find many collisions on the hash function by brute force can first pro-
vide the hash of a message, and later “herd” any given starting part of
a message to that hash value by the choice of an appropriate suffix. We
introduce a new property which hash functions should have–Chosen Tar-
get Forced Prefix (CTFP) preimage resistance–and show the distinction
between Damg̊ard-Merkle construction hashes and random oracles with
respect to this property. We describe a number of ways that violation
of this property can be used in arguably practical attacks on real-world
applications of hash functions. An important lesson from these results
is that hash functions susceptible to collision-finding attacks, especially
brute-force collision-finding attacks, cannot be used to prove knowledge
of a secret value.

1 Introduction

Cryptographic hash functions are usually assumed to have three properties: Col-
lision resistance, preimage resistance, and second preimage resistance. And yet
many additional properties, related to the above in unclear ways, are also re-
quired of hash function in practical applications. For example, hash functions
are sometimes used in “commitment” schemes, to prove prior knowledge of
some information, priority on an invention, etc. When the information takes
on more than a small number of possible values, collision resistance does not
seem to be necessary to use the hash function in this way. This appears for-
tunate, in light of the many recent attacks on collision resistance of existing
hash functions[BC04,RO05,Kli05,WLF+05,WY05,BCJ+05,WYY05b,WYY05a]
and the widespread use of hash functions short enough to fall to brute-force
collision attacks[vOW99]. But is collision resistance somehow necessary in this
application?

1.1 Example: Proving Prior Knowledge with a Hash Function

Consider the following example. One day in early 2006, the following ad appears
in the New York Times :



I, Nostradamus, hereby provide the MD5 hash H of many important
predictions about the future, including most importantly, the closing
prices of all stocks in the S&P500 as of the last business day of 2006.

A few weeks after the close of business in 2006, Nostradamus publishes a
message. Its first few blocks contain the precise closing prices of the S&P500
stocks. It then continues with many rambling and vague pronouncements and
prophecies which haven’t come true yet. The whole message hashes to H.

The main question we address in this paper is whether this should be taken as
evidence that Nostradamus really knew the closing prices of the S&P500 many
months in advance. MD5 has been the subject of collision attacks, and indeed
is susceptible to brute force collision attacks, but there are no known preimage
attacks. And yet, it seems that a preimage attack on MD5 would be necessary
to allow Nostradamus to first commit to a hash, and then produce a message
which so precisely described the future after the fact.

1.2 Chosen Target Forced Prefix (CTFP) Preimage Resistance

A natural question when considering the situation outlined above is what prop-
erty of a hash function would have to be violated by Nostradamus, in order
to falsely “prove” prior knowledge of these closing prices. The property is not
directly one of the commonly discussed properties of hash functions (collision
resistance3, preimage resistance, and second preimage resistance). Instead, we
need a new property, which we will call “chosen target forced prefix” (CTFP)
preimage resistance.

In order to falsely prove his knowledge of the closing prices of the S&P500,
Nostradamus would first have to choose a target hash value, H . He then would
have to wait until the closing values of the S&P500 stocks for 2006 were avail-
able. Finally, he would have to find some way to form a message that started
with a description of those closing values, P , and ended up with the originally
committed-to hash H .

Following this example, we can formally define CTFP preimage resistance
as follows: In the first phase of his attack, Phase1, Nostradamus performs some
precomputation and then outputs an n-bit hash value H ; H is his “chosen tar-
get”. The challenger then selects some prefix P and supplies it to Nostradamus;
P is the “forced prefix”. In our security definition we place no restriction on how
the challenger picks P , but for simplicity we may assume that the challenger
picks P uniformly at random from some large but finite set of strings. In his
second phase, Phase2, Nostradamus computes and outputs some string S. Nos-
tradamus compromises the CTFP preimage resistance of the hash function if
hash(P‖S) = H . If we model the hash function as a random oracle, then unless
Nostradamus is lucky and guesses P in Phase1, we would expect him to have to
try O(2n) values for S in Phase2 before finding one such that hash(P‖S) = H .

3 Collision resistance would preclude the attack, but does not appear to be necessary
for the attack to fail.



Consequently, it seems reasonable to expect that Nostradamus would have to
perform O(2n) hash function computations to compromise the CTFP preimage
resistance of a real hash function.

