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Outline

PURPOSE OF WORK
Identify suitable graphite materials for anodes that meet the requirement 
for low cost and long cycle life.

Fabricate half cells (Li/graphite) and Li-ion (graphite/olivine) cells by 
optimizing parameters:
Li-graphite anode half cells and Li-ion cells by using:
– PVDF vs. WSB
– Olivine 

BARRIERS
Low energy and poor cycle/calendar life

APPROACH
Fabricate electrode coatings based on low-cost graphite and olivine.
Evaluate MCMB graphite, which has demonstrated a stable SEI layer, as 
baseline anode material. 
Optimize anode coating processes with new carbons that have different 
physical characteristics by identifying the suitable coating parameters that 
must be used. 



Summary of Reviewers’ Comments
from BATT Merit Review

Develop WSB , laminate Li ion cell with high rate 
capacity.

Assess the cost and performance of the SOA LiFePO4, 
gel electrolyte and WSB and plan to improve over 
existing technology.

De-emphasize gel work and emphasize range of binders 
(elastomers) available.

Work on WSB should be supported



Response to BATT Merit Review Comments

HQ developed WSB processing technology for cathodes and 
anodes that are very promising compared to PVDF binder

Li-ion cells with graphite and olivine 
electrodes with WSB and gel electrolyte 
were successfully cycled 
(400 cycles Li/LFP at 60 °C)

WSB will be evaluated with olivine 
and alternative graphite materials 
in Li-ion cells
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Approach

Meaningful analysis of SEI layers on graphite electrodes 
in the BATT program involves HQ efforts to:
o prepare laminates anode films and powders, and 

supply them to investigators in topic 3a involved with 
SEI analysis using different techniques. 

o utilize in-situ impedance measurements to investigate 
the SEI layer on the anode

Continue effort to identify benefits of WSB compared to 
PVDF in the anode
Investigate performance of alternative anode materials 
in cells with the olivine cathode
o prepare laminate cathode films and powders and 

supply them to BATT investigators for evaluation



Graphite Anodes for Li-Ion Cells

MCMB graphite

1. A good and stable SEI
2. Spherical shape
3. High cost

Osaka gas company 
stopped production

An alternative graphite 
is needed

- OMAC, Osaka Gas
Company

- SNG12, HQ

Pilot Coating with PVDF and WSB
Coating with and without carbon 
additive (AB, VGCF)



MCMB Characteristics
MCMB-6-28 MCMB-10-28 MCMB-25-28

- MCMB has spherical shape
3D is suitable for efficient 
coating and high-rate applications



Alternative graphites
OMAC-21OMAC-15 SNG12

Alternative graphites have
similar 3D shape as MCMB



Graphite Analysis by XRD and Raman Spectroscopy
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These carbons are highly graphitized with d002 = 0.335 nm
MCMB6-28 has the lowest ratio D/G and OMAC-21 has the highest ratio



Li/Electrolyte/Graphite (PVDF)
Discharge/Charge: C/24
1M LiPF6-EC-DEC
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(mAh/g)

MCMB-6-28 92 100 295.3

MCMB-10-28 92 100 326.9

MCMB-25-28 92 100 334.0

OMAC-15 96 100 364.9

OMAC-21 93 100 356

SNG12 86 97 370

OMAC has the highest 1CE and SNG12 has the lowest 1CE
Highest reversible capacity was found with SNG12



Li/Electrolyte/Graphite (WSB)

Sample 1st CE
(%)

2nd CE
(%)

Rev. Cap 
(mAh/g)

MCMB-6-28 90 97 285.8

MCMB-10-28 91 100 297.1

MCMB-25-28 90 98 268.2

OMAC-15 95 100 351.7

OMAC-21 92 100 304.0

SNG12 92 100 315.0

OMAC-15 shows the highest 1CE and reversible capacity
Increasing reversible capacity observed in the following order:

