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A model for predicting invasive weed and grass dynamics.
II. Accuracy evaluation1,2
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The impact of invasive weed management on plant community composition is highly
dependent on location-specific factors. Therefore, treatment means from experiments
conducted at a given set of locations will not reliably predict community response
to weed management elsewhere. We developed a model that rescales treatment means
to better match local conditions. The goal of this paper was to determine if this
rescaling improves predictions. We used our model to predict leafy spurge stem
length density and grass biomass data from field experiments. The experiments con-
sisted of herbicide-treated plots, untreated controls, and, in some cases, grass seeding
treatments. When herbicides suppressed leafy spurge, the model explained 21 to
48% more variation in grass response than did mean grass response to the same or
similar herbicide treatments applied at other sites. When herbicides killed grass, the
model explained 53% more variation in leafy spurge response than did mean leafy
spurge response to the same herbicide treatment applied at other sites. We regressed
model predictions against observed data and tested the null hypothesis that resulting
slope terms were equal to 1.0. Because the null hypothesis was rejected in two of
four tests, the model may systematically over- or underpredict in some situations.
However, measurement error in the observed data, unintended herbicide injury, or
an inaccurate allometric relationship may account for a major proportion of the
systematic deviations, and these factors would not cause prediction error in some
management applications. Because the model tends to be better than the means
from experiments at predicting plant community composition, we conclude that the
model could advance managers’ ability to predict plant community responses to
invasive weed management.

Nomenclature: Leafy spurge, Euphorbia esula L. EPHES.

Key words: Competition model, meta-analysis, population dynamics, validation.

Demographic models have provided a detailed under-
standing of the population biology of some invasive weeds
and have highlighted potentially viable control strategies
(Parker 2000; Shea and Kelly 2004; Werner and Caswell
1977). To date, however, invasive weed models have not
explicitly considered the demographics of desired plant
groups growing in association with the weeds. Therefore,
the models are ill-equipped for predicting plant community
response to weed management actions. This is especially true
when, as is typical, management only partially suppresses
the weed. Under conditions of only partial weed suppres-
sion, plant communities cannot be expected to fully revert
to their preinvasion composition.

Some plant population models do consider more than
one species, but these models describe annual weeds growing
with annual crops, as opposed to perennial weeds growing
with naturally occurring perennial plants (e.g., Cousens
1985; Firbank and Watkinson 1986). The development and
testing of crop–weed models has illustrated that, while intra-

1 Experiments were conducted while the authors were at the Department
of Land Resources and Environmental Sciences, Montana State University,
Bozeman, MT 59717.

2 Mention of a proprietary product does not constitute a guarantee or
warranty of the product by the USDA, the Montana AES, or the authors
and does not imply its approval to the exclusion of other products that
may also be suitable. The USDA-ARS, Northern Plains Area, is an equal
opportunity/affirmative action employer. All agency services are available
without discrimination.

and interspecific competitive relationships can be quite con-
sistent from place to place and year to year (Freckleton and
Watkinson 1998), weed seed emergence and mortality (i.e.,
factors driving population growth) are notoriously variable
(Cousens 1995; Freckleton and Watkinson 1998; Kropff
1988). Because seed-related processes are so variable, models
have not consistently predicted the impact of management
on weed population sizes in croplands.

Millions of hectares of grassland are codominated by pe-
rennial invasive weeds and perennial grasses and forbs (She-
ley and Petroff 1999). Seed dynamics are important for
long-distance dispersal in grassland ecosystems, but beyond
colonization, processes such as ramet production and adult
plant survival often dominate dynamics (Eriksson 1989;
Parker 2000). Therefore, lessons learned from phenomeno-
logical population models of annually tilled croplands do
little to establish our expectations of these same kinds of
models in invaded grasslands. In this article, we hope to
refine our expectations by testing the predictive capability
of a grassland weed model against data not used in devel-
oping the model. Cousens and Mortimer (1995) emphasize
the importance of such tests for evaluating whether or not
models are predictive outside the locations and years where
and when they are developed.

