DEVELOPMENT OF AN ENVIRONMENTAL BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

Presented by: J. Robert Paterek, Ph.D

September 17, 2002

PREVIEW

- Definitions and abbreviations
- Scope of the problem
- Materials at risk
- Corrosion types
- Common control/prevention methods
- Innovative processes
- GTI's activities
- What next?

DEFINITIONS AND ABBREVIATIONS

- MIC -
- MICC -
- BAC -
- COS -
- Biocorrosion -

Biofilm -

- Microbially Influenced Corrosion or Microbial Induced Corrosion
- Microbially Influenced(Induced) Concrete Corrosion
 - Biologically Active Compounds
 - Currently Off-the-Shelf
 - an electrochemical process where microorganisms initiate, facilitate, or accelerate the corrosion reaction
 - matrix of microbial cells, extracellular polymeric substances (EPS) and high water concentration

TIME ANALYSIS

gti₄

							_					
Research Activity Quarter:	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd
Isolate and cultivate MIC-causing microorganisms from operational transmission pipelines.												
Design, construction, and testing of laboratory-scale pipeline simulation system.												
Determine optimal environmental conditions for biofilm formation & MIC activities using pipeline simulator.												
Evaluate pepper oil components to inhibit or mitigation of biofilm formation / MIC under optimal conditions.												
Identify and test biofilm formation / MIC mitigation and inhibition at various concentrations (BAC determinations).												
Identify commonly used pipeline chemicals (coatings,other biocides, corrosion inhibitors, <i>etc.</i>).												
Analyze interactions of biofilm / MIC mitigating components / concentrations with pipeline chemicals												
Evaluate potential delivery systems for biofilm/MIC mitigating components as foams, coating, injection, <i>etc.</i>												
Determine potential cost-effective production systems / sources for biofilm / MIC mitigating products.												

COST AND SCOPE OF CORROSION PROBLEM

Estimate Date	Country	Industry	Cost	Percent GNP	
1978	USA	All	\$70 Billion	4.2	
1977	Japan	All	\$9.2 Billion	1.8	
1969	UK	800 industries and gov't	\$3.2 Billion	3.5	
1969	USSR	All	\$6.7 Billion	2.0	
1969	Germany	All	\$6.0 Billion	3.0	
1995	USA	All	\$300 Billion	Not determined	

COST ELEMENTS

Capital Costs

Equipment and building replacement Excess capacity Redundant equipment

Design Costs

Construction materials Corrosion allowance Special processing

Control Costs

Maintenance and repair Corrosion control

Associated Costs Product loss Technical support Insurance Parts and equipment inventory

MATERIALS AT RISK

<u>Metals</u>

Concrete and masonry

iron

stainless steel

high Mo austenitic stainless steel

titanium

aluminum

Manmade materials

plastics

fiber-reinforced polymeric composites

COS TECHNOLOGIES

Biocides

- Coatings, Sleeves, and liners
- Pigging and Cleaning
- "Corrosion-resistant" materials for pipes, etc.
- Electrochemical, such as cathodic protection

BIOCIDES AND ENVIRONMENTAL ANTIMICROBIALS

COST: \$1.3 BILLION PER YEAR

Availability

- Cost
- Storage and Handling
- Regulations

BIOCIDES AND ANTIMICROBIAL PROVIDERS

Amoco
Calgon
Ondeo/Nalco
Chevron
Clorox
Rohm and Haas
Union Carbon

INNOVATIVE TECHNOLOGIES ADDRESSED IN THIS PROJECT

- Rapid screening of biocide candidates
- Computational chemistry
- Natural products imitating natural microbial fouling control
- Microbial ecology and physiological control
- Traditional chemical engineering used in non-traditional ways

GTI's FOCUS IN INNOVATIVE TECHNOLOGIES

Rapid screening of biocide candidates

Screening of biocides and biofilm control agents in "habitat-simulating laboratory systems

"HABITAT-SIMULATING LABORATORY SYSTEMS"

Pipeline Test Loop

- 44 metal coupons
- Misters for liquid addition
- Atmosphere: natural gas
- Anaerobic conditions

WHAT IS PEPPER EXTRACT?

