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ABSTRACT

Nonstandard analysis is a relatively new area of mathematics in which infinitesimal

numbers can be defined and manipulated rigorously like real numbers. This report presents a

fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many

examples applicable to generalized functions. To demonstrate the power of the subject, the

problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is

assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the

thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use

conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose

supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the

Heaviside function are applied which vary from zero to one across the shock wave. It is shown

that if the equations of motion are expressed in nonconservative form then the relationships

between the jump functions for the flow parameters may be found unambiguously. The analysis

yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover,

non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The

report shows that products of generalized functions may be defined consistently using

nonstandard analysis; however, physically meaningful products of generalized functions must be

determined from the physics of the problem and not the mathematical form of the governing

equations. 
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1.0 INTRODUCTION

The lion’s share of results in modern mathematics have been discovered from the study

and application of partial differential equations. Currently, no known mathematical theory

provides techniques to study all the linear and nonlinear partial differential equations of

mathematical physics. The lack of such a coherent theory makes the analysis of abstract linear

partial differential equations very difficult, and the analysis of general nonlinear partial

differential equations essentially insurmountable. The effect of the absence of a central theory is

that each different type of physical problem, and hence, each type of equation, requires a different

analytical or numerical method for its solution. Therefore, the subject of partial differential

equations reduces to a potpourri of seemingly unrelated techniques.

Existing methods to analyze partial differential equations are not very useful for nonlinear

problems, because almost all methods used are based on the linear mathematical structures

developed in functional analysis. Since linear mathematical structures do not describe the

simplest nonlinearity (multiplication) it is not surprising that functional analysis has not yielded a

general framework to study partial differential equations.

Many approaches have been used to attempt to define a useful multiplication operation on

spaces of functionals applied in linear analysis to study differential equations. The motivation for

multiplying functionals comes from a plethora of applications that occur in modeling physical

problems: construction of solutions of certain partial differential equations requires the

multiplication of linear functionals. However, a fundamental theorem of Schwartz [1] shows that

the standard algebraic product cannot be defined consistently on the spaces of functionals, such as

the distributions or classical generalized functions; all such methods will produce ambiguous

results leading to logical and arithmetical contradictions. Since standard multiplication does not

produce meaningful results, products of generalized functions have been defined which are

weaker than standard multiplication. The resulting spaces of generalized functions are algebras

containing the classical generalized functions as a proper subset.

Over the last thirty years, E.E. Rosinger [2-5] and J.F. Colombeau [6,7] working

independently, have developed a theoretical framework for quotient algebras of generalized

functions to analyze nonlinear partial differential equations. Their approach extends classical

linear mathematics to nonlinear mathematics by defining multiplication on the classical
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generalized functions by embedding these linear spaces into abstract algebras of nonlinear

generalized functions with a weak operation of multiplication. The potential use of such theories

of nonlinear generalized functions allowing the analysis and approximation of solutions to

nonlinear partial differential equations is enormous. Such a theory could impact almost all areas

of science and technology. In engineering, for example, a coherent mathematical theory would

help advance the numerical methods used to predict solutions of complicated problems and could

reduce significantly the physical experimentation needed in the solution of engineering problems.

While it is probable that these theories of generalized functions will yield insight into the

theory and computation of certain classes of nonlinear field equations, significant potential

limitations of the theory of nonlinear generalized functions are known. Since any logically

consistent operation of multiplication of generalized functions must be much weaker than the

classical multiplication of numbers and functions, such a product of generalized functions will

always yield large collections of abstract objects representing weak solutions of the problem

under investigation. The upshot is that a theory of nonlinear generalized functions allows the

solution of problems not defined in classical mathematics by relaxing the uniqueness of

multiplication. Basically, problems with no classical weak solutions, such as the product ,

are converted into problems with uncountably many generalized solutions. The central issue then

becomes how to determine a physically observed solution from an infinitude of possible weak

solutions.

An example of both the power and limitation of the theory of nonlinear generalized

functions can be seen in the research of Rosinger [5,8]. In his work, conditions are given which

yield generalized solutions for arbitrary polynomial nonlinear partial differential equations.

Rosinger has shown that generalized solutions can be obtained for all equations of the form:

(1.1)

where  is an unknown function  is a derivative operator,  are multi-indices, and  are

specified functions. However, this result is not immediately useful in practice, because it tells

nothing about how to approximate the solution .

To approximate solutions, Colombeau (see references [6,7]) constructed an explicit theory

of nonlinear generalized functions. This theory has been applied to analyze and compute solutions
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to nonlinear partial differential equations. The logic of solving a differential equation in a space of

Colombeau generalized functions follows the standard approach of functional analysis: a method

is established for generating sequences to approximate solutions within a collection of nonlinear

generalized functions and then a compactness argument is applied to show that the approximating

sequences actually converge to limits within the space of approximating objects. A resulting limit

then represents a solution to the equation. A key difficulty in applying a space of Colombeau

generalized functions is determining a specific representation for the products of generalized

functions occurring in the differential equation. As Colombeau [9] and his co-workers [10,11]

have shown, different physical problems require different distinct representations for the same

product of generalized functions such as . The representation of the product is found by

adding more physical information about the problem. Roughly speaking, the solution of a

concrete problem via nonlinear generalized functions requires: the equations governing the

physics, the initial-boundary values, and additional problem-specific physical information

required to fix the product of generalized functions. For example, in continuum shock wave

problems, the additional information is obtained by requiring the product of generalized functions

to satisfy the standard shock wave jump conditions.

In studying the Colombeau generalized functions a number of authors including, Todorov

[12], Oberguggenberger [13], and Hoskins and Sousa Pinto [14], have shown that versions of the

Colombeau algebras of nonlinear generalized functions may be constructed using nonstandard

analysis. Nonstandard analysis is a relatively new area of mathematics which emerged from basic

research in mathematical logic. The subject was discovered in the early 1960s by A. Robinson

[15]. The main contribution of nonstandard analysis to mathematics is the extension of the real

numbers R to the hyperreal numbers *R which contain infinitely small (infinitesimal) and

infinitely large numbers. The infinitesimals in the hyperreal number system have the properties

that Leibniz applied in his development of the calculus, which justifies the algebraic

manipulations of infinitesimals that engineers and physicists often use. Moreover, the existence of

distinct infinitely large numbers that can be manipulated and used like finite numbers to solve

problems provides a powerful new tool for applications. Nonstandard methods may be used to

construct algebras of nonlinear generalized functions or nonstandard analysis may be used

directly to study problems involving multiplication of generalized functions. The second

approach is considered here.

! H"
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In this report the problem of shock wave jump conditions for a one-dimensional

compressible gas is studied using nonstandard analysis. A class of nonstandard Heaviside

functions is applied to model the microstructure of the shock wave jump. The term microstructure

refers to the analytical description of the functions which represent the flow variables such as

density, pressure, velocity and entropy across the shock wave. The shock wave is governed by the

standard conservation equations written in primitive form. The shock jump is then modeled to

occur over an infinitesimal interval. The family of Heaviside functions applied has some very

interesting properties which are exploited in the subsequent analysis: for a function  with

jump  at  define

(1.2)

where  is at least a  function and  is a differentiable, nonstandard Heaviside

function. Following Colombeau [16], each flow parameter is assumed to have a different

Heaviside function associated with it at the shock. This means that each flow variable may have a

different shape or microstructure across the shock wave.

It is shown that if the various Heaviside functions for the flow parameters have their

jumps located on the same infinitesimal interval, then the governing equations expressed in

nonconservative form yield the relations between all these Heaviside functions unambiguously.

Strictly speaking, the mathematics of the product of nonstandard generalized functions is

unambiguous; that is, use of differentiable nonstandard Heaviside functions removes the

mathematical difficulties associated with products such as . The microstructure of the

Heaviside functions predicts the physical microstructure of the shock wave jump if the governing

equations of motion model the physics of the shock layer. For an inviscid shock wave, this

analysis cannot reproduce the physical microstructure, because the physical information

describing the shock region is missing. However, for a viscous shock wave, this analysis

reproduces the experimentally observed shock structure. The analysis also yields the classical

Rankine-Hugoniot jump conditions found for inviscid compressible flows. Moreover, the unusual

microstructure of the Heaviside function for the inviscid entropy jump is obtained by the

nonstandard method and is similar to that found by Morduchow and Libby [17] using a viscous

flow description and the results of Iollo and Salas [18] using Colombeau’s nonlinear generalized

functions.
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The present work was motivated by the authors’ interest (see Baty et al. [19]) in

understanding how to add physical information to specify nonlinear generalized functions

contained in differential equations which model problems with well defined regions of solution

discontinuity, such as a shock wave jump problem. In an intuitive sense Colombeau’s generalized

functions must represent the infinitesimal microstructure of the shock wave across the jump.