Development of the following model is described in Ri-
nella and Sheley (2005a):
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w (1 1 ag )t t11w 5 w exp r 1 2 [1]t11 t w5 6[ ]wmax

g (1 1 bw )t tg 5 g exp r 1 2 [2]t11 t g5 6[ ]gmax

This model combines properties of the Ricker (1954) equa-
tion with properties of a plant competition model developed
by Watkinson (1981). We call it the Watkinson–Ricker
model. Independent and dependent variables are leafy
spurge (Euphorbia esula) (w 5 weed) stem length density
(units are centimeters per square meter) and grass (g) bio-
mass (grams per square meter) at peak standing crop of year
t and t 1 1. Parameters are leafy spurge (rw) and grass (rg)
population growth rates, leafy spurge (wmax) and grass (gmax)
carrying capacities, the competitive effect of grasses on leafy
spurge population growth (a), and the competitive effect of
leafy spurge on grass population growth (b). Parameters of
this model were estimated from two field experiments in
which density matrices of leafy spurge, Kentucky bluegrass
(Poa pratensis), and western wheatgrass (Pascopyrum smithii)
were established.

We have outlined seven extrapolation problems that can
prevent off-site experiments from predicting on-site invasive
weed management outcomes. This article assesses the ability
of the model (i.e., Equations 1 and 2) to overcome three of
these problems. One of the extrapolation problems is caused
by nonlinear competitive relationships. There is strong evi-
dence that competitive relationships between leafy spurge
and grasses are nonlinear (Rinella and Sheley 2005a). Thus,
reducing leafy spurge density by a given amount at a re-
search site and by the same amount within a management
unit will cause a similar increase in grass production at both
locations only when the preremoval leafy spurge densities at
the two sites are similar. The model depicted by Equations
1 and 2 may alleviate the nonlinearity problem because it
predicts nonlinear competitive relationships.

The second extrapolation problem involves varying plant
productivities. Leafy spurge and grass carrying capacities
vary spatially, which makes it risky to rely on results from
an experiment without first rescaling them to match pro-
ductivity attributes of the management unit (Rinella and
Sheley 2005a). In theory, our model could enable managers
to easily estimate local carrying capacities. This would be
accomplished by measuring equilibrium grass and leafy
spurge abundances in small quadrats and then inputting the
measurements into equilibrium versions (i.e., zero-growth
isoclines) of Equations 1 and 2.

The third extrapolation problem occurs because one in-
vasive species can invade a variety of habitats and coexist
with a multitude of grass species (Table 1), but experiments
evaluate management strategies in areas containing only sub-
sets of the possible grasses. There is accumulating evidence
that per-unit-biomass competitive effects among coexisting
species are often similar (Aguiar et al. 2001; Gaudet and
Keddy 1988; Goldberg 1987; Mitchell et al. 1999; Peltzer
and Kochy 2001). Our model scales competitive effects in
terms of grass biomass and a measure that is highly corre-
lated with leafy spurge biomass (i.e., the summed lengths of
leafy spurge stems per square meter). Our model should
alleviate the species problem if between-species variation in

competitive effects is due to between-species patterns in
plant weight or size.

Our model’s ability, or inability, to predict data collected
across a large region over a span of many years will provide
information about the relative importance of the seven ex-
trapolation problems described by Rinella and Sheley
(2005a). If our model accurately predicts data presented in
this article, we will conclude that the problems addressed by
the model (i.e., nonlinearity, carrying capacity, and species
problems) are the critical problems. If, on the other hand,
the prediction error is extensive, we will conclude that the
model may not adequately address these problems or, alter-
natively, that unaddressed extrapolation problems are major
sources of error. The unaddressed extrapolation problems are
caused by variable population growth rates, variable com-
petition intensities, variable management effects, and ran-
dom error.

Materials and Methods

Selective Plant Removal Experiments

Study Sites

Selective plant removal experiments (SPREs) were con-
ducted at five locations within 249 km of Bozeman, MT
(Table 1). Equations 1 and 2 were developed using data
from field experiments conducted near Bozeman. Plant pro-
ductivity appeared to vary spatially at four of the five loca-
tions, so more than one SPRE was conducted at these four
locations to test the model under a variety of conditions.
We conducted 20 SPREs. All SPRE sites within a location
were ,2 km apart.