As described in detail below, the ability to violate the CTFP preimage re-
sistance property allows an attacker to carry out a number of surprising attacks
on applications of a hash function. Almost any use of a hash function to prove
knowledge of some information can be attacked by someone who can violate
this property. Many applications of hashing for signatures or for fingerprinting
some information which aren’t vulnerable to attack by straightforward collision-
finding techniques are broken by an attacker who can violate CTFP preimage
resistance.

Further, when the CTFP definition is relaxed somewhat (for example, by
allowing Nostradamus some prior limited knowledge or control over the format
of P , giving him prior knowledge of the full (large) set of possible P strings that
might be presented, or allowing him to use any of a large number of encodings of
P with the same meaning), the attacks become still cheaper and more practical.

1.3 Herding Attacks

The major result of this paper is as follows: For Damg̊ard-Merkle[Dam89,Mer89]
construction hash functions, CTFP preimage resistance can always be violated
by repeated application of brute-force collision-finding attacks. More efficient
collision-finding algorithms for the hash function being attacked may be used to
make the attack more efficient, if the details of the collision-finding algorithms
support this. An attack that violates this property effectively “herds” a given
prefix to the desired hash value; we thus call any such attack a “herding attack.”

The herding attack shows that the CTFP preimage resistance of a hash
function like MD5 or SHA1 is ultimately limited by the collision resistance of the
hash function. At a high level, and in its basic variant, the attack is parameterized
by some positive integer k, e.g., k = 50, and by the output size n of the hash
function. In Phase1 of a herding attack, the attacker, Alice, repeatedly applies
a collision-finding attack against a hash function to build a diamond structure,
which is a data structure reminiscent of a binary tree. With high probability
it takes at most 2k/2+n/2+2 applications of the hash compression function (and
possibly fewer, depending on details of more efficient collision-finding attacks4 to
create a diamond structure with 2k+1−2 intermediate hash states, of which 2k are
used in the basic form of the attack. In Phase2 of the attack, Alice exhaustively
searches a string S′ such that P‖S′ collides with one of the diamond structure’s
intermediate states; this step requires trying O(2n−k) possibilities for S′. Having

4 The collision finding attacks needed for constructing the diamond structure
are somewhat different than those in recent results on MD5, SHA0, and
SHA1[WY05,WYY05a]. We are uncertain whether these attacks can be adapted
to the requirements of constructing the diamond structure, though it seems plausi-
ble that it might work. For the diamond structure we need collisions between two
messages starting with different IVs.



found such a string S′, Alice can construct a sequence of message blocks Q from
the diamond structure, and thus build a suffix S = S′‖Q such that hash(P‖S) =
H ; this step requires a negligible amount of work, and the resulting suffix S will
be k + 1-blocks long. We stress that Alice can have significant control over the
contents of S, which means that S may not be “random looking” but may instead
contain structured data suitable for the application that Alice is trying to attack.
We call our attack a “herding” attack because we use the diamond structure to
“herd” the hash output of a given prefix to the previously-committed-to value H .

Table 1. Herding with Short Suffixes

output example diamond suffix work
size width(k) (blocks)
128 MD5 41 48 287

160 SHA1 52 59 2108

192 Tiger 63 70 2129

256 SHA256 84 92 2172

512 Whirlpool 169 178 2343

n (n − 5)/3 k + lg(k) + 1 2n−k

Table 2. Herding with Impractically Long Suffixes

output example diamond suffix work
size width(k) (blocks)
128 MD5 5 255 269

160 SHA1 15 255 291

192 Tiger 26 255 2112

256 SHA256 47 255 2155

512 Whirlpool 133 255 2325

512 Whirlpool 5 2246 2251

n (n − 2r − 3)/3 2r 2n−k−r

1.4 Practical Impact

Our techniques for carrying out herding attacks have much in common with the
long message second preimage attacks of [KS05]. However, those attacks required
implausibly long messages, and so probably could never be applied in practice.
By contrast, our herding attacks require quite short suffixes, and appear to be
practical in many situations. Similarly, many recent cryptanalytic results on
hash functions, such as [WY05,WYY05a], require very careful control over the



format of the messages to be attacked. This is not generally true of our herding
attacks, though more efficient variants that make use of cryptanalytic results on
the underlying hash functions will naturally have to follow the same restrictions
as those attacks.