Therefore in analogy with these generalized functions, the present work applies nonstandard

analysis to build a rigorous, explicit example of the infinitesimal microstructure of a shock wave.

If the existence of the nonstandard Heaviside functions is assumed given, the present

development greatly simplifies the description of the product of generalized functions, because

the level of mathematical abstraction is reduced to an advanced calculus problem and not that of a

research problem in functional analysis, Keisler [20] and Laugwitz [21]. Moreover, the derivation

of the hyperreal shock wave jump conditions helps distinguish between mathematical and

physical ambiguities in the inviscid and viscous flow cases.

Chapter 2 begins the technical development of the report by summarizing the equations of

motion in nonconservative form for a compressible perfect gas in one spatial dimension.

Equations for the inviscid and viscous flow cases as well as the non-heat conducting and heat

conducting cases are given. The basic physical assumptions about the gas are also outlined.

Chapter 3 outlines a generic construction of the hyperreal number system. Examples of

nonstandard differentiable Heaviside functions are then introduced. Some basic properties of the

nonstandard Heaviside functions are reviewed and examples of products of these nonstandard

jump functions and their derivatives are exhibited in the context of products of generalized

functions.

Chapter 4 applies nonstandard differentiable Heaviside functions to derive shock wave

jump conditions for an inviscid compressible gas. The relations between the jump functions are

obtained and then used to show that the entropy must exhibit a peak in the shock layer. The

location of the entropy peak is found to depend on the Heaviside functions for the specific volume

and pressure and cannot be specified for an inviscid flow field.

Chapter 5 extends the derivation of shock wave jump conditions of Chapter 4 to a viscous

compressible gas and shows that the flow field Heaviside functions are specified by the viscous

flow assumption. The shock wave jump functions are computed for both the non-heat conducting

and heat conducting cases for low Mach numbers. The computed Heaviside function for density is
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also compared with the density measured for a normal shock wave in a low density helium flow

field.

Chapter 6 then concludes the report with a summary of the key observations and results

presented.
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2.0 EQUATIONS OF MOTION

2.1 Conservation Equations

The Navier-Stokes equations govern the motion of compressible fluid flow. In cartesian

coordinates , the equations governing conservation of mass, momentum and energy

are given by:

, (2.1)

, (2.2)

, (2.3)

where  ( ) are the velocity components,  is the density,  is the pressure,  is the

energy per unit mass, and  is the temperature. The parameters  and  are the dynamic

viscosity, the second viscosity coefficient and, the thermal conductivity of the fluid, respectively.

These parameters are assumed to be constant. The conservation equations (2.1), (2.2) and (2.3)

represent five equations in terms of seven physical variables. To close the system of equations two

equations of state must be added which relate the thermodynamic variables  and :

, (2.4)

. (2.5)

Developments of equations (2.1), (2.2), and (2.3) and the equations of state (2.4) and (2.5) may be

found in Currie [22] and Thompson [23].

2.2 Inviscid Equations

For the development of the shock wave jump conditions for an inviscid, non-heat

conducting gas the conservation equations are assumed to model the motion of a gas in one spatial

dimension and time:

  so that   and . (2.6)
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Furthermore, since the gas is assumed to be inviscid and non-heat conducting the fluid parameters

drop out:

, , and .

With these assumptions, equations (2.1) to (2.3) become

, (2.7)

, (2.8)

. (2.9)

For a perfect gas, the equations of state are given by

, (2.10)

, (2.11)

where  is the specific heat at constant volume (assumed constant) and  is the specific gas

constant.

The conservation equations are expressed in terms of specific volume  rather than

the density. Also, the notation for partial differentiation is simplified to the subscript notation,

. With these assumptions equations (2.7) - (2.9) become:

, (2.12)

, (2.13)

. (2.14)

Next combining the equations of state with the energy equation (2.14), it may be shown

that 

, (2.15)

where 

, (2.16)
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is the entropy per unit mass and where  is the ratio of specific heats. Since the gas motion on

either side of a shock wave is assumed to be isentropic, equation (2.15) reduces to zero along

streamlines upstream and downstream of a shock wave. However, a shock wave is not isentropic

process, so across the shock wave equation (2.15) is not zero:

,

which implies

.

Therefore, the equations governing the unsteady, one-dimensional motion of an inviscid, non-heat

conducting gas across a shock wave are given by:

, (2.17)

, (2.18)

. (2.19)

2.3 Viscous Equations

For the development of the shock wave jump conditions for an viscous, heat conducting

gas the conservation equations are assumed again to model the motion of a gas in one spatial

dimension and time. Applying the conditions of expression (2.6) to equations (2.1) through (2.3)

then yields

, (2.20)

, (2.21)

. (2.22)

And assuming the Stokes’ relation holds

, (2.23)

equations (2.21) and (2.22) become
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, (2.24)

. (2.25)

Next, expressing the conservation equations (2.20), (2.24) and (2.25) in terms of the

specific volume  rather than the density, and applying the subscript notation for partial

differentiation yields:

, (2.26)

, (2.27)

. (2.28)

Now, from the equations of state (2.10) and (2.11)

.

Recall from thermodynamics that

,

which yields

, (2.29)

where

.

Combining equations (2.28) and (2.29) then produces the following form of the energy equation:

. (2.30)

Equations (2.26), (2.27) and (2.30) are used to study shock jump conditions in an unsteady, one-

dimensional, viscous, heat conducting, perfect gas.
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3.0 NONSTANDARD ANALYSIS AND HYPERREAL NUMBERS

3.1 Construction of a Hyperreal Number System

A construction of a nonstandard or hyperreal number system *R is outlined in this section.

The construction is roughly analogous to the construction of the real numbers R using

equivalence classes of Cauchy sequences of rational numbers. For the hyperreal numbers,

however, the equivalence relation is based on the rates of convergence of sequences of real

numbers as well as the limits of convergence. The present notation and development essentially

repeats that of Hurd and Loeb [24]. Excellent elementary introductions to nonstandard analysis

may be found in Henle and Kleinberg [25], Keisler [20,26] and Hoskins [27], while more

advanced developments may be found in Lindstrom [28], Stroyan and Luxemburg [29], Davis

[30], and Arkeryd, et al. [31].

The goal of a construction of a hyperreal number system is to produce a linearly ordered

field (*R, +, ., <) which contains an isomorphic copy of the linearly ordered field of real numbers,

but also contains infinitely large and infinitely small elements. Let N be the set of natural numbers

. And let Rs be the set of all sequences of real numbers indexed by N. Every element

 many be written as:

. (3.1)

Natural componentwise operations of addition and multiplication may be defined for all 

via

, (3.2)

and

. (3.3)

With these binary operations, the resulting 3-tuple is a commutative ring with the identity:

,

and the zero

.

1 2 3 ;* * *

r Rs<

r r1 r2 r3 ;* * *= > rn$ %= >= =

r s Rs<*

r s? rn$ %= > sn$ %= >? rn sn+$ %= >= =

r s@ rn$ %= > sn$ %= >@ rn sn"$ %= > rnsn$ %= >= = =

1 1 1 1 1 ;* * * *= >=

0 0 0 0 0 ;* * * *= >=
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As an example of the algebraic operations defined by equations (3.2) and (3.3), consider the

sequences

 and  .

Then  and  yield:

,

and

.

All algebraic concepts used in the subsequent development may be found in Hungerford [30].

The space of all real sequences with the above addition and multiplication does not form a

field, because of the existence of non-zero zero divisors, for example:

. (3.4)

This problem is repaired by introducing an equivalence relation ~ on Rs and defining algebraic

and order structures on a quotient space  Rs /~  to yield a linearly ordered field (*R, +, ., <). The

equivalence relation is defined using the concept of an ultrafilter.

Definition 1. Let I be a nonempty set. A filter on I is a nonempty collection U of subsets of I

having the following properties:

a. The empty set is not contained in U: ,

b. If , then ,

c. If  and  then .

Definition 2. A filter is called an ultrafilter if for any subset A of I either  or its

complement .

Definition 3. If I is an infinite set, the collection of subsets  is a filter

called the cofinite filter on I. More generally, set A is cofinite with respect to I if  is finite. An

ultrafilter U on I is free if it contains .

r 1 3 5 7 ;* * * *= >= s 2 4 6 8 ;* * * *= >=

r s? r s@

r s? 3 7 11 15 ;* * * *= >=

r s@ 2 12 30 56 ;* * * *= >=

1 0 1 0 1 ;* * * * *= > 0 1 0 1 0 ;* * * * *= >@ 0 0 0 0 ;* * * *= > 0= =

A UB

A B U<* A B U<C

A U< I B AD D B U<

A U<

Ac I A U<–=

FI A I I A is finite–E= >=

I A–

FI
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A free ultrafilter U cannot contain any finite set, or else the free ultrafilter U must contain the

empty set and violates Definition 1a. The existence of free ultrafilters is not obvious and not

trivial. Their existence follows from a form of the axiom of choice and is highly nonconstructive.