Experimental Design

SPREs were composed of four 1- by 1-m plots that were
fenced, where necessary, to exclude ungulate grazing. One
plot was selected randomly, while the other three plots were
selected systematically to be within 10 m of, and have veg-
etation characteristics similar to, the randomly selected plot.
This plot selection procedure helped minimize error caused
by small-scale variations in plant productivity. Treatments
were randomly assigned to the four plots. Two plots were
not treated, while herbicides that selectively kill either grass-
es or forbs were applied to the other two plots. Selective
herbicides have proven useful for studying plant competition
(Peltzer and Kochy 2001). Grasses were killed within one
plot by applying the monocot-specific herbicide sethoxydim
and crop oil concentrate at rates of 0.086 kg ai ha21 and
382 ml ha21, respectively. Leafy spurge was killed within
one plot by applying the dicot-specific herbicide picloram
at a rate of 0.56 kg ai ha21. Picloram was also applied to a
1-m-wide border strip surrounding this plot to prevent re-
invasion from plot borders and to limit possible border ef-
fects. All herbicide treatments were applied mid-May 2001.

Data Collection

Plant data were collected in early August 2002. Grasses
and forbs (other than leafy spurge) were measured by clip-
ping plants within the inner 85- by 85-cm area of plots at
ground level, separating forbs from grasses, drying to a con-
stant weight at 50 C, and weighing. Leafy spurge was mea-
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sured by totaling stem heights (hereafter referred to as stem
length density with units: centimeters per square meter)
within the inner 85- by 85-cm plot area.

Analysis

We used a few different forms of Equations 1 and 2 to
predict the SPRE data. Leafy spurge stem length density in
monocot herbicide–treated plots was predicted with a version
of Equation 1, while grass biomass in dicot herbicide–treated
plots was predicted with two versions of Equation 2.

For all accuracy assessments, biomass produced by species
other than leafy spurge or grasses was grouped with grasses
when predicting leafy spurge stem length density and was
grouped with leafy spurge when predicting grass biomass.
We also evaluated the reverse grouping procedure (i.e.,
grouping other-species biomass with grass when predicting
grass and with leafy spurge when predicting leafy spurge),
and it did not substantially affect our results. When group-
ing other-species biomass with leafy spurge, a linear regres-
sion relationship was used to convert biomass to equivalents
of leafy spurge stem length density (n 5 51, R2 5 0.62).
Data for the regression came from untreated SPRE plots
and plots used for developing Equations 1 and 2 (Rinella
and Sheley 2005a).

Zero-growth isoclines of Equations 1 and 2 are given by
Equations 3 and 4, respectively:

21w 5 w (1 1 ag) [3]max

21g 5 g (1 1 bw) [4]max

These equations describe the relationship between leafy
spurge and grass abundances at carrying capacity. Compe-
tition parameters were estimated from two field experiments
(a 5 0.00055, b 5 0.0088) (Rinella and Sheley 2005a).
Site-specific estimates of wmax and gmax were used for all
accuracy assessments. These parameters were estimated by
assuming untreated SPRE plots were at equilibrium and
then solving zero-growth isoclines for the carrying capacity
terms:

w 5 w (1 1 ag ) [5]max,i untreat,i untreat,i

g 5 g (1 1 bw ) [6]max,i untreat,i untreat,i

The untreat subscripts denote untreated plots, the bars in-
dicate means over untreated plots, and the i ’s are experi-
ments.

Approximately 1.5 growing seasons transpired between
herbicide application (i.e., plant removals) and grass and
leafy spurge measurement. Therefore, we projected plant
abundances for 1.5 growing seasons with equations analo-
gous to Equations 1 and 2:

w (1 1 ag )untreat,i s,iln(w ) 5 ln w exp r 1 2 [7]s,i untreat,i w5 6[ ][ ]wmax,i

g (1 1 bw )untreat,i p,iln(g ) 5 ln g exp r 1 2 [8]p,i untreat,i g5 6[ ][ ]gmax,i