Near the end of this paper, we describe a number of ways in which our herd-
ing attacks and variations on them can be exploited. We also describe closely-
related attacks that can be done against signature protocols using our herding
techniques, but not the more standard collision finding techniques.

In developing the herding attack, we also describe a new method of build-
ing multicollisions for Damg̊ard-Merkle hash functions which is of independent
interest, and which may be useful in many other hash function attacks.

1.5 Related Work

The herding attack is closely related to the long message second preimage at-
tacks in [KS05] and [Dea99], and is ultimately built upon the multicollision-
finding technique of [Jou04]. Our result complements Coron, Dodis, Malinaud,
and Puniya’s work[CDMP05] which does not present actual attacks like the ones
we present, but shows that iterative hash functions like MD5 and SHA1 are not
random oracles, even when their compression functions are. Our attack works
against one of Coron, et al’s fixes, but does not violate their provable security
bound. In this particular case, our results can be seen as a tightness result.

More broadly, our result re-enforces the lessons that might sensibly be taken
from [Jou04,KS05,Kam04,LWdW05,DL05] on the many ways in which seemingly
impractical hash function collisions may be applied in practice. The security
properties of Damg̊ard-Merkle hash functions against attackers who can find
collisions are currently not well understood.

1.6 Guide to the Paper.

The remainder of this paper is organized as follows: First, we describe the herding
attack, and how it may be implemented. Next, we describe some techniques for
enhancing the herding attack in plausible attack scenarios. We then discuss a
number of arguably practical attacks which can be carried out using herding
attacks, as well as some curiosities made possible by them. We conclude with
lessons from the analysis and some open questions.

2 The Herding Attack: An Overview

The herding attack allows an attacker to commit to the hash of a message she
doesn’t yet fully know, at the cost of a large computation. This attack is closely
related to the long message second-preimage attacks of [Dea99,KS05] and the
multicollision-finding techniques of [Jou04].

At a high level, the attack works as follows:



1. The attacker, Alice, produces a large structure consisting of many possible
intermediate hash values, and message blocks necessary to link all the values
to a final hash output H . Note that the final hash output must incorporate
a final padding block with a message length large enough to encompass the
(still unknown) prefix and the linking message. She somehow commits to H .

2. Later, Alice gains knowledge of P . She then searches for a “linking message”
Mlink such that the intermediate hash value after processing P ||Mlink is one
of the intermediate hash values which appears in the attacker’s structure.

3. Finally, she produces a sequence of message blocks from her structure to link
this intermediate hash value back to the previously sent H .

In the long-message second preimage attack, the attacker has no control over
the target message. The target message does, however, provide many different
intermediate hash values, and a sequence of message blocks that will map each of
them to the final hash value. The attacker produces an “expandable message,”
then searches for a “linking message” from the end of the expandable message
to any of those intermediate states.

The herding attack is almost the long-message second preimage attack in
reverse: The attacker chooses most of the target message, then has to carry
out a second preimage attack against his own message from some previously-
unknown prefix message P . The ability to choose most of the target message
gives the attacker an enormous advantage, because she can build structures of
connected message blocks and hash values which are much more efficient (in
terms of the required length of messages relative to the number of reachable
hash values) than a single long message.

This makes an enormous difference in the attacks that are possible, as well
as the attacks’ flexibility.

3 Building Structures of Messages: The Diamond and

Elongated Diamond Multicollisions

For the herding attack, the attacker must produce a large set of intermediate
hash values that can be reached in a legitimate message, as described above. In
this section, we provide two ways to do this.

3.1 The Diamond Structure

In a second preimage attack, the attacker can’t control the message. In the herd-
ing attack, he controls the “target message.” This allows the attacker to trade
work for suffix length in a very powerful way, by organizing a set of multicolli-
sions into a tree structure. Figure 3.1 describes the basic idea: Note that edges
represent messages, and values like h[i, j] represent intermediate hash states. In
the diagram, the attacker starts with eight different first message blocks, each
leading to a different hash value; he then searches for collisions between pairs of
these hash values, yielding four resulting intermediate hash values (at the cost



of about 8× 2n/2 work). He repeats the process with the four remaining values,
then the two remaining ones. The result is that a diamond structure which is
2k states wide, and contains 2k+1 − 1 states total. If he fixes the tree structure
prior to searching for collisions, then building the diamond structure costs about
2n/2+k+1 compression function computations to construct. But he can do much
better: If he dynamically builds the tree structure during the collision search,
then at each step in the search, when a collision is found between two hash values,
they are put together as colliding values in the tree. Doing so makes building
the diamond structure enormously cheaper, on the order of about 2n/2+k/2+2