Henle and Kleinberg [25] show how to obtain the elements of an ultrafilter on N using transfinite

induction. The following theorem guaranteeing the existence of free ultrafilters is proved in Hurd

and Loeb [24, p221]:

Theorem 4. Free ultrafilters exist on any infinite set I.

Now that it is known that free ultrafilters may be shown to exist on any infinite set, select

any free ultrafilter U on the set of natural numbers N. U will contain all the cofinite sets of N. A

relation ~ U is defined on the set of all real sequences of numbers, Rs using the ultrafilter U. To

simplify the notation the relation is written as ‘ ~ .’

Definition 5. If  , then    if and only if  . 

Lemma 6. The relation ~  is an equivalence relation on Rs.

The proof of Lemma 6 is given in Hurd and Loeb [24, p4]. Since the relation ~ forms an

equivalence relation on Rs, Rs is cut up into disjoint subsets or equivalence classes. Each

equivalence class contains all the sequences of real numbers that agree on infinite indexing

subsets of N which are contained in the free ultrafilter U. Following Definition 5, if

  and  ,

we have , because the set  is cofinite with respect

to N. The equivalence relation ~  is now used to define the nonstandard or hyperreal numbers.

Definition 7. Let *R denote the set of all equivalence classes of  Rs  induced by ~ :  

.

r s* Rs< r sF n N< rn sn== > U<

r 100 5 7 16 16 16 ;* * * * *–*= >= s 18 11 14 15 16 16 16 ;* * * * * * *–= >=

r sF n N< rn sn== > 5 6 7 8 ;* * * *= > U<=

*R Rs ~G.
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The equivalence class containing a given sequence  is denoted by [s]. Therefore, if  in

Rs then 

  in *R.

The elements of  *R  are called the nonstandard or hyperreal numbers.

From the construction of *R via the free ultrafilter U it may be shown that either

 or  but not both, will be identified with the zero element 

in *R. Therefore, the ultrafilter removes the problem of non-zero zero divisors in the

commutative ring based on the set of all real sequences, Rs. Since the selection of the free

ultrafilter U determines which sequence  or  is identified

with zero, the construction of the nonstandard numbers depends on U and does not appear to be

unique. Uniqueness of the hyperreals turns out to be a deep and subtle issue. It has been proved

that if the continuum hypothesis holds, the construction of the hyperreal numbers *R is

independent of the selection of the free ultrafilter in the following sense: all such quotient fields

constructed from a free ultrafilter based on N are isomorphic ordered fields. This means that one

realization of *R is algebraically equivalent to any other realization of *R. However, the

continuum hypothesis is not decidable within the Zermelo-Fraenkel axioms of set theory. If the

continuum hypothesis is taken as an axiom, the hyperreals are unique; on the other hand without

the continuum hypothesis, the uniqueness of the hyperreals is not decidable, Goldblatt [33].

Next to produce a linearly ordered field (*R, +, ., <), the algebraic and order relations must

be defined.

Definition 8. Let . Then define (using equations 3.1 - 3.3):

a. ,

b. ,

c.   if and only if  , and 

d.   if and only if    or  ,

where  >  and  >  are defined in a similar way.

s Rs< r sF

r, - s, -=

1 0 1 0 1 ;* * * * *= > 0 1 0 1 0 ;* * * * *= > 0, -

1 0 1 0 1 ;* * * * *= > 0 1 0 1 0 ;* * * * *= >

r, - s, -* *R<

r, - s, -+ r s?, - rn sn+$ %= >, -= =

r, - s, -" r, - s, - r s@, - rnsn$ %= >, -= = =

r, - s, -H n N <  rn snH= > U<

r, - s, -I r, - s, -H r, - s, -=
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The construction of *R together with the operations of Definition 8 yields a linearly ordered field:

Theorem 9. (*R, +, ., <) is a linearly ordered field.

The proof of Theorem 9 is simple; it is outlined in Hurd and Loeb [24, pp5-6].

Notice that the real numbers R from a linearly ordered subfield of  (*R, +, ., <). This may be seen

by introducing a mapping

, (3.5)

to embed R into *R.

Definition 10. If    define the mapping of expression 3.5 by

.

Theorem 11. The * mapping of Definition 10 is an order preserving isomorphism of  R into *R.

The proof of Theorem 11 is a straight forward verification of the relevant definitions.

Definition 12. If , then  is the set of all elements *a, where .  is the set of

standard numbers in *R.

Definition 13. Denote a hyperreal number by s (rather than [s]).

a. A number  is infinite if   for all standard natural numbers n;

b. A number  is finite if    for some standard natural number n;

c. A number  is infinitesimal if    for all standard natural numbers n.

At this stage, true infinitesimals may be identified in *R which do not exist in R. For

example,

*  :   R    *RJ

r  R<

* r$ % *r r r r ;* * *= >, - *R<.=

A RE AK a A< RK

s *R< n sH

s *R< s nH

s *R< s 1
n
---H
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,

is an infinitesimal since given any non-zero and finite hyperreal number , which is also

a real number,  no matter how small  is. This is true, because if , the smallest

natural number which is greater than or equal to , then

.

Note that the infinite sequence defining  is . Therefore, *R is much larger than R,

containing infinitely small numbers which can be manipulated like finite numbers. Moreover,

consider the hyperreal number

.

This number is larger than any finite number  and is therefore an infinite

hyperreal number because the set . Note that

,

, and

.

Also note that   gives another distinct infinite number.

Notice that each finite hyperreal number is either equal to a real number or else it is

infinitesimally close to a real number.

Definition 14. A finite real number which is infinitesimally close to a finite hyperreal number is

called the standard part of  , written  or just a.

For example if , then .

L 1 1 2 1 3 1 4 ;*G*G*G*= > 1
n
---1 2
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M N
O P
Q R

= =

r r$ %= >=

L rH r n0 1 rG, -=

1 rG

n N <  1n
--- r H

M N
O P
Q R

n0 n0 1 n0 2 ;*+*+*= > U<=

L 1 nG$ %= >

S 1 2 3 4 ;* * * *= > n$ %= >= =

p p p p ;* * *$ %= >=

n N <  n pT= > U<
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S
2
---- 1

2
--- 1 3

2
--- 2 5

2
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M N
O P
Q R n

2
---1 2
5 6
M N
O P
Q R

= =

LS 1 1" 1
2
--- 2" 1
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--- 3" 1

4
--- 4" ;* * * *

M N
O P
Q R 1

n
--- n"1 2
5 6
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1= = =

S2 12 22 32 42 ;* * * *= > n2$ %= > ST= =

a, - st a$ %

a 1 1 nG+$ %= >= st a$ % 1 1 1 ;* * *$ %= > 1= =
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Definition 15. Let .

a. x and y are infinitesimally close if   is an infinitesimal, written . The monad

of x is the set .

b. x and y are finitely close if   is an finite.

As implied by the examples above, a hyperreal number system contains many sets which

are not subsets of the real numbers. The subsets of a hyperreal number system *R may be

classified into two types of subsets: the internal and the external subsets. The internal subsets of

are the elements of standard subsets of R embedded into *R by the * mapping of Definition 10.

Definition 16. A subset  is called internal if there exists a sequence  of subsets

of R such that 

  if and only if  .

A set  is external if it is not internal.

The external objects contained in *R are the objects which do not result from objects in

standard analysis, while the internal objects are precisely the objects which result from extending

standard analysis via the * mapping. 

Definition 17. Let  be a sequence of functions defined on a set :

.

Then an internal function F

,

is defined by the assignment

,

where  and

.

x y* *R<

x y– x yU

m x$ % y *R  x yU<= >=

x y–

A* *RV An$ %= >

x xn$ %= > A*<= n N <  xn An<= > U<

W *RV

fn$ %= > A RV

fn :  A RJ

F :  A* *RJ

x xn$ %= >= A* F x$ % *R<J<

A* *RV

F x$ % fn$ %= > xn$ %= >X fn xn$ %$ %= >= =
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Example  18. As an example of an internal function, consider the sequence of functions

.

An internal function  results for each hyperreal number :

.

If the sequences of real functions used to obtain an internal function  are

componentwise differentiable and integrable, the internal function will be differentiable and

integrable via

, (3.6)

and

, (3.7)

where  and .