We worked with the natural logs of both sides of the equa-
tions because we assumed error variances to be log-normally
distributed (Rinella and Sheley 2005a). Growth rate param-
eters were estimated from two field experiments (rw 5 1.5,
rg 5 0.8) (Rinella and Sheley 2005a). The p and s subscripts

denote picloram- and sethoxydim-treated plots, respectively,
at the end of SPRE i. Sethoxydim reduced grass biomass
production halfway through the growing season (i.e., at t 5
0.5), and leafy spurge was then allowed to equilibrate to
grass removal for the next 1.5 growing seasons; therefore,
ws,i ø wt12,i. We assumed untreated plots were at compet-
itive equilibrium and used the approximations wuntreat,i ø
wt,i ø wt11,i ø wt12,i in assessing the predictive ability of
Equation 7. Grass biomass was measured at t 1 2 but not
at t 1 1. Sethoxydim dramatically reduced grass production
throughout the experiments, which allowed us to reasonably
assume the following: gs,i ø gt11,i ø gt12,i. The same logic
was used for estimating dependent and independent vari-
ables of Equation 8: gp,i ø gt12,i, guntreat,i ø gt,i ø gt11,i ø
gt12,i, wp,i ø wt11,i ø wt12,i.

The above SPRE-based assessment of Equation 8 relied
on observed leafy spurge measurements. These fairly precise
leafy spurge observations were critical for testing Equation
8 because large observation variances would mask inade-
quate features of the equation. Observed leafy spurge data
cannot, however, be used to test the equation’s predictions
of grass response to herbicide use. When predicting grass
response to herbicide use, leafy spurge mortality has to be
predicted (i.e., it is unobservable prior to herbicide appli-
cation). We used the following version of Equation 8 to
assess how accurately our model predicted grass response to
a widely used leafy spurge herbicide (i.e., picloram):

ln(g )p,i

¯g (1 1 bw k)untreat,i untreat,i5 ln g exp r 1 2 [9]untreat,i g5 6[ ][ gmax,i

The parameter 5 wp,i /wuntreat,i describes leafy spurge mor-k̄
tality caused by picloram. Specifically, is the proportionalk̄
reduction in leafy spurge stem length density production
averaged over all i ’s (except for grass biomass for the i being
predicted). This method formulates grass biomass predic-
tions solely in terms of quantities observable prior to her-
bicide application.

Herbicide Experiments
Several experiments have evaluated the efficacy of leafy

spurge herbicides (Gylling and Arnold 1985; Hein 1988;
Lym 2000; Lym and Messersmith 1985, 1994; Markle and
Lym 2001; Maxwell 1984; Vore 1984). Equations analogous
to Equation 2 were evaluated using data from these exper-
iments. Each herbicide experiment consisted of untreated
plots and plots treated with dicot-specific herbicides (Table
1). Data came from 14 sites, and many sites were measured
during multiple years. Individual predictions were formu-
lated for each year’s data (i.e., data were not averaged across
years).

Some herbicide experiments reported data on leafy spurge
and grasses only (Table 1). In other cases, other-species data
were also reported, and these data were grouped with leafy
spurge data. Other-species biomass data were converted to
equivalents of leafy spurge stem length density using the
previously described linear regression relation. This relation-
ship was also used for converting leafy spurge biomass to
units of stem length density.

Insufficient information on the timing of herbicide ap-
plications prevented us from testing the population growth
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←
a These columns indicate the species targeted by the herbicide.
b 1 5 Selective Plant Removal Experiment (see text), 2 5 Vore 1984, 3 5 Maxwell 1984, 4 5 Gylling and Arnold 1985, 5 5 Lym and Messersmith

1985, 6 5 Hein 1988, 7 5 Lym and Messersmith 1994, 8 5 Lym and Tober 1997, 9 5 Lym 2000, 10 5 Markle and Lym 2001.
c Y indicates that a treatment type was used, and N indicates that it was not.
d a 5 downy brome (Bromus tectorum), b 5 bluebunch wheatgrass (Pseudoroegneria spicata), c 5 Carex spp., d 5 crested wheatgrass (Agropyron cristatum),

e 5 big bluestem (Andropogon gerardii), f 5 desert wheatgrass (Agropyron desertorum), g 5 blue grama (Bouteloua gracilis), h 5 needle and thread (Hesperostipa
comata), i 5 prairie junegrass (Koeleria macrantha), j 5 Japanese brome (Bromus japonicus), l 5 slender wheatgrass (Elymus trachycaulus), m 5 little bluestem
(Schizachyrium scoparium), n 5 green needlegrass (Nassella viridula), o 5 orchardgrass (Dactylis glomerata), p 5 Poa spp., r 5 Canada wildrye (Elymus
canadensis), s 5 smooth brome (Bromus inermis), t 5 switchgrass (Panicum virgatum), v 5 plains reedgrass (Calamagrostis montanensis), w 5 western
wheatgrass (Pascopyrum smithii), x 5 timothy (Phleum praetense).