compression function computations to construct.
The work done to build the diamond structure is based on how many mes-

sages must be tried from each of 2k starting values, before each has collided
with at least one other line. Intuitively, we can make the following argument:
(The current formula we have is mostly derived from experimental data with
smaller n and k; the full paper will contain a more precise derivation of the
formula.) When we try 2n/2+k/2+1/2 messages spread out over 2k lines, we get
2n/2+k/2+1/2−k messages per line, and thus between any pair of lines, we ex-
pect about (2n/2+k/2+1/2−k)2×2−n = 2n+k+1−2k−n = 2−k+1 collisions. We thus
expect about 2−k+k+1 = 21 = 2 lines to collide with each line.

The diamond structure thus costs about 2k/2+n/2+1/2 steps to map 2k lines
down to 2k−1 lines. A sequence of calls to map 2k lines down to one line thus
costs about 2n/2+k/2+2.

Work for Herding Attacks with the Diamond Structure. A maximally
short suffix for the herding attack is found by only searching for linking messages
to the outermost (widest) level of hash values in the diamond structure, so that
no expandable message is needed. In this case, the length of the suffix is k + 1
message blocks, and the work done for the herding attack is approximately

2n−k + 2n/2+k/2+2 (1)

Adding an additional lg(k)+1 message blocks for a (lg(k), k+lg(k))-expandable
message[KS05] decreases the work required to

2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 (2)

The cheapest herding attack with a reasonably short suffixes can be deter-
mined by setting the work done for constructing the diamond structure and



finding the linking message equal. We thus get a diamond structure of width 2k,
suffix length L, and total work W , where:

k =
n − 5

3
(3)

L = lg(k) + k + 1 (4)

W = 2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 ≈ 2n−k (5)

Thus, using a 160-bit hash function, the cheapest attack with a reasonably
short suffix involves a diamond structure with about 252 messages at its widest
point, producing a 59-block suffix, and with a total work for the attack of about
2109 compression function calls.

3.2 The Elongated Diamond Structure

Long messages offer a naive way to mount the attack, and the diamond structure
offers much shorter suffixes. However, the attacker can make the attack much less
expensive by using a very long suffix, as figure 3.2 shows. The widest layer of the
diamond structure is chosen, with 2k hash values. Then, the attacker computes
2r message blocks for each of the 2k hash values, thus producing a total of 2k+r

reachable intermediate states. He then constructs the collision tree as described
above.

Work for Herding Attacks with the Elongated Diamond Structure
The cheapest herding attack with a suffix of slightly more than 2r blocks can be
determined by once again setting the work done for constructing the diamond
structure and finding the linking message equal, so long as k + r < k/2 + n/2.
We thus get an elongated diamond structure of width 2k, suffix length L, and
total work W , where:

k =
n − 2r − 3

3
(6)

L = lg(k + 2r) + k + 1 + 2r (7)

W = 2n−k−r + 2n/2+k/2+2 + k × 2n/2+1 + 2k+r ≈ 2n−k−r+1 (8)

Thus, with a 160-bit hash function and a 254 block suffix (about as long as is
allowed for SHA1 or RIPEMD-160), an attacker would end up doing about 290

work total to herd any prefix into the previously published hash value.



4 Techniques and Variations for Using the Attack in the

Real World

Above, we have defined what a herding attack is and broadly, how it may be
done. In this section, we discuss tricks to make it more practical to actually use.
Because of the very reasonable sizes of the suffixes in these attacks, and the very
real dangers of collision-finding attacks on so many widely used hash functions,
these attacks might really work; here we investigate how.

4.1 Using Yuval’s Trick to Make Messages Meaningful

In all these attacks, we are choosing a bunch of message blocks to herd the cur-
rent message back to some chosen hash output. Using Yuval’s clever trick[Yuv79],
the attacker can prepare a basic long document appropriate to her intended de-
ception, and produce many independent variation points in the document. This
allows the use of meaningful-looking messages for most contexts. For example,
each message block in layer i of the diamond structure could be a variation on the
same theme, using about n/2 possible variation points. The attack works in the
same way if multiple message blocks are used per layer of the diamond structure,
to accommodate a more restricted message space, though this naturally results
in a longer suffix.