Moreover, calculus over the hyperreal numbers is straight forward and is analogous to

calculus over the real numbers. As examples, the derivative at , , of a differentiable

function  is defined as

,

where  and ; and the Reimann integral is given by the hyperreal sum

,

where . See Keisler [20,26] and Henle and Kleinberg [25] for a development of the

basic calculus in terms of the hyperreal numbers.

fn x$ %= > 1
Y
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1 n2x2+
--------------------"
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xd
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--------------------------------1 2
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k 1=
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=
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The * mapping has an important property that is key to applications of nonstandard

analysis to standard real analysis. Suppose a logical sentence, denoted by , is defined to be a

formula in a first-order language for the real numbers. The truth of a sentence  is conserved

under the * mapping in a strong sense:  is true if and only if   is true. In practice this result

means that theorems in real analysis are proved if nonstandard versions of the theorems are

proved; that is, standard results follow from nonstandard proofs. This conservation property of the

* mapping is called the transfer principle and follows from a theorem in mathematical logic on

ultrafilter extensions due to Los. A proof of the transfer principle is developed in Hurd and Loeb

[24].

3.2 Nonstandard Generalized Functions

In the early development of nonstandard analysis, hyperreal techniques were applied to

the classical generalized functions, Robinson [15], with application to quantum theory, Kelemen

and Robinson [34]. Robinson noticed that any regularizing sequence of smooth functions used to

represent the Dirac delta measure could be replaced by a single function with hyperreal

parameters. Intuitively a single function represents the limit of the regularizing sequence.

Consider the following delta sequence,

. (3.8)

Then letting the limiting parameter n be any infinite hyperreal number , a smooth

nonstandard function acting like the Dirac delta results:

. (3.9)

This nonstandard delta measure behaves exactly like its classical counterpart: taking the standard

part of the integral yields a functional producing the pointwise evaluation,

, (3.10)

_

_

*_ _

sn x$ % 1
Y
--- n

1 n2x2+
--------------------"=

n SJ

! x$ % 1
Y
--- S

1 S2x2+
---------------------"=

sn x$ %+ x$ % xd
`–

`

\n `J
lim st 1

Y
--- S

1 S2x2+
--------------------- + x$ %" " xd

`–

`

\
1 2
3 4
3 4
5 6

+ 0$ %= =
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for an arbitrary test function . More generally, the right-hand-side of equation (3.10)

may be used to define nonstandard linear functionals on spaces of internal test functions

. 

A nonstandard Dirac delta measure may be defined for any standard function  which

satisfies

,

by considering the internal function

,

where  is any infinite hyperreal number, Laugwitz [35].

Example 19. To see how the internal function of equation (3.9) acts like the Dirac delta, perform

the integration:

,

where  is any infinitesimal such that  is an infinite hyperreal satisfying 

.

Hence,

.

Then taking the standard part of the integral yields

,

which shows that the internal function of (3.9) acts like the delta measure.

The power of the linear theory of generalized functions comes from the fact that many

distinct regularizing sequences of functions may be applied to produce unique functionals, such as

the delta measure. It is well known that the linear theory of generalized functions may be

extended to a nonstandard theory of generalized functions, which reproduces the basic results of

+ D R$ %<

+ D *R$ %<

g

g x$ % xd
`–

`

\ 1=

! x$ % S g S x"$ %"=

S

1
Y
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--------------------- + x$ %" " x  d
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L S$ %–

L S$ %

\"U  + 0$ %
Y

----------- arctan Sx$ % L S$ %–
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---U
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Y
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--------------------- + x$ %" " x  d
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\  + 0$ %
Y

----------- Y
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---–1 2
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5 6  "U  + 0$ %=

st + 0$ %$ % + 0$ %=
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the standard theory, Laugwitz [21] and Richter [36]. In the standard theory the delta measure is a

unique functional resulting from the abstract limits of regularizing sequences; on the other hand in

the hyperreal setting, the functional whose standard part produces the delta measure can be

represented by uncountably many (internal) hyperreal functions with distinct microstructures.

Such internal functions are called pre-distributions, Palmgren [37]. The significance of the

nonstandard delta measures is in their utility; differentiable representations of such generalized

functions may be written down explicitly and manipulated like standard differentiable functions.

The focus of the present work is to exploit smooth representations of nonstandard generalized

functions to derive shock wave jump conditions. No attempt is made in the present report to

outline a nonstandard development of the linear theory of distributions.

The analysis of shock wave jump conditions requires the use of hyperreal Heaviside

functions. Like the delta measure, the Heaviside function can be represented by uncountably

many differentiable internal functions with distinct microstructures. To introduce a nonstandard

Heaviside function, let  and  be two infinitesimal numbers where at least one of them is not

zero, and where  and . An internal Heaviside function H(x) is defined as follows:

, (3.11)

where

,

 ,

and

.

(Here and in the following development the *-notation is suppressed.) Moreover, h(x) is assumed

to be a differentiable function, not necessarily monotonically increasing, which satisfies

  and  . (3.12)

As an example, the following function can be used for h(x) when x is in the open infinitesimal

interval .

L1 L2

L1 L2U L1 L2H

H x$ %

0       if    x L1I

h x$ %  if  L1 x L2H H

1       if    x L2aM
]
O
]
Q

=

0 *0 0 0 0 0 ;* * * *= >= =

h x$ % *h *x$ % hn xn$ %$ %= >= =

1 *1 1 1 1 1 ;* * * *= >= =

h L1$ % 0= h L2$ % 1=

L1 L2*$ %
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. (3.13)

Example 20. Figure 1 shows the standard Heaviside function

,

 and the nonstandard Heaviside  function given by combining equations (3.13) and (3.11):

, (3.14)

where  is a positive infinitesimal. All the plots of the hyperreal functions are normalized on the

finite interval  by setting . Notice that the standard Heaviside function has a jump

at  but the nonstandard Heaviside function is continuous . Also notice that  is a

differentiable function on  since  is differentiable. The derivative of  is the

internal function

,

which is a pre-distribution for the Dirac delta. For all real test functions  it may be

shown that

,

following a calculation similar to that performed in Example 19. An important property of 

is 

h x$ % 1
2
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2
---

Y L2 x–$ %
L2 L1–

----------------------cos–=

HSTD x$ %
0   if   x 0H
1   if   x 0TM
O
Q

=

H x$ %

H x$ %

0       if    x 0I

1
2
--- 1

2
--- Yx
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]
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,

where  is any infinite number and  is any infinitesimal number such that .

Figure 2 shows the derivative of the nonstandard Heaviside function  of equation (3.14) on

the normalized interval .

Another important property is that the support of  is the closed infinitesimal interval

. Suppose  is standard function which is discontinuous at  with right and left

limits  and  respectively. Then because , the integral satisfies 

.

This means that for a function such as  with discontinuity at , the derivative of 

picks up . By selecting  and  in equation (3.11), another nonstandard Heaviside

function  may be found such that  will have the following property

,

where . 

In particular, let  be a positive infinitesimal and ,  in equations (3.11)

and (3.12) to define a differentiable Heaviside function:

,

Then  has the following property
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.

3.3 Multiplication of Nonstandard Generalized Functions

The Schwartz theorem showing that generalized functions cannot be multiplied is a

manifestation of a basic structural limitation of algebraic mathematics. Following Rosinger [5],

consider the mathematical structure  consisting of a collection  of functions defined

on R which may exhibit a finite number of localized discontinuities. The standard Heaviside

function (with the STD notation suppressed) 

, (3.15)

is contained in . Let  and  denote the standard multiplication and differentiation operators

acting on the set .

From equation (3.15), notice that 

, (3.16)

for all . Then applying the derivative operator in the sense of generalized functions to

equation (3.16) yields

,

which implies that

,

and

, (3.17)

for all . But equation (3.17) contradicts the definition of the standard Heaviside function

(3.15). Therefore, the mathematical structure  is over-specified and discontinuity,

multiplication and differentiation cannot be combined in the algebraic steps of a single derivation.

The over-specification of  may be repaired by requiring that 

st KZ x$ % b x$ %" xd
`–
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.

Recall that a hyperreal number system is a field; hence, hyperreal numbers may be multiplied.

This implies that the hyperreal functions may be multiplied on intervals where they are defined.

Note that for any Heaviside function defined by equation (3.11),

, (3.18)

which implies that

,

because  for . That is, giving the Heaviside function  a fixed

microstructure removes the algebraic over-specification which leads to the contradiction of

equation (3.17). Also note, that by taking derivative of both sides of equation (3.18)

.

For example, equations (3.11) and (3.13) yield

.

