

Super Dense Core Ignition Scenario for Helical Device

N. Ohyabu and LHD team,

National Institute for Fusion Science

Presented at lst PSI-symposium and workshop 5-21- 2007

OUTLINE

Discovery of Stable Super Dense Core Plasma

- Internal diffusion barrier.
- Time evolution of SDC discharge.
- Pellet injection.
- Comparison between gas puff and SDC discharges.
- Foot location of IDB
- Quasi-steady operation.

A new Ignition scenario (high density core, relatively low density mantle)

External diameter13.5 mPlasma major radius3.9 mPlasma minor radius0.6 mPlasma volume30 m³Magnetic field3 TTotal weight1,500 t

ECR 84 – 168 GHz

NB

World largest superconducting coil systemMagnetic energy1 GJCryogenic mass (-269 degree C)850 tTolerance< 2mm</td>

Present View! Large Helical Device (LHD)

> Pellet Injector

Plasma vacuum vessel

Local Island Divertor (LID)

ICRF 25-100 MHz

Internal Diffusion Barrier (IDB)

Time evolution of IDB

Time constant of n(0) decay is ~1sec, indicating that D is very low (~0.02 m²s⁻¹)..

Without Pellet injection, No SDC Discharge

Need Pellet Injection for peaked density profile

For SDC operation

Confinement Improvement

For gas puff discharges, W_p increases with n_e , but saturation of W_p and radiative collapse occur at higher n.

For SDC discharges, W_p increases with n_e even at at higher n.

Comparison between SDC and gas puff discharges

Confinement Improvement Mechanisms in SDC discharges

In the outer region (mantle), ∇T tends to increase with P/n_{edge}

 $q = -n\chi \nabla T$

Location of IDB Foot depends on Rax

Inward shifted configuration $(R_{ax}=3.65m)$.

Small, but clear core

Standard configuration (R_{ax}=3.75m) Optimum core

Dense core expands up to LCFS for outward shifted configuration ($R_{ax} = 3.85m$).

Role of LID → pumping

- For inward shifted configuration, LID (possibly its pumping capability) is needed.
- For outward shifted configuration, it is not needed. The mantle density is low.
 Wall pumping is effective or D_{mantle} is high (we do not know why so).
- For steady state operation of SDC mode, active pumping such as LID is essential.

Edge Density and Temperature profiles for SDC discharge

- Foot location (n) moves outwards with Rax.
- Shoulder location (T)
 - $R\sim4.5\mbox{ m}$ independent of Rax

IDB foot (R_{foot}) increases with R_{ax} and β .

Foot location is close to those of "zero shear" and boundary between well and hill.

Density collapse at high beta

• It is a very rapid event where the core plasma is lost with a time scale of several hundred micro sec.

Quasi-steady state operation of SDC mode has been demonstrated.

Pellet injection tends to fuel the particle in the region with high ∇n .

Continuous pellet injection

Observation of Internal Diffusion Barrier (IDB) Enabling New Scenario of Super Dense Core Reactor

- Advantages of the High Density Ignition
- •Raising the density is easier.
- •Lower neoclassical ripple transport
- •Smaller effects of Alpha particle

FFHR 1,000 MW 6Tesla

A New Ignition SDC Scenario

- Internal Diffusion Barrier +Pellet maintain high density core.
- Achievement of ignition with core temperature as low as possible.

Low density mantle maintain the reasonably high ∇T .

SDC reactor designn $n^{o} = 5 \times 10^{20} \text{m}^{-3}$ $T^{o} = 8 \text{ keV}$ Conventional reactor $n^{o} = 1.5 \times 10^{20} \text{m}^{-3}$ $T^{o} = 30 \text{ keV}$

Ignition Condition I

Alpha Power density - Bremsstrahlung $P = 0.14 (nT)^2 F(T) [1 - 0.134 \cdot Z_{eff} / T^{3/2} F(T)]$ where $P(MWm^{-3}), n(10E20m^{-3}), T(10keV), F(10keV) = 1$

Minimum Temperature for Ignition:

$$\sim$$
 7 keV for Z_{eff}=2

Ignition Conditions II

Fusion power density
$$C \cdot (n_o T_o)^2 \cdot F(T_o, Z_{eff})$$

where n_o, T_o are core density and core temperature, respectively (. C is 0.14 MWm⁻³ with f (T=10keV) = 1. F (T_o, Z_{eff}) = f(T_o)[1-g(T_o, Z_{eff})]

$$q_{cond}(r_c) + q_{conv}(r_c) < q_{self}(r_c)$$

where

$$q_{self} = C \cdot n_o^2 \cdot T_o^2 \cdot F(T_o, Z_{eff})(r_c/2)$$

$$q_{cond}(r_c) = C^* (C_m n_m \chi_m / n_o \Delta_m) \cdot n_o T_o \qquad r$$
$$q_{conv}(r_c) = C^* (5C_b D_b / \Delta_b) n_o T_o$$

Where C*=0.16MJm⁻³, Units of n_o, T_o, χ_m , Δ_m are 10²⁰ m⁻³, 10keV, m²s⁻¹, m

Ignition Conditions III

In the IDB discharge, the convective heat flux is small in the mantle i.e.,

$$(\Delta_b/5\Delta_m)\cdot(n_m/n_o)\cdot C_m\chi_m >> C_b D_b$$

In such a case, the ignition condition is expressed by

$$n_m T_o \tau_E^* > \cdot (n_m / n_o)^2 / F$$

where
$$\tau_E^* = 0.43 r_c \cdot \Delta_m / C_m \cdot \chi_m$$

almost the energy confinement without SDC.

Reactor Parameters

	•	Minor radius	2.3 m
	•	Major radius	15.0 m
Ignition Condition	•	Magnetic field	8 T
D _b < 0.15 m ² s ⁻¹	٠	Core density	5 x 10 ²⁰ m ⁻³
$\chi_{\rm m} < 5 {\rm m}^2 {\rm s}^{-1}$ $\chi_{\rm m} < 100 {\rm ms}$	٠	Mantle density	1 x 10 ²⁰ m ⁻³
	•	Core temperature	8 keV
	•	Core beta	5 %
	•	Effective Z	2.0
	•	Mantle width (Δ_{m})	0.70 m
	•	Barrier width ($\Delta_{\rm b}$)	0.45 m

Observation of Stable Super dense Core Plasma

- Internal diffusion barrier.
- Pellet injection.
- Foot location of IDB shearless
- Quasi-steady operation.

New Ignition scenario {high density core(5x10 $^{20}m^{-3}$), relatively low density mantle (8keV)}