The contents of these suffixes must be pretty general. The natural way to
handle this in most applications of herding is to write some common text dis-
cussing how the results are supposed to have been obtained (“I consulted my
crystal ball, and spent many hours poring over the manuscripts of the ancient
prophets....”). These can then be varied at many different points, independently,
to yield many possible bitstrings all yielding the same (fraudulent) message.

4.2 Committing to Message Content vs. Bit Strings

For many of the attacks for which herding is useful, the goal is to falsely commit
to some actual message content, not necessarily some specific message string.
For example, an attacker trying to prove her ability to predict the stock market
is not really forced to use any fixed format for the contents of her stock market
predictions, so long as anyone reading them will unambiguously be able to tell
whether she got her predictions right.

This provides a great deal of extra flexibility for the attacker in using Yuval’s
trick, and also in arranging the different parts of the message to be committed
to, in order to maximize her convenience.

4.3 Using Joux Multicollisions in the Deception

In this section, we describe a similar, though limited, approach to the same
kinds of attacks as are made possible by the herding attack, using only Joux
multicollisions.



The attacker wishes to publish a hash that “commits” her to a value she
doesn’t yet entirely know. In the full herding attack, she might well know nothing
about it. In this attack, she knows how to construct the unknown message out of
pieces she can define ahead of time and include in a Joux multicollision. That is,
she is going to produce a long message consisting of independent pieces, where
she has a choice for the value of each piece.

Consider the case where the attacker wishes to commit to a sequence of
success or failure type events, without knowing them. That is, each event can be
described ahead of time, and must yield either a failure or a success. An example
of this would be a list of famous people who will or will not marry during the
year.

The attacker chooses her list of famous people to include. For each person,
she constructs a scheme for generating about 2n/2 different variations on the two
basic messages “This person will get married this year” and “This person will
not get married this year.” The full messages must take up an integer number of
blocks, and it must be the same number of blocks for both the “yes” and “no”
answer.

The attacker then constructs a Joux multicollision, in which the ith collision
is between one message that says that person i will marry next year, and another
that says they will not. When finished, she publishes the hash of her predictions
for the future.

At the end of the year, she “reveals” her predictions, choosing for each pair
of colliding blocks the one that reflects what did happen that year.

The result is somewhat like the herding attack, though it it far more con-
strained. However, it has three important advantages:

1. The attack requires less work.
2. The attack frontloads the work; on Jan 1, 2006, the attacker can reveal her

answers immediately, without an expensive computation.
3. Within the constraints of making plausible-looking messages, the attack can

make direct use of existing attacks on hash functions such as MD5 and SHA1
since, for each collision search, the IVs are the same.

Further, this technique can be combined with the more general herding attack
to provide even more flexibility, as we will discuss below.

4.4 Precomputing All Possible Prefixes

In the herding attack, the attacker may reasonably expect to produce a diamond
structure with 250 or more possible hash values. For a great many possible ap-
plications of the herding attack, this may be more than the possible number of
prefix messages. The attacker may now take advantage of an interesting feature
of the diamond structure: there is no restriction on the choice of starting hash
values for the structure.

Let 2k, the width of the diamond structure, be the number of possible prefix
messages that the attacker may need to herd to her fixed hash value. (If there are



fewer prefix messages, the attacker append one block to all the possible prefix
messages, and vary that block to produce a set of prefix messages that is exactly
the right size.) She computes the intermediate hash after processing each prefix
message, and uses these intermediate hashes as the starting hash values for the
diamond structure.

The initial work to construct the diamond structure in this way is the same
as for the more general herding attack. However, the attacker now has the ability
to immediately produce a message which starts with any possible prefix with the
desired hash value. That is, she need not do a second expensive computation to
herd the prefix she is given.

The attacker who has a larger set of possible prefixes than this is not lost;
she may precompute the hashes of the most likely 2k prefixes. Then, if any of
those prefixes is presented to her, she can herd it immediately; otherwise, she
must do the large computation.