Therefore,  has a clearly defined hyperreal range assuming  is a given nonzero

infinitesimal. Equation (3.11) generalizes for all differentiable nonstandard Heaviside functions to

the result that 

,

for all  , removing the contradictions obtained by setting

 .
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Example 21. Although the product of two smooth pre-distributions exists and is a smooth

nonstandard function, such a product will not yield a nonstandard distribution. To see this, recall

the internal function of equation (3.9) representing the delta measure and the consider the

functional acting on any standard test function ;

, (3.19)

where  is any infinite hyperreal and  is any infinitesimal hyperreal such that  is an

infinite hyperreal. Performing the integration yields

,

where

.

Then evaluating the limits of the integral

.

Notice that the first term of the right-hand-side of the integral satisfies

,

while the second term may be written

.

Therefore, the functional for the square of delta measure with the pre-distribution of (3.9)

produces

, (3.20)
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which is an infinite hyperreal number. And since the integral of the square of the Dirac delta is an

infinite number, the standard part of the integral is infinite. Hence, the square of the delta measure

does not yield a generalized function; and, the specific hyperreal number produced for 

depends on the choice of the pre-distribution used to represent the delta measure.

Example 22. The result of equation (3.20) and its interpretation for the square of the delta

measure changes dramatically if the functional of equation (3.19) is assumed to act on a space on

nonstandard internal test functions  instead of a space of standard test functions . To

see this, choose any internal test function  such that

,

where  is any infinite hyperreal and  is any infinitesimal hyperreal such that  is

infinite and  is finite. Integrating equation (3.19) then yields

, (3.21)

and taking the standard part of the integral produces the finite value:

.

Hence, the square of the delta measure (3.21) yields a nonstandard object which is analogous to a

Colombeau nonlinear generalized function. The specific finite number produced for 

depends on the choice of the pre-distribution used to represent the delta measure as well as the

choice of the nonstandard test function.

Example 23. As a second example of a product of generalized functions, consider . The

multiplication of the delta measure with the Heaviside function occurs in the analysis and

computation of shock waves if the governing equations of motion are written in nonconservative

form;  comes from the nonlinear terms, such as the convective acceleration term , for a

discontinuity in the field variable, . In the standard theory of generalized functions, the product
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 does not yield a well defined functional, because the results depend on the representations

of  and . To see this behavior, choose the following pre-distributions for the delta measure and

the Heaviside function:

,

,

where  is any infinite hyperreal and  is any infinitesimal hyperreal such that  is an

infinite hyperreal. Now, consider the functional acting on any standard test function :

. (3.22)

Integrating equation (3.22) yields

,

where

.

Hence, 

. (3.23)

If other pre-distributions are selected for  and , the numerical value multiplying  in

equation (3.21) will, in general, be different. In the numerical approximation of shock problems,

the use of nonconservative forms of the equations of motion produce shock wave speeds that
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depend on the numerical scheme and not the physics of shock propagation. Nonconservative

numerical simulations of one-dimensional shock problems may be found in Baty [38]. Such

numerical approximations are analogous to the result of equation (3.21); the specific numerical

values are fixed by the choice of the pre-distributions for  and .

Example 24. Again, consider the product , but now assume . Then for any pre-

distribution representing the delta measure,  defined on the interval , choose hyperreal

numbers ,  so that  is infinite,  is infinitesimal and  is an infinite hyperreal.

Then for any standard test function , the functional equation for  implies:

,

and,

. (3.24)

Therefore,

. (3.25)

Equation (3.25) is consistent with the results obtained by the standard theory of generalized

functions. This special case of the product  may be computed using only discontinuity and

multiplication and is not over-specified, since  is not differentiated. The differentiation of

the Heaviside function is avoided by applying integration by parts. To this end, consider the

standard version of equation (3.24):
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,

producing the same result as equation (3.25). This example is analogous to integrating the

governing equations of motion modeling shock wave propagation in conservative form: the

predicted shock wave speed will be independent of the numerical approximation.

Notice that the standard calculation performed in Example 24 to reproduce the result of

equation (3.25) depends on the order of the algebraic and analytic steps. Changing the order of the

operations can produce an over-specified problem with ambiguous results. This demonstrates the

power of applying nonstandard analysis to problems involving products of general functions: the

mathematical inconsistencies are removed and the problem may often be reduced to elementary

calculus. 

xd
d 1

2
--- H x$ %"1 2
5 6 + x$ % x  d

`–

`

\
1
2
---–

xd
d + x$ % x  d

0

`

\"
1
2
--- + 0$ %"= =
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4.0 INVISCID SHOCK WAVE JUMP CONDITIONS

4.1 Specific Volume, Velocity and Pressure Jump Conditions

Consider the motion of a normal shock wave propagating through a quiescent, perfect gas.

On either side of the shock wave the specific volume , velocity , pressure , and entropy , of

the flow are assumed to be constant. The goal of this section is to derive the jump conditions for

specific volume, velocity and pressure across a normal shock assuming that the governing

equations of motion are expressed in nonconservative form. The jump conditions for specific

volume and pressure are then applied in the following section to derive the jump condition for

entropy. Since the values of the field variables are constant on either side of the shock wave, the

shock wave does not accelerate, so that the shock speed is constant. Hence, the characteristics for

the shock wave are straight lines in the space-time domain. Along the characteristic lines the

governing equations reduce to total or ordinary differential equations, so the field variables , ,

and , may be assumed to have the following form of equation (1.2) across the shock wave:

, (4.1)

, (4.2)

, (4.3)

where  is a characteristic line,  is the shock speed, and where , with

the subscripts r and l referring to the right (downstream) and left (upstream) conditions across the

shock, respectively. The functions , , and  are assumed to be smooth (internal)

nonstandard Heaviside functions as described in Chapter 3. Each one of these Heaviside functions

is taken to have its jump contained on the same infinitesimal interval .

Now substituting equations (4.1) and (4.2) into the continuity equation (2.17) yields:

, (4.4)

where . Defining  and collecting terms in equation (4.4) produces

,

which implies:

e u p s

e u

p

e 8$ % el e, -H 8$ %+=

u 8$ % ul u, -K 8$ %+=

p 8$ % pl p, -L 8$ %+=

8 x ct+= c +, -   +r +l–.

H 8$ % K 8$ % L 8$ %

0 L*$ %

c e, -HZ el e, -H+$ % u, -KZ– ul u, -K+$ % e, -HZ+ 0=

XZ
8d

dX. ũ u c+=

ũl u, -K+$ % e, -HZ el e, -H+$ % u, -KZ– 0=
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. (4.5)

Integrating both sides of equation of (4.5) then gives:

,

where  depends on the constant of integration. Applying the fact that  for ,

yields:

,

and hence,

. (4.6)

Recalling that  for , then implies:

. (4.7)

And combining equations (4.6) and (4.7) yields,

, (4.8)

so that  and  are the same function defined on the infinitesimal interval , i.e.,  and 

have the same microstructure. Notice that equation (4.7) is equivalent to the classical shock wave

jump condition for conservation of mass:

.

Next, substituting equations (4.1), (4.2) and (4.3) into the momentum equation (2.18)

yields:

. (4.9)

Applying  from equation (4.8) produces the separable equation:

. (4.10)

Then combining equations (4.7) and (4.10) implies:

e, -HZ
el e, -H+
----------------------- u, -KZ

ũl u, -K+
-----------------------=

H
el
e, -

-------– #
ũl
u, -

------- K+1 2
5 6+=

# H K* 0= 8 0=

#
vl u, -
e, -ũl

------------=

H
vl u, -
e, -ũl

------------K=

H K* 1= 8 L=

vl u, -
e, -ũl

------------ 1=

H K=

H K 0 L*$ % H K

/lũl /rũr=

c u, -KZ ul u, -K+$ % u, -KZ el e, -H+$ % p, -LZ+ + 0=

H K=

ũl u, -K+$ % u, -KZ
el e, -K+

------------------------------------------ p, -LZ+ 0=
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. (4.11)

Integrating equation (4.11) gives:

, (4.12)

where  is a constant of integration. Applying the property that  for , gives

; while applying  for , implies:

. (4.13)

Equation (4.13) is equivalent to the Prandtl relation:

.

Whence, equations (4.12) and (4.13) show that the microstructure for the jump functions  and 

is the same:

. (4.14)

Finally, by combining equations (4.8) and (4.14) it follows that the microstructure for the

Heaviside functions for the specific volume, velocity, and pressure jump conditions are coincident

across an inviscid shock wave:

. (4.15)

An important observation should be drawn from the analysis producing equation (4.15).