MCMB25-10< MCMB6-28< MCMB10-28< OMAC-2< SNG12 < OMAC21
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Li/Electrolyte/Graphite, Cycling
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MCMB has stable capacity with cycle life
OMAC-15 has a capacity that increases with cycling
CE of different carbons are comparable and stable with cycle life
Large differences in capacities are observed with WSB
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Charge: 1C
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Li/Electrolyte/Graphite, Ragone

LiFePO4/1M LiPF6-EC-DEC/Graphite:
Discharge:C/4 and Charge: # rates

SNG12 exhibited the best rate capability with PDVF and comparable
to MCMB when WSB is used.
OMAC exhibited the best rate capability with WSB
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Effect of carbon additive 
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by creating a best network conductivity of electrode



Li-ion Cells with PVDF, ragone
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Graphite/EC-DEC-1MLiPF6/Li (C/24) Test
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Graphite/EMI(FSI)+0,7MLiFSI/Li (C/24) Test
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1st cycle CE is lower than with conventional electrolyte 
Interface resistance is higher than with EC-DEC



Reaction  of LiFePO4 powder and H2O

LiFePO4 absorb significant amount of water in a few seconds
LiFePO4 from hydrothermal process absorb more water than from solid-state process
Both uncoated and carbon-coated LiFePO4 absorb water
Water content depends on % carbon in  powder
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Reaction  of Co-grinding Carbon with C-LiFePO4 powder and H2O

Water content decreases (< 100  ppm) after drying
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Reaction  of C-LiFePO4 based electrode with H2O

Dry electrode has less than100 ppm of H2O after 18 h
Electrode from solid state C-LiFePO4 and PVDF has lowest water content
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Reaction of LiMPO4 (M=Fe, Mn, Ni, Co) powders with H2O

H2O absorption in LiMPO4 decreased after 24 hr in the following order: 
LiFePO4 < LiCoPO4< LiMnPO4<LiNiPO4
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Electrode Storage with different Temperature (humidity)
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Electrode Storage with different Temperature (dry air)

Capacity constant with when the time storage increasing
No Capacity fade when the temperature increasing
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Conclusion

OMAC-15 and SNG12 are suitable alternatives graphites in anodes 
fabricated with PVDF or WSB:

– Comparable first cycle current efficiency was obtained with graphite 
fabricated with WSB or PVDF indicating WSB is a suitable substitute for 
PVDF

– Li-ion cells with SNG12 anode and LiFePO4 cathode showed higher rate 
capability than comparable cells with MCMB and OMAC.

In-situ impedance spectroscopy is a good tool to study the SEI layer (Rf, Cf vs. voltage and cycle number).

High rate performance was obtained with SNG12 anode and LiFePO4cathode material.
– Significant water absorption by olivine compounds is observed, but is 

reduced by appropriate drying and storage.

Water content is determinant factor on the performance of olivines.



Activities for the Next Fiscal Year
Analyze the physicochemical properties of the SEI layer on graphite and 
olivines in standard electrolyte (VC) and HQ ionic liquid

In-situ impedance spectroscopy will be used in  studies with graphite 
(MCMB, SNG12 , OMAC15 and OMAC12 (new) 

Complete high rate performance and cycling with WSB anodes and olivines
Evaluate mixed graphite-SiO as an alternative anode

Examine the performance of other olivines, like LiMnPO4 as cathodes in Li-
Ion cells

Investigate dual oxide-olivine as a powder mixture or in multilayer 
structures in cathodes

Continue delivering laminated electrode structures and powders to 
investigators in the BATT program

HQ will built a new dry room (40 X 60 feet) and facilities for a18650 R&D 
assembly line at IREQ that will be available for the BATT program.



VC based standard electrolyte for SEI

1M LiPF6 +EC+DEC
+ 2 % VC

Graphite
(-)C- Olivines

(+) SEI

VC based standard electrolyte will made simultaneously stable SEI on graphite 
anode and carbon coated olivines
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