4.5 Combining Precomputations and Joux Multicollisions

In some cases, some large part of the prefix messages will be precomputable, but
not everything. For example, a hash which commits to a high-level summary
of the outcomes of the 2008 federal elections has a very small set of possible
kinds of content, in the sense that either major party may win heavily, or may
win by a narrow margin, or neither may win a clear victory, but it’s vanishingly
unlikely that a third party candidate will win, or that a list of the 100 most likely
people to run on either side compiled today by an interested observer would fail
to list the two major-party presidential candidates. On the other hand, a listing
of which party carried each state’s electoral votes for president might have too
many possibilities to be entirely predicted, and a county-by-county summary
certainly would be. However, the Joux multicollision trick can be used there; the
message is constructed so that it starts with a terse statement about which party
won the presidency, then a summary of who won in each state or county, and
then the text discussion summarizing the election. Because the two parties and
the summary of which party won in each state can be put together using a Joux
multicollision, the attacker can still precompute all possible prefix messages, and
ensure that she can quickly produce a message that “proves” she had predicted
to whatever happens in the election.

4.6 Applying the Joux Multicollision Idea to Diamond Structures

In some cases, the possible strings Alice may need to produce may not quite fit
the Joux multicollision pattern, but almost fit. For example, a string describing
how the 2008 election will come out in each state would lose a great deal of speci-
ficity if it committed only to “Democrat/Republican.” An alternative is for Alice
to build a small precomputed diamond structure for each state, encompassing all
plausible outcomes. For example, ignoring third party votes, Alice could build a
precomputed diamond structure committing to (82/18,81/19,...,19/81), a set of



64 possible descriptions which covers essentially every possible outcome, for each
state. After the polls closed, she could then reveal her “uncanny” predictions.

This small precomputed diamond could be built for each state, allowing Alice
to instantly reveal her “predictions” with uncanny accuracy, even though she is
specifying a great deal of detailed information.

4.7 The Simultaneous Multicollision

The diamond structure used in the attack lends itself to finding a large number
of different messages that all have the same hash. It’s possible to have a protocol
where Alice sends out a hash H , and then Bob sends many prefixes P0,1,...,R−1,
and for each one, Alice responds with a suffix Si such that hash(Pi||Si) = H .

4.8 The Hash Router

A large diamond structure can be constructed, leading to a hash value H . A
large number of different input blocks may be processed from that hash value,
to get to a large number of hash outputs. Now, any given prefix can be herded
to any of these specified hash outputs.

5 Applying the Attack: Herding for Fun and Prophets

In this section, we describe how the herding attack can be used in many different
contexts to do surprising things.

5.1 The Nostradamus Attack

We first return to Nostradamus:
One day in early 2006, the following ad appears in the New York Times :

I, Nostradamus, hereby provide the MD5 hash H of many important
predictions about the future, including most importantly, the closing
prices of all stocks in the S&P500 as of the last business day of 2006.

A few weeks after the close of business in 2006, “Nostradamus” publishes a
message. Its first few blocks contain the precise closing prices of the S&P500
stocks. It then continues with many rambling and vague pronouncements and
prophecies which haven’t come true yet. The whole message hashes to H.

Discussion. The Nostradamus attack is carried out in order to convince people
that the attacker can tell the future. This could be based on some claimed
psychic power, but also on some claimed improved understanding in science or
economics, allowing detailed prediction of the weather, elections, markets, etc.
This can also be used to “prove” access to some inside information, as with
some attacker attempting to convince a reporter or intelligence agent that she
has inside access to a terrorist cell or secretive government agency.

At a very general level, this attack works as follows:



1. The attacker presents the victim with a hash H , along with a claim about
the kind of information this represents. She promises to produce the message
that yields the hash after the events predicted have occurred.

2. The attacker waits for the events to unfold, just as the victim does.
3. The attacker herds a description of the events as they did unfold into her hash

output, and provides the resulting message to the victim, thus “proving” her
prior knowledge.

In many cases, the possible events to be committed to may be precomputed,
allowing the attacker to “prove” her prior knowledge as soon as the events “pre-
dicted” unfold, with no further expensive computation.

Variation: Stealing Credit for Inventions. The attacker can use the same
idea to claim to be a brilliant inventor, while actually stealing other peoples’
work. He submits hashes to a digital timestamping service periodically. After
he sees some new invention he wants to claim, he herds a description of the
invention to some old hash value.

This attack uses the “hash router” structure: a diamond structure with a
single additional message block after it. Because the attacker must send many
hashes, but need only herd one message to the right value (the one which shows
the attacker’s prior claim to the invention), the attacker must vary the final
message block after the diamond structure for each hash sent.