The algebraic and analytic operations shown in equations (4.4) through (4.13) appear to follow

closely well known calculations such as those performed by Colombeau and Le Roux, [10] and

Salas and Iollo [18] yielding the same result. In these works, however, the objects being

manipulated are nonlinear generalized functions (functional equations) written in a symbolic

notation similar to that used in advanced calculus; these objects are not smooth functions and do

not support all of the operations of ordinary algebra and calculus; the multiplication of singular

generalized functions is accomplished via a weak equality called association. In contrast to such

calculations, the objects manipulated in equations (4.4) to (4.13) (and indeed, in the following

sections of this report) are smooth nonstandard functions. Therefore, the algebraic and analytic

u, -2

e, -
----------KZ p, -LZ+ 0=

L u, -2

e, - p, -
----------------– K '+=

' L K* 0= 8 0=

' 0= L K* 1= 8 L=

u, -2

e, - p, -
---------------- 1–=

ũrũl p, - e, -
pr pl–
/r /l–
----------------= =

K L

K L=

H K L= =
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manipulations are the standard operations for smooth functions extended to smooth internal

functions.

Example 25. Notice that the derivation of equation (4.15) by using the governing equations in

nonconservative form requires manipulating products of the pre-distributions, , , and

 and their derivatives. Since these functions are differentiable the mathematical structures

applied in this analysis are not over-specified and will produce the same results obtained by

analyzing the problem in conservative form. For example, an expression for the shock speed 

may be derived using equation (4.7):

.

This relation implies 

,

and since , it follows that

. (4.16)

Equation (4.16) is the shock speed obtained from the equations of motion in conservative form

(which is also the physically observed shock speed).

4.2 Entropy Jump Condition

To derive the entropy jump condition, as in section 4.1 assume a solution for the entropy 

in the form of equation (1.2) across the shock wave

, (4.17)

where  is a characteristic line,  is the shock speed, and where , with the

subscripts r and l referring to the right and left conditions across the shock, respectively.

Combining equations (4.2), (4.3), (4.14), and (4.17) with the energy equation (2.15) yields:

H 8$ % K 8$ %

L 8$ %

c

vl u, -
e, -ũl

------------ 1=

ũl
vl u, -
e, -

------------=

ũl ul c+=

c 1
e, -

------- el u, - ul e, -–$ %=

s

s 8$ % sl s, -S 8$ %+=

8 x ct+= c s, -   sr sl–.

pl p, -H+$ % c s, -SZ ul u, -H+$ % s, -SZ+$ %   =

ce c p, -HZ ul u, -H+$ % p, -HZ 9 pl p, -H+$ % u, -HZ+ +$ %
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which implies

(4.18)

Equation (4.18) then produces:

. (4.19)

Recalling that equation (4.7) gives

,

implies that equation (4.19) may be written:

. (4.20)

Integrating equation (4.20) then produces:

, (4.21)

where  is a constant of integration. Now, applying the property that  for , gives

 ; (4.22)

while applying  for , yields,

. (4.23)

Equations (4.21), (4.22), and (4.23) then yield the jump function for entropy across an inviscid

shock wave:

. (4.24)

Notice that equation (4.24) may be derived from the thermodynamic equation for the

entropy, equation (2.19):

.

Hence,
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, (4.25)

where

.

Equation (4.25) shows that the jump function for entropy is a nonlinear function of . If

the Heaviside function  is assumed to be smooth and strictly monotonically increasing on the

infinitesimal interval , then the entropy jump function exhibits a peak in the shock layer: 

increases from  at  to a peak and then decreases to  at  such that . To see this,

differentiate equation (4.25) to produce:

. (4.26)

To find an extreme point, set

. (4.27)

Since  is a smooth, strictly monotonically increasing function, equations (4.26) and (4.27) give

,

which implies

. (4.28)

Recall from gas dynamics that pressure and specific volume jump terms and may be related

through the Rankine-Hugoniot equation for a perfect gas:

, (4.29)

Thompson [23]. Now, combining equations (4.28) and (4.29) produces:

,

which reduces to

s ce plel
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,

and hence, 

(4.30)

And from the assumptions on , a point  exists statisfying equation (4.30). This

derivation yields the following result:

Theorem 26. If    is a smooth, strictly monotonically increasing, internal Heaviside function,

the entropy jump function of equation (4.25) admits a maximum value in the shock layer .

From both theoretical and experimental work, it is known that  is a strictly

monotonically increasing function, Muntz and Harnett [39]. Furthermore, the existence of the

entropy peak in the shock layer is well known and has been derived using a viscous flow

assumption, Morduchow and Libby [17] and using Colombeau’s nonlinear generalized functions,

Salas and Iollo [18]. The present analysis demonstrates that the entropy peak is caused by

combining a nonlinear expression with a jump condition and does not depend on the viscosity of

the fluid.

To plot examples of the normalized entropy jump in the shock layer, the smooth internal

Heaviside function is assumed for the specific volume:

, (4.31)

where  is an infinite hyperreal and  is an infinitesimal hyperreal such that  is an infinite

hyperreal. On the interval  the Heaviside function of equation (4.31) satisfies:

  and  .

Figure 3 shows equation (4.31) on the normalized jump interval of  with . Now, if

the pressure and specific volume jump terms , of equation (4.24) are written as functions of the

Mach number, :
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(4.32)

and

 , (4.33)

with the upstream flow variables set to  and ; the entropy jump function may be

plotted. Figure 4 shows the variation of  on the normalized jump interval  for a

perfect gas flow with  for the normal shock wave Mach numbers . 

These entropy jump functions shown in Figure 4 exhibit peak values as required by

Theorem 26. Notice that the peaks all occur at . This is the result of the choice of the

Heaviside function in equation (4.31). As shown in the proof of Theorem 4.26, the peak of the

entropy occurs where the jump function obtains the value . Since,

,

the peak occurs at the mid point in the jump interval. Recall that the inviscid analysis does not

determine the specific Heaviside function for the field variables; only the relationship between the

field variable jump functions is found. Hence, different representations of the jump function for

specific volume will yield different entropy shapes and entropy peak locations. The key point of

the theorem is that a peak must occur for any strictly monotonically increasing jump function

assumed for the specific volume.

Example 27. An analysis similar to that used to derive the entropy jump condition shows that

across the shock wave:

. (4.34)

Suppose that equation (4.34) is zero across a shock wave. Recall from Chapter 2, that 

;

so that 

p, -
pl

------- 29
9 1+
----------- M2 1–$ %=

v, -
vl

------- 2
9 1+
----------- 1 1

M2
-------–1 2

5 6–=

pl 1= vl 1=

S 8 LG$ % 0 1*, -

9 7
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8 LG 1
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---=

H 8p$ % 1
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---=

H 1 2G$ % 1
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---=
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,

implies:

. (4.35)

Substituting equations (4.2) and (4.3) into equation (4.35) and applying equation (4.17) produces,

,

which may be written:

. (4.36)

Equation (4.36) implies that either

, (4.37)

or

, (4.38)

must hold. Equation (4.37) cannot be hold because  is not constant; hence, equation (4.38) must

be considered. By applying the values on the ends of the jump interval,  and , to ,

equation (4.38) yields two expressions:

, (4.39)

and

. (4.40)

Then combining equation (4.39) with equation (4.40) produces:

. (4.41)

Equation (4.41) implies that either the velocity or the pressure is constant across the shock wave,

which is physically incorrect (a basic contradiction). The upshot is that none of the inviscid shock

wave jump conditions may be derived in an unambiguous way by assuming

.

p st usx+$ % 0=

pt upx 9pux+ + 0=

ũl u, -H+$ % p, - 9 pl p, -H+$ % u, -+$ %HZ 0=
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HZ 0=

ũl p, - 9pl u, - 9 1+$ % u, - p, -H+ + 0=

H

8 0= 8 L= H

ũl p, - 9pl u, -+ 0=

ũl p, - 9pl u, - 9 1+$ % u, - p, -+ + 0=

u, - p, - 0=

st usx+ 0=
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5.0 VISCOUS SHOCK WAVE JUMP CONDITIONS

5.1 Jump Conditions for a Viscous Non-Heat Conducting Gas

Consider the motion of a normal shock wave propagating through a quiescent, viscous,

perfect gas. For the analysis of this chapter, the notation defined in section 4.1 will be applied.

The goal of this section is to derive the jump conditions for specific volume, velocity, pressure,

and entropy across a normal shock assuming that the governing equations of motion are expressed

in nonconservative form. For the present analysis the coefficients of visocity  and thermal

conductivity  are assumed to be constant. To derive these jump conditions, assume solutions for

the field variables , and  in the form of equation (1.2) across the shock wave:

, (5.1)

, (5.2)

, (5.3)

. (5.4)

The functions , , , and  are smooth nonstandard Heaviside functions with

their jumps contained on the infinitesimal interval .