- Source is plant seeds and pods of genus *Capsicum* of the family *Solanaceae*
- Members of Capsicum

Capsicum annuum (Serrano)

Capsicum chinense (Habanero)


WHY PEPPER EXTRACT?

- Environmentally benign, i.e. food product
- Available plant product
- Stability
- Concentration of active ingredient(s) can be controlled

COMPLEXITY OF BIOFILM

Biofilm: Cohesive forces/detachment modes

© 1997 CENTER FOR BIOFILM ENGINEERING MSU-BOZEMAN

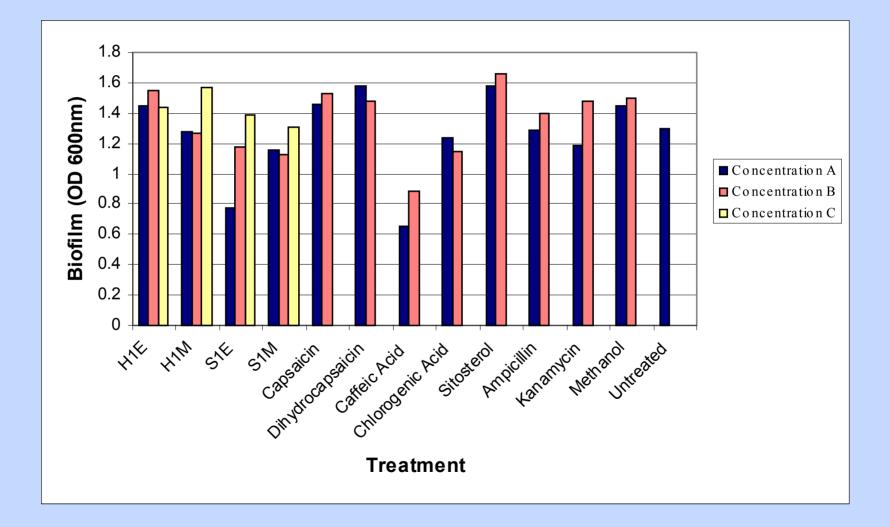
196497cs

Antimicrobial Activity of *Capsicum sp.* Compounds Against *Desulfovibrio sp.*

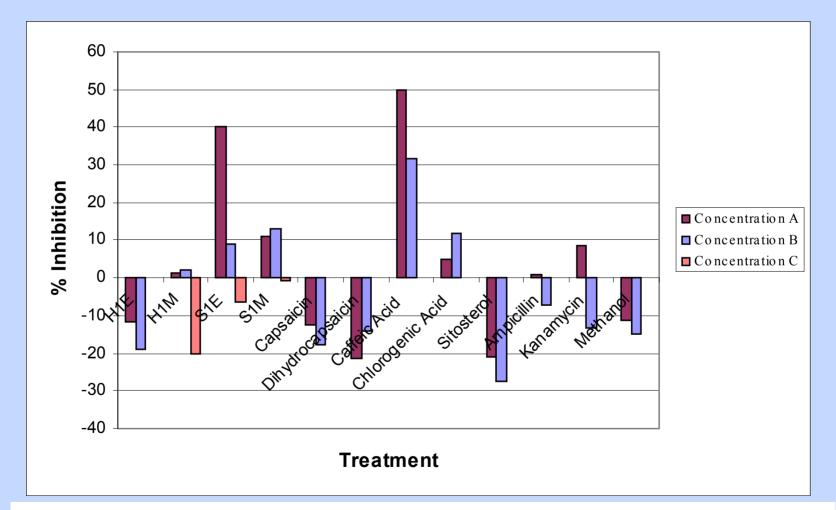
Agents	D. vu	lgaris	D. desulfuricans		
0	MIC	MBC	MIC	MBC	
H1E	312.5	625.0	78.0	312.5	
H1M	156.0	312.5	78.0	312.5	
S1E	156.0	312.5	78.0	156.0	
S1M	156.0	156.0	78.0	156.0	
Capsaicin	156.0	312.5	312.5	1,250.0	
Dihydrocapsaicin	240.0	480.0	240.0	960.0	
Caffeic Acid	302.5	302.5	302.5	302.5	
Cholorogenic Acid	312.5	312.5	312.5	625.0	
Sitosterol	4.11	16.43	65.75	65.75	
Kanamycin	>200.0	ND	>200.0	ND	
Ampicillin	6.25	6.25	6.25	25.0	
Methanol	0.625%	1.25%	1.25%	2.5%	