5.2 Committing to an Ordering

Alice decides to prove (perhaps in a gambling context) that she can predict
the outcome of a race with 32 entrants. She commits to a sequence of 32 hash
outputs, H0,1,...,31. After the race is over, she produces 32 strings, S0,1,...,31 such
that Si describes the entrant in the race who finished in ith place, and Hi =
hash(Si).

This attack uses the “hash router,” above. Alice builds a diamond structure
starting from the names of the 32 entrants. When the diamond structure yields a
final hash H , she produces 32 new message strings (probably simply strings like
“1st place”, “2nd place”, etc.), and processes them from H to get 32 different
hash outputs. She commits to these hash outputs. When the time comes to reveal
her choices, she produces 32 strings which commit her to the correct ordering of
entrants in the race.

5.3 Editing Messages Without Changing the Hash

Above, we have described the herding attack as applying when the victim chooses
a prefix, but the real attack is richer than this–it applies when an attacker has
control over the last few blocks of any message. Thus, the attacker or some
innocent party can provide a long file, the text or HTML version of a newspaper
or textbook, etc. She can determine a hash for it, digitally sign the hash, and get



it timestamped. She can then get others to edit the message anywhere but in its
last 55 or so blocks. That is, the attacker can allow news stories in the HTML
version of the newspaper to be rewritten, can alter discussions, etc. Whenever
she decides to, she can herd this back to the already-published hash by altering
only those last 55 or so blocks.

This defeats the use of hashes to “freeze” information so that it can’t later
be altered. Further, unlike a straightforward collision attack, which would allow
an attacker to find two different versions of the information with the same hash,
this attack allows the attacker to edit the data at will. Even more interestingly,
it allows the attacker to incorporate innocent parties’ edits of the information.

How it Works. Alice constructs a diamond structure first. She then chooses
one path through the diamond structure. Whenever the victim edits the message,
the attacker simply alters the last message block before the diamond structure
to link back into the diamond structure in a different place.

Moving the Herding Blocks Around. Above, we have assumed that the
herding blocks had to appear at the end of the message. However, this isn’t
really the case. The attacker may append fixed message blocks to the end of her
diamond structure, so that while she must change 55 or so successive message
blocks at some point in the message after the last edit, she need not change the
last 55 blocks. However, this still requires that the attacker control or at least
know the last 55 blocks of the original message, and also of all edited variations.

However, a bit of cleverness on the attacker’s part can deal with some very
small amount of variation in those last few blocks. Consider the situation in
which the victim will decide, after the original message and hash are committed
to, which of two possible suffix strings,S0 or S1, is to be appended to the end.
The attacker can still deal with this; she appends one message block after her
diamond structure, and computes about 2n/2 choices for that message block. For
each possible one, she computes the final hash result after processing both S0

and S1. By the birthday paradox, she expects to find a pair of message blocks
Z0, Z1 such that hash(...||Z0||S0) = hash(...||Z1||S1). With a rapidly-increasing
amount of work, she can extend this to deal with small numbers of alternative
Si. (For example, an attacker trying to find 10 messages with the same 160-bit
hash expects to have to try about 2144 message blocks.)

5.4 Overcoming Code Review: Herding Messages Created with an
Innocent Party

The herding attack is useful (to an attacker, anyway) even when nobody is
being fooled about prior knowledge or commitment to a bitstring. Consider the
situation in which a voting system vendor submits source code to a testing lab,
and must go through many rounds of comments and updates to the source code
before finally passing the evaluation. Further suppose that the testing lab always



requires some unpredictable-to-the-programmer changes as a way of making it
more difficult to insert intentional bugs in the system.

The attacker has taken over the voting system company, and now does a
large precomputation to get a diamond structure with output hash H , which
she does not publish. She submits her initial source code with only the certainty
that she can alter the final few hundred bytes of some source code file; perhaps
the end of the file is filled with freeform documentation of recent changes. She
goes through the process of submitting the code, getting required changes, etc.
Each time, before she submits the source code file being attacked, she alters the
last few hundred bytes to herd the hash to her chosen value. When the testing
lab finally passes her source code, it appends a digital signature to each source
code file, to ensure election officials using the voting system that they are getting
properly reviewed source code.