Applying equations (5.1) and (5.2) with the continuity equation (2.26), a relationship

between the Heaviside functions for specific volume and velocity may be determined. This

analysis is identical to the inviscid derivation shown in equations (4.4) through (4.8) which

produces:

. (5.5)

Hence, the specific volume and the velocity have the same microstructure across the shock wave.

Next to develop a relationship between the Heaviside functions for the specific volume

and the pressure, equations (5.1), (5.2) and (5.3) are substituted in the momentum equation (2.27):

. (5.6)

Applying equation (5.5) to equation (5.6) produces:

,

7

k

e u p* * s

e 8$ % el e, -H 8$ %+=

u 8$ % ul u, -K 8$ %+=

p 8$ % pl p, -L 8$ %+=

s 8$ % sl s, -S 8$ %+=

H 8$ % K 8$ % L 8$ % S 8$ %
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H K=
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3
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3
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which implies,

. (5.7)

Combining  with equations (4.7), and (5.7) yields:

,

or

. (5.8)

where . Integrating equation (5.8) with respect to the characteristic variable gives:

, (5.9)

here  is a constant of integration. Applying the boundary conditions  for ,

shows that the constant of integration is zero:

. (5.10)

And applying the boundary conditions  and  for , then implies:

, (5.11)

which the same condition found using the inviscid momentum equation, (4.13). Equations (5.9) to

(5.11) give:

, (5.12)

which is a linear, non-homogeneous ordinary differential equation. Integrating (5.12) with respect

to the characteristic variable  and applying the boundary condition  then produces:

, (5.13)

where , and hence establishing the relationship between  and .
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Continuing, another equation relating the Heaviside functions  and  may be derived

using the energy equation (2.30) for a viscous, heat conducting, perfect gas. Recall that:

. (5.14)

Notice that assuming the field variables satisfy the functional form (1.2) it follows that:

. (5.15)

Then combining equations (5.14) and (5.15) with equation (2.30) implies

, (5.16)

where . From equations (5.1), (5.2), (5.5), and (4.7) it follows that

. (5.17)

From (5.17) equation (5.16) then becomes

,

and hence,

. (5.18)

where .

Next, applying equations (5.1), (5.2), and (5.3) with  and to equation (5.18) then

yields

. (5.19)

To express equation (5.19) in terms of , equation (5.12) implies:

,

, (5.20)

.

Substituting equations (5.20) into (5.19) then yields:
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ũl
vl
----"=

H K=

# p, -LZ el e, -H+$ % # e, -HZ pl p, -L+$ % pl p, -L+$ % u, -HZ+ +

i p, -Lg el e, -H+$ %– 2i p, - v, -LZHZ– i pl p, -L+$ % v, -Hg– ' u, -2 HZ$ %2– 0=

H

p, -L ' u, -HZ p, -H+.

p, -LZ ' u, -Hg p, -HZ+.

p, -Lg ' u, -HZg p, -Hg+.

# ' u, -Hg p, -HZ+$ % el e, -H+$ % # e, -HZ u, -HZ+$ % pl ' u, -HZ p, -H+ +$ %+



47

. (5.21)

Combining like orders of derivatives in equation (5.21) produces:

,

so that

,

and collecting the terms for ,

. (5.22)

Now for the case of a non-heat conducting gas, set  which implies .

Equation (5.22) then reduces to

. (5.23)

Recalling equation (4.7) and 

,

imply that equation (5.23) may be written:
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. (5.24)

Integrating the last expression yields:

, (5.25)

where  is a constant of integration. The boundary conditions  at  then imply

, (5.26)

while the boundary conditions  and  at  give:

. (5.27)

Example 28. Equation (5.27) may be shown to be true by rewriting this coefficient using equation

(4.7) as:

. (5.28)

Combining equation (5.28) with the Rankine-Hugoniot equation (4.29) then yields

,

which implies

,

as claimed.

Applying equation (5.26) to (5.25), the ordinary differential equation for the Heaviside

function becomes:

,

and

. (5.29)

Finally, recasting equation (5.29) as an integral equation yields:

ũl' u, -Hg ũl p, - 9pl u, -+$ %HZ ' u, -2 HHZ$ %Z 9 1+
2

----------- p, - u, - H2$ %Z 0=+ + +

ũl' u, -HZ ũl p, - 9pl u, -+$ %H ' u, -2HHZ 9 1+
2

----------- p, - u, -H2 j=+ + +

j H HZ* 0= 8 0=

j 0=

H 1= HZ 0= 8 L=

ũl p, - 9pl u, - 9 1+
2

----------- p, - u, -+ + 0=

p, -
pl

------- 9 v, -
vl

------- 9 1+
2

----------- p, -
pl

------- v, -
vl

-------+ + 0=

1 9 2–
29 9 1+$ % p, - plG+
---------------------------------------------1 2
5 6 9 1+

2
----------- p, -

pl
------- 2–

29 9 1+$ % p, - plG+
---------------------------------------------1 2
5 6+ + 0=

29 9 1+$ % p, - plG 29– 9 1+$ % p, - plG–+ 0=

ũl' u, - ' u, -2H+$ %HZ ũl p, - 9pl u, - 9 1+
2

----------- p, - u, -H+ +1 2
5 6H+ 0=

' u, - 1 v, -
vl

-------H+1 2
5 6HZ pl

p, -
pl

------- 9 v, -
vl

------- 9 1+
2

----------- p, -
pl

------- v, -
vl

-------H+ +1 2
5 6H+ 0=
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, (5.30)

where  is a constant of integration.

To compute the Heaviside function for the specific volume, equation (5.30) was solved

numerically. Since the left-hand-side of (5.30) is zero for , the constant of integration

becomes zero, . The coefficient  appearing on the right-hand-side of equation (5.30)

contains the viscosity of the gas and is a very large number which implies that the jump will occur

over a very small spatial interval. Once equation (5.30) was solved for , equation (5.20) was

applied to solve for .

Figures 5 and 6 compare the computed Heaviside functions for specific volume and

pressure for the Mach numbers of 1.5 and 3.0. All calculations performed shown here assume

. These Figures show that the microstructure associated with the specific volume and the

pressure is distinct and is a function of the Mach number of the flow field. A key result of the

viscous analysis is that the equations of motion contain enough physical information to specify

the jump functions  and . Figure 7 shows the specific volume jump function in terms of the

Mach numbers 1.5, 2.0, 2.5 and 3.0; while, Figure 8 shows the pressure jump function for the

same Mach numbers.

5.2 Jump Conditions for a Viscous Heat Conducting Gas

The jump conditions for a viscous, heat conducting, perfect gas follow from the analysis

of section 5.1 with the minor modification that the coefficient of thermal conductivity  is

assumed to be a non-zero constant. Recalling that the functions , , and,  are

smooth nonstandard Heaviside functions with their jumps contained on the infinitesimal interval

 for the specific volume, velocity and, pressure, respectively. The jump conditions for these

field variables are governed by equations (5.5), (5.13), and (5.22):

, (5.31)

p, -
pl

-------
1 v, -

vl
-------H+
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pl

------- 9 v, -
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------- 9 1+
2

----------- p, -
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------- v, -
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-------H+ +1 2
5 6H
-------------------------------------------------------------------------- Hd\
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' u, -
-----------8– f+=

f

8 0=

f 0= p, -
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-----------–

H 8$ %

L 8$ %

9 7
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---=
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, (5.32)

and

, (5.33)

where

, , , and .

Equation (5.33) may be integrated once to yield a second order ODE for the specific volume jump

function:

. (5.34)

By applying the boundary conditions  at ,

,

while the boundary conditions  and  at  are satisfied since equation (5.34)

reduces to equation (5.27). The boundary conditions for equation (5.34) then become:

 and . (5.35)

Once equation (5.34) is integrated to determine the specific volume Heaviside function, , the

pressure Heaviside function is computed via equation (5.20):

.

To compute  using equation (5.34), the coefficients are grouped so that the physical

parameters associated with the pressure and specific volume jumps across the shock wave may be
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expressed in terms of the Mach number by applying equations (4.32) and (4.33). The visocity and

heat conduction parameters are introduced in the Prandlt number. The Prandlt number enters into

equation (5.34) via the ratio of  and :

. (5.36)

Equation (5.30) for a viscous non-heating gas, shows that the thickness of the shock depends on

the parameter  containing the viscosity . To remove this parameter from the

governing equation, the following change of variables is introduced:

, (5.37)

so that

. (5.38)

For derivation in this section the Prandlt number is fixed to be . So equation (5.36)

implies:

.