gti₌

ND – Not Determined (exact MIC value not obtained) Concentrations- ug/mL unless otherwise stated

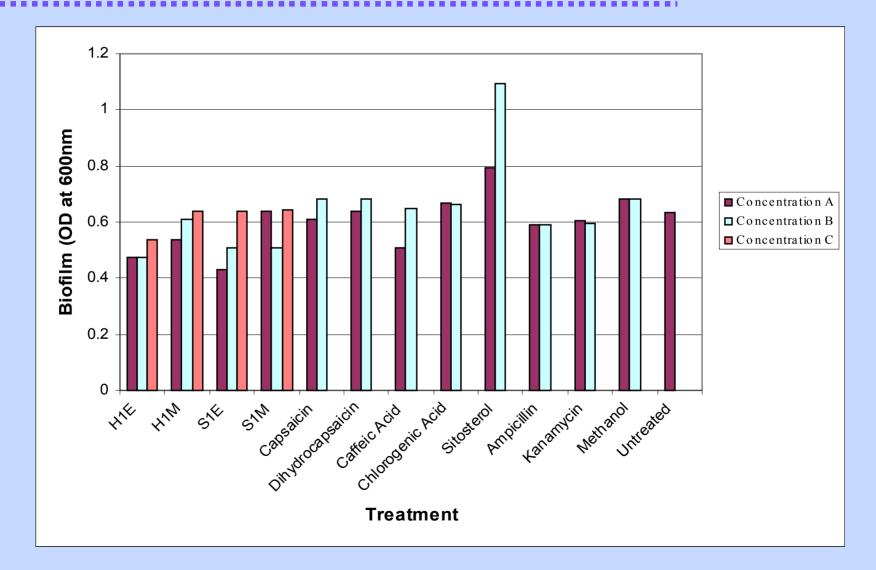

INHIBITION OF BIOFILM FORMATION

- Add test compounds to bacterial cells in growth medium (96-well plates)
- Incubate anaerobically for 120h @ 30-37°C
- Stain with 1% crystal violet after washing with distilled water
- Destain with 95% EtOH
- Measure the optical density at 600 nm

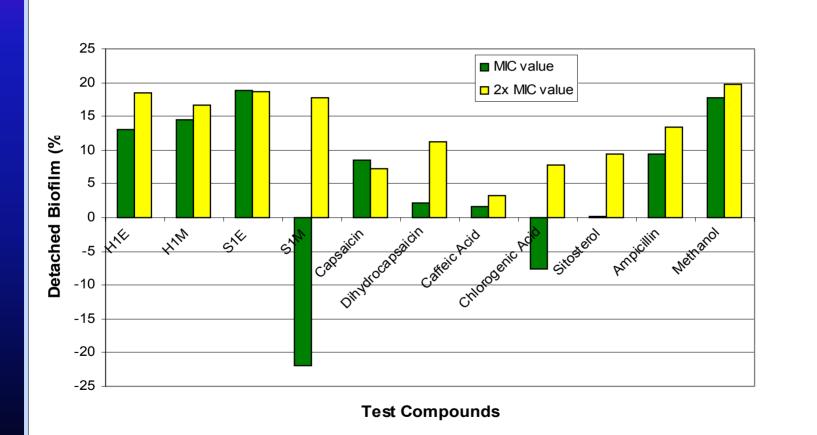

DETACHING FORMED BIOFILM

- Allow bacterial culture to grow in appropriate conditions for 96h
- Feed with fresh media & incubate for 48h
- Discard media; treat with test agents for 1h
- Stain with 1% crystal violet after washing with distilled water
- Destain with 95% EtOH
- Measure optical density at 600 nm