The attacker now has a source file which she can edit later without changing
the hash, despite the fact that the file was created by an interaction with a
trustworthy entity. Thus, she can produce an altered version with a trapdoor
included, and replace it in the signed distribution for the next election.

Note that the same basic idea could apply to any message being produced,
such as object code, postscript, a text contract, etc.

5.5 Controlling the Full Message by Controlling a Suffix

Consider the following situation: Alice and Bob are working together on a large
document; Bob is responsible for the first part, while Alice is responsible for the
second. Bob (wisely) mistrusts Alice, and understands the recent hash results,
so he insists that his part of the document go first. Bob produces the first part
of the document, for which he is to be held responsible, DB. Alice then produces
her part, for which she is to be held responsible, DA. They both hash and sign
the complete document DB||DA.

Without the herding attack, Bob appears safe; Alice can certainly introduce
collisions on her part of the document, but Bob is not held responsible for them,
so why should he care?

With the herding attack, Alice chooses the last few blocks of DA to herd
the message into her diamond structure. She can then take the hash of this
document, and alter Bob’s section at will, without altering this hash.

5.6 Random Number Fixing

Alice and Bob want to agree on a shared random sequence for some game. Alice
sends hash(X1), then Bob responds with X2. Finally, Alice reveals X1, and Alice
and Bob each derive random bits by combining X1 and X2 in some way. The
herding attacks and its variations can be used to allow Alice to exert substantial
control over the resulting random bit sequence.

Suppose Alice and Bob each contribute an equal-length message to the pro-
tocol, and that random bits are derived by XORing the two messages together.



A conventional use of a collision attack would give Alice only two choices for
X1. A Joux multicollision attack in this case gives Alice enormous flexibility–
she can choose two possibilities for each message block. If random numbers are
derived one message-block-sized chunk at a time, then Alice gets two choices for
each random number generated, while Bob has no power at all over them.

A herding attack would allow Alice to be even more powerful in principle–
she could choose any sequence of message blocks until the last 55 or so, which
she would need to herd the X1 she sent to the committed hash value. However,
without some precomputation, Alice would have a very hard time herding her
choices for X1 to the value to which she had committed quickly enough for Bob
to continue the protocol with her.

In this attack, the herding attack isn’t used to prove prior knowledge, but
rather to change a value after it has been committed to.

6 Other Applications of the Herding Attack and

Diamond Structure

6.1 Multiblock Fixed Points

Attacks on commitment schemes are not the only applications of the diamond
structure and herding attack ideas. We can also find short cycles in hash func-
tions. This is done in a simple way: we first construct a diamond structure,
where each of the starting hash values in the structure are found by generating
a random message block, and computing the compression function result of that
message block from the hash function’s initial value. If the diamond structure
is 2k wide, we then compute 2n−k trial message blocks from the end of the di-
amond structure. We expect an intermediate collision, which yields a k-block
fixed point for the hash algorithm.

This can be extended; with 2n−k+r work, we expect about 2r different k-block
fixed points, all reachable from a legitimate message. These can be concatenated
together; we can choose which of the 2r k-block chunks of message we wish to
append to the message next, without reference to previous choices. Further, any
message can be “herded” to this set of fixed points with about 2n−k work and
k appended blocks.

7 Conclusions

In this paper, we have defined a property of a hash function, Chosen Target
Forced Prefix (CTFP) preimage resistance, which is both surprisingly important
for real-world applications of hash functions, and also surprisingly dependent on
collision resistance of the hash function. We have described a variation on the
Joux multicollision technique for building tree-like structures of multicollisions
called “diamond structures,” and enumerated a number of techniques made pos-
sible by these structures. We have described a number of arguably practical
attacks which use these techniques.



At a very basic level, the most important lesson the reader can take from this
paper is that using hash functions whose collision resistance has been violated
is very difficult, even when the relevant security property does not appear to
depend on collision resistance.

A great deal of research remains to be done in this area. The diamond struc-
ture seems likely to us to be about as useful in developing new attacks as the
Joux multicollision result, and we hope to see others building on the work in this
paper by finding other surprising things to do to iterated hash functions using
herding attacks and the diamond structure. Additionally, there may be many
other surprising ways in which iterated hash functions built on the Damg̊ard-
Merkle construction may be attacked, when the attacker can find intermediate
collisions.
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