EPR spin-trapping investigation into the mechanism of *tert*-butylhydroperoxide decomposition by CU^{2+} ions: evidence for single-electron reduction with initial generation of ${}^{\bullet}OC(CH_3)_3$ and CU^{3+}

Clare Jones¹ and Mark J. Burkitt¹

¹Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex, HA6 2JR, United Kingdom

Lipid peroxidation (e.g., in low density lipoprotein) is often initiated *in vitro* by CU²⁺ ions, which are widely assumed to oxidise lipid hydroperoxides (LOOH) to peroxyl radicals (Reaction 1). The Cu⁺ generated may then react with LOOH to generate alkoxyl radicals (Reaction 2).

CU ²⁺	+	LOOH	\rightarrow	Cu⁺	+	LOO• +	H⁺	(1)

$$Cu^+ + LOOH \longrightarrow CU^{2+} + LO^{\bullet} + OH^-$$
 (2)

However, Reaction 1 is thermodynamically unfavourable. An alternative mechanism has been proposed in which LOOH undergoes single-electron *reduction* by CU^{2+} (Reaction 3).

$$CU^{2+} + LOOH \longrightarrow CU^{3+} + LO^{\bullet} + H^{+}$$
 (3)

We have studied the reaction between CU^{2+} (complexed to simple peptides) and *tert*-buty1hydroperoxide in the presence of 5,5-dimethyl-1-pyrroline-*N*-oxide (DMPO). Spectra contained signals from the [•]OC(CH₃)₃ and [•]CH₃ adducts of IDMPO. Prominent signals from the [•]OCH₃ adduct were also often present. In some earlier studies, this signal has been assigned incorrectly to the [•]OOC(CH₃)₃ adduct, which is now known to be unstable. In order to determine whether generation of these radicals involves oxidation or reduction of ^{*t*}BuOOH by CU²⁺ complementary reactions were conducted using metal complexes of well-characterised redox behaviour. Based on the findings from experiments involving the CU²⁺ complex of bathocuproine disulfonate and the Fe²⁺ complex of diethylenetriaminepentaacetate, we propose that ^{*t*}BuOOH undergoes a single-electron reduction by CU²⁺, forming CU³⁺ and the *tert*-butoxyl radical, which undergoes rapid β -scission to [•]CH₃ (forming [•]OCH₃ upon oxygen addition). These findings have important implications for the mechanisms by which CU²⁺ initiates lipid peroxidation.

Supported by the Cancer Research Campaign