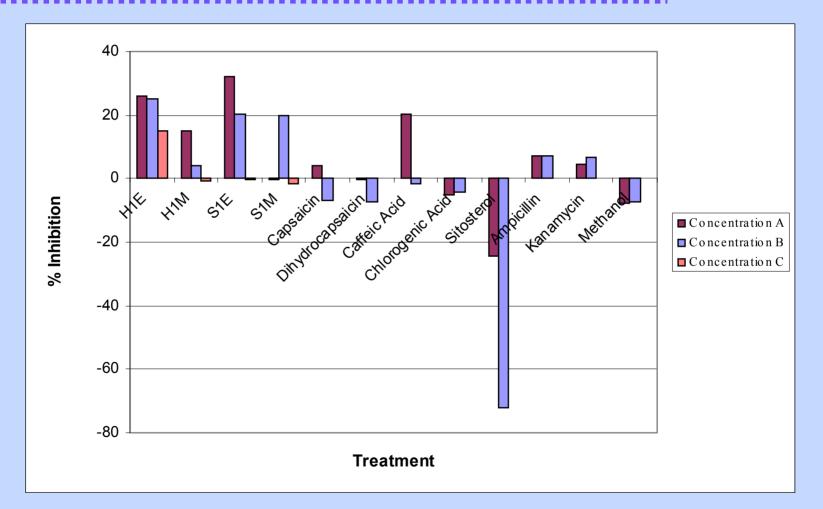
Capsicum sp. Compounds Effects on Desulfovibrio desulfuricans Biofilm (Raw Data)



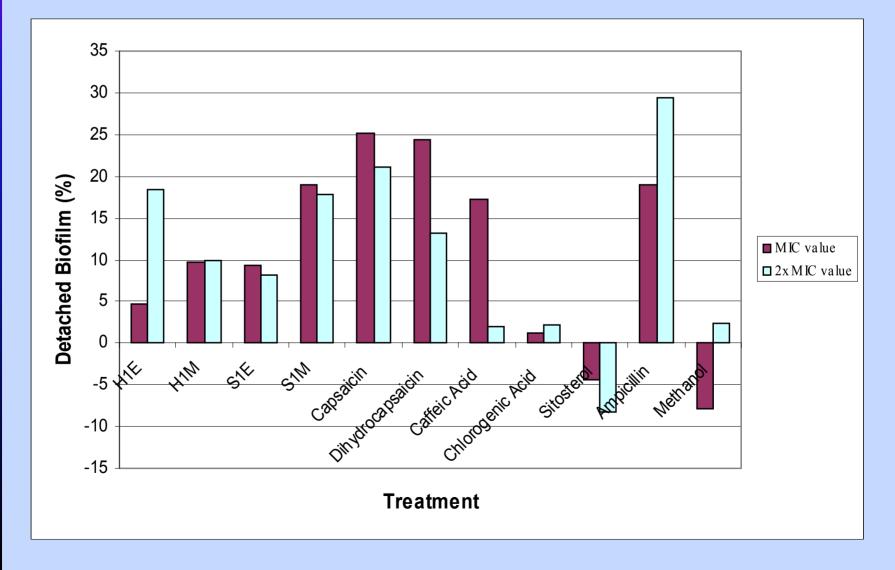
Inhibition of *Desulfovibrio* desulfuricans Biofilm Formation


Concentrations: Extracts& Chlorogenic Acid=1250, 625, 312.5; Capsaicin=625, 312.5; Dihydrocapsaicin=960, 480; Caffeic Acid=1210, 605; Sitosterol=131.5, 65.75, Ampicillin & Kanamycin=200, 100ug/mL, MeOH=2.5, 1.25%