Then applying equations (5.36), (5.37), and (5.38) to (5.34), the governing equation reduces to:

. (5.39)

To find the specific volume Heaviside function, , for a viscous, heat conducting gas,

equation (5.39) must be solved numerically. To perform such calculations, the boundary

conditions of (5.35) were replaced with initial conditions. The initial data may be specified from

the physics of the flow field requiring that the jump function satisfy an isentropic compression as

the flow enters the shock wave. In practice, this amounts to fixing the initial data as:

  and  , (5.40)

where  is a very small value. Numerically it was observed that as  or if  was fixed and

 the computed jump function  becomes symmetrical about an inflection point.
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Figures 9, 10, 11 and 12 show Heaviside functions for specific volume, pressure, entropy

and temperature, computed for a viscous, heating-conducting gas as a function of the Mach

numbers 1.5, 2.0, 2.5 and 3.0. As in the above section, all calculations shown assume . The

temperature Heaviside function was computed from the specific volume and pressure jump

functions using the equation of state (2.11). Figures 13 and 14 compare the microstructure of the

field variables for the Mach numbers 1.5 and 3.0. The entropy for a viscous, heating-conducting

gas exhibits a peak as was predicted via the inviscid analysis. The microstructure peaks observed

in the entropy and the temperature are the result of jump functions combined with nonlinear

equations of motion.

5.3 Comparison of Shock Wave Jump Conditions with Experimental Data

To check the shock wave microstructure predicted by equation (5.39), the resulting

specific volume jump function,  was compared with the density measured across a rarefied

shock wave by Muntz and Harnett [39]. In the Muntz-Harnett experiment, a supersonic helium

flow with a Mach number of 1.59 was used to generate a normal shock wave. The resulting

normal shock wave microstructure was approximately 2.2 cm wide, a distance which represented

~3-4 mean-free-paths for the HE molecules. The data produced in the experiment was also shown

in reference [39] to be in good agreement with a computational solution of the Navier-Stokes

equations.

For the present comparison, the Prandlt number and ratio of specific heats were specified

for helium as:

  and .

Moreover, density was nondimensionalized using the following functional form:

, (5.41)

with

 g/cm3 and g/cm3. 

Substituting the computed specific volume Heaviside function into equation (5.41) then yielded:

9 7
5
---=

H 8$ %

Pr 2
3
---= 9 5

3
---=

/K
/ /l–
/r /l–
----------------=

/l 1.92 10 8–l= /r 3.51 10 8–l=
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.

Figure 15 compares of the measured shock wave microstructure with that predicted by equation

(5.39). Overall the predicted density (specific volume) jump function is in good agreement with

the measured density. The main variation observed occurred near . The shape of the

density jump function depends on the initial data, (5.40). As the initial data approached zero the

predicted results produced were in good agreement with the experimental data. The predicted

jump function matched the measured jump condition closely around .

The microstructure computed for the other field variables for normal helium shock wave

are very similar to the jump functions shown in Figures 10, 11 and 12 of Section 5.3 for the

 case with  and  and, as such, are not shown.

/K
1 vl v, -H+$ %G /l–

/r /l–
---------------------------------------------=

/K 1=

/K 0=

M 1.5= Pr 3
4
---= 9 7

5
---=
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6.0 SUMMARY AND CONCLUSIONS

This report derived shock wave jump conditions for a one-dimensional compressible gas

using nonstandard analysis. Differentiable internal Heaviside functions were introduced and used

to model the microstructure of the flow field across a normal shock wave governed by the

classical conservation equations. For flow variables with their jumps defined on the same

infinitesimal interval, it was shown that the equations of motion written in nonconservative form

produced unambiguous relations between the various nonstandard Heaviside functions. The

analysis specified the microstructure across the shock wave for the cases in which the equations

of motion contained a physical model of the shock region. For an inviscid shock wave, the

analysis only produced the relations between the field variable Heaviside functions, because the

equations of motion contained no physical information about the shock region. On the other hand

for a viscous shock wave, the analysis predicted the microstructure across the shock wave. The

entropy peak observed across a shock wave was predicted by both the inviscid and the viscous

analyses and is the result of combining jump conditions with nonlinear field equations.

The present report was motivated by the authors’ interest in understanding how to add

physical information to specify products of generalized functions contained in differential

equations modeling physical problems with well defined regions of solution discontinuity. The

main conclusions of the report are as follows:

1. Nonstandard analysis may be used to identify differentiable internal Heaviside

functions defined on infinitesimal intervals that reproduce the standard jump

function results from distribution theory.

2. The derivative of a differentiable internal Heaviside function yields a pre-

distribution of the Dirac delta measure.

3. Examples of differentiable internal Heaviside functions and pre-distributions

of the delta measure were applied to compute nonstandard versions of products

of generalized functions. The products of such generalized functions were

shown to depend on the specific pre-distributions used to represent the

product. Higher order singular products such as  in general do not yield

standard generalized functions for functionals defined on spaces of standard

!2
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test functions; although standard generalized function-like objects may result

for functionals defined on spaces of nonstandard test functions.

4. Application of differentiable pre-distributions of the Heaviside function and

the delta measure in products of generalized functions removes the algebraic

over-specification and the associated mathematical ambiguities.

5. While mathematical ambiguities are removed by applying differentiable pre-

distributions, additional physical information must be given to find problem

specific pre-distributions for a given product of generalized functions.

Products of generalized functions may be defined consistently via nonstandard

analysis; however, physically meaningful products of generalized functions

must be specified from the physics of the problem under investigation.

6. The relations between the internal Heaviside functions for a one-dimensional

compressible inviscid gas were derived unambiguously from equations of

motion in nonconservative from by using differentiable pre-distributions to

represent the products of generalized functions.

7. The problem specific internal Heaviside functions for a one-dimensional

compressible viscous gas were found (computed) unambiguously from

equations of motion in nonconservative form by using differentiable pre-

distributions to represent the products of generalized functions.

8 The shock wave jump conditions were computed directly by solving for the

specific microstructure of the Heaviside functions of the flow parameters

instead of the flow parameters themselves. The flow microstructure was

defined on the characteristic lines as a traveling wave to transform the partial

differential equations of motion to ordinary differential equations. The

application of nonstandard analysis with the characteristic geometry of the

flow produced a significant simplification of the problem, since the resulting

ordinary differential equations are easier to solve than the equations of motion

used in classical analyses.
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Figure 1: Comparison of standard and nonstandard Heaviside functions. The normalized 
jump interval is the unit interval [0,1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.0 FIGURES 



 60 

Normalized Jump Interval x/!

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

H
ea

v
isid

e F
u

n
ctio

n
 D

eriv
a
tiv

e H
'(x

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 
 
 
 
Figure 2: The derivative of the nonstandard Heaviside function shown in Figure 1 
plotted on the normalized jump interval. 
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Figure 3: A smooth Heaviside function based on the inverse tan function plotted on the 
normalized jump interval with Ω   = 100. 
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Figure 4: The inviscid entropy Heaviside function as a function of the Mach number 
plotted on the normalized jump interval. 
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Figure 5: The viscous specific volume and pressure Heaviside functions for the Mach 
number 1.5, plotted on the normalized jump interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 64 

Normalized Jump Interval !/"#

0.0 0.2 0.4 0.6 0.8 1.0 1.2S
p

ecific V
o
lu

m
e &

 P
ressu

re H
ea

v
isid

e F
u

n
ctio

n
s, M

 =
 3

.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Specific Volume H(x)

Pressure L(x)

 
 
 
 
Figure 6: The viscous specific volume and pressure Heaviside functions for the Mach 
number 3.0, plotted on the normalized jump interval. 
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Figure 7: The viscous specific volume Heaviside function as a function of Mach number 
plotted on the normalized jump interval. 
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Figure 8: The viscous pressure Heaviside function as a function Mach number plotted on 
the normalized jump interval. 
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Figure 9: The viscous, heat conducting, specific volume Heaviside function as a function 
of Mach number plotted on the normalized jump interval. 
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Figure 10: The viscous, heat conducting, pressure Heaviside function as a function of 
Mach number plotted on the normalized jump interval. 
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Figure 11: The viscous, heat conducting, entropy Heaviside function as a function of 
Mach number plotted on the normalized jump interval. 
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Figure 12: The viscous, heat conducting, temperature Heaviside function as a function of 
Mach number plotted on the normalized jump interval. 
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Figure 13: The viscous, heat conducting, field variable Heaviside functions for the Mach 
number 1.5, plotted on the normalized jump interval. 
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Figure 14: The viscous, heat conducting, field variable Heaviside functions for the Mach 
number 3.0, plotted on the normalized jump interval. 
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Figure 15: The comparison of the density microstructure computed with Equation (5.39) 
with the density microstructure measured for a Mach number 1.59, normal, rarefied 
helium shock wave. 