Capsicum sp. Compounds Effects on Desulfovibrio vulgaris Biofilm (Raw Data)


gti

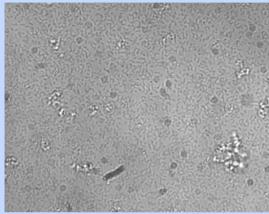
Capsicum sp. Detachment of Desulfovibrio vulgaris Biofilm


Inhibition of *Desulfovibrio vulgaris* **Biofilm Formation**

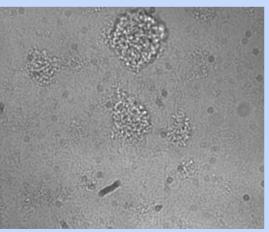
gti

Concentrations: Extracts& Chlorogenic Acid=1250, 625, 312.5; Capsaicin=625, 312.5; Dihydrocapsaicin=960, 480; Caffeic Acid=1210, 605; Sitosterol=131.5, 65.75, Ampicillin & Kanamycin=200, 100ug/mL, MeOH=2.5, 1.25%

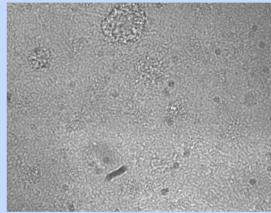
Capsicum sp. Detachment of Desulfovibrio desulfuricans Biofilm

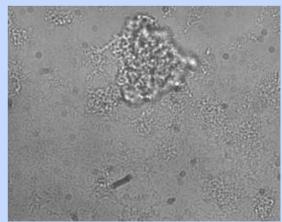

EFFECTIVE INHIBITORS OF Desulfovibrio BIOFILMS

Agent	Concentration, µg/mL				
	D. vulgaris	D. desulfuricans			
H1E	1250, 625, 312.5				
H1M	1250				
S1E	1250, 625	1250, 625			
S1M	625	1250, 625			
Caffeic Acid	1210	605			
Chlorogenic acid		625			

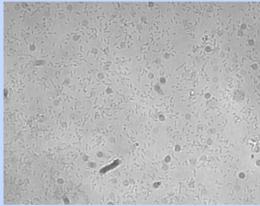


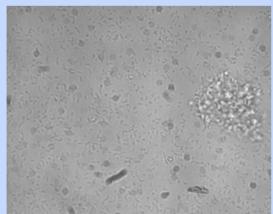
Monitoring *D. vulgaris* Biofilm using Continuous Flow Cell System


2h

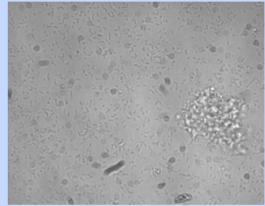

48h

24h


72h

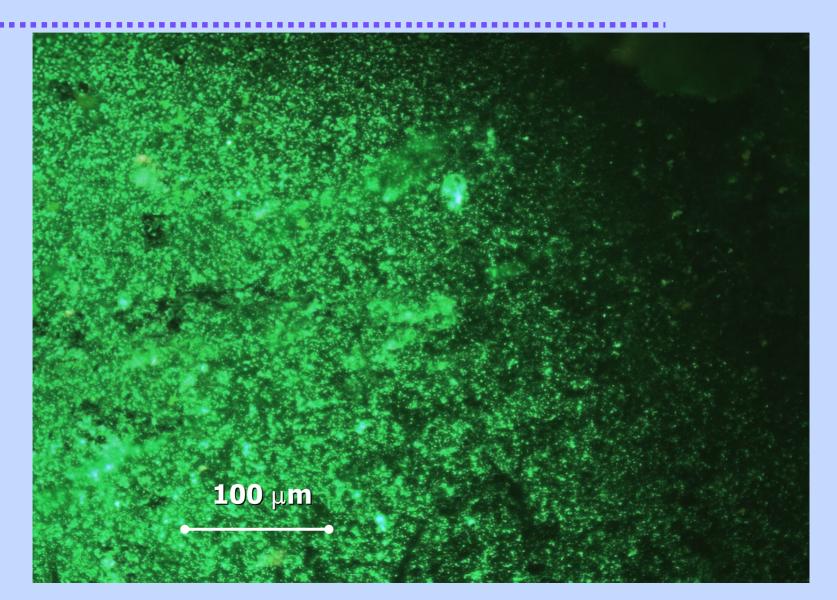

gti

Monitoring *D. desulfuricans* **Biofilm using Continuous Flow Cell System**

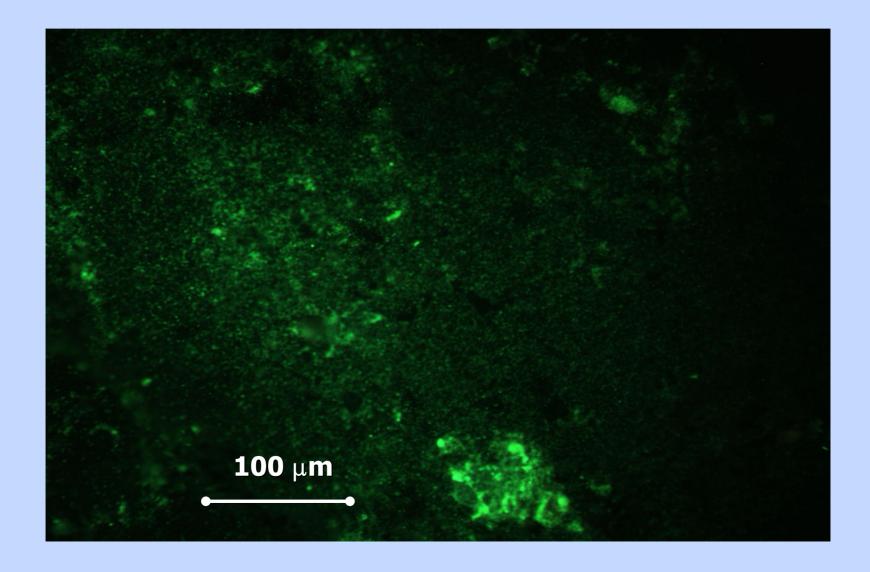

2h

48h

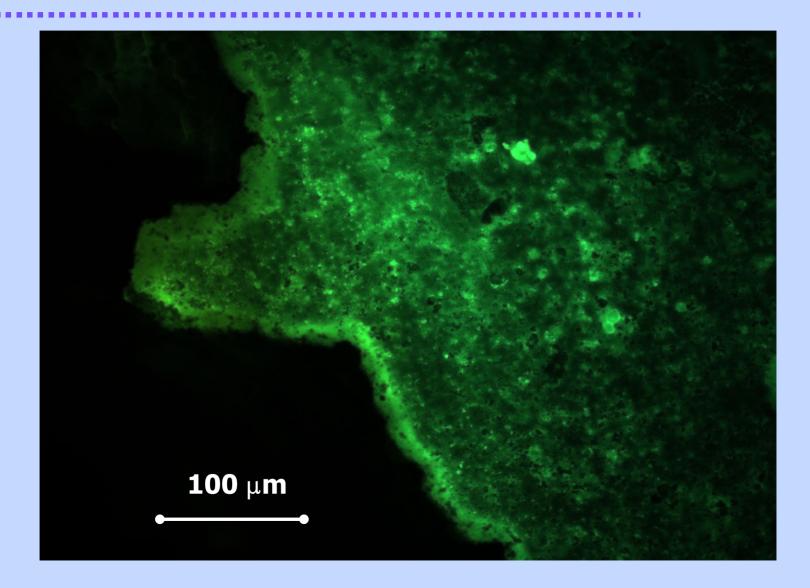
24h



72h



"HABITAT-SIMULATING LABORATORY SYSTEMS": NO EXTRACT


gti.

"HABITAT-SIMULATING LABORATORY SYSTEMS": PEPPER EXTRACT #1

gti

"HABITAT-SIMULATING LABORATORY SYSTEMS": PEPPER EXTRACT #2

GTI's FUTURE FOCUS

 Rapid screening of biocide candidates
 Computational chemistry
 Natural products imitating natural microbial fouling control

Microbial ecology and physiological control

oti Chemical engineering