e First number within column refers to sethoxydim-treated plots; second number refers to picloram-treated plots.
f Standard deviation not calculable because mean reflects one observation.
g Missing data.
h Not reported.
i Combined data from Walcott and Valley City, ND.

rate parameter of Equation 2 (rg). Therefore, our approach
was to test the zero-growth isocline of this equation (i.e.,
Equation 4). A fair test of Equation 4 requires data from
grass populations that are at equilibrium. Highly suppressed
grass populations may sometimes require more than one
growing season to fully equilibrate to leafy spurge removal.
Therefore, to better ensure that Equation 4 was tested
against equilibrium data, grass data from the year of herbi-
cide application were omitted from the accuracy evaluation.

Site-specific grass carrying capacities were estimated with
data from a randomly selected herbicide treatment by solv-
ing Equation 4 for gmax:

nk1
ln(g ) 5 ln[g (1 1 bw )] [10]Omax,i,t i,k,t i,k,tn k51k

The i ’s are sites, the t ’s are years, and nk is the number of
replications. Data used for estimating ln(gmax,i,t) were omit-
ted from the accuracy evaluation. Including these data
would have overestimated prediction accuracy, because in-
dependent and dependent variable values would then be cal-
culated from the same data points.

Site-specific ln(gmax,i,t) values were estimated exclusively
from data collected during the year after herbicide applica-
tion. Therefore, when data collection occurred beyond the
year after herbicide application, we predicted future grass
biomass using only predictor data that were available during
the present year (i.e., gt5x 5 f (gmax,t,x)).

Predicted values were calculated for treated plots

ln(g )treat,i,t51ort.1

n ntreat k g1 1 max,i,j,k,t 51
5 ln [11]O O 1 2n n 1 1 bwj51 k51treat k treat,i,j,k,t51ort.1

and untreated plots

ln(g )untreat,i,t51ort.1

nk1 gmax,i,k,t515 ln [12]O 1 2n 1 1 bwk51k untreat,i,k,t51ort.1

The total number of herbicide treatments minus the treat-
ment used for estimating ln(gmax,i,t) is denoted by ntreat.
Predictions were averaged across replications and, in the case
of herbicide-treated plots, across treatments. Mean predic-
tions were compared to mean observed values. Means were
used because gmax varies dramatically from plot to plot (Ta-
ble 1). By averaging over small-scale variation in gmax, we
more accurately assessed the ability of Equation 4 to predict

mean grass biomass across management units. In our opin-
ion, basing management decisions on average management
unit responses is more logical than basing decisions on the
response of some number of small plots within management
units.

A second accuracy assessment was also based on herbicide
experiment data. We exclusively used past-year untreated
plot data to predict current-year herbicide-treated grass bio-
mass:

nk1 gmax,i,k,t51ln(g ) 5 ln [13]Otreat,i,t.1 1 2¯n 1 1 bw kk51k untreat,i,k,t51

Grass carrying capacity was estimated from untreated plot
data using Equation 10. The term denotes mean propor-k̄
tional leafy spurge mortality over all herbicide-treated plots
with the exception of data from Experiment i. This accuracy
assessment is analogous to how we envision managers might
use Equation 4 to predict grass response to herbicides.

Grass Seeding Experiments
We tested a version of Equation 1 using data from two

experiments that combined 2,4-D and glyphosate applica-
tions with tillage and grass seeding or no grass seeding (Lym
and Tober 1997) (Table 1). These experiments did not re-
port leafy spurge stem length density. We converted leafy
spurge biomass to units of stem length density using the
previously described regression relationship. Leafy spurge
carrying capacity was estimated from not-seeded plot data
by solving Equation 3 for ln(wmax,i,t):

nk1
ln(w ) 5 ln[w (1 1 ag )]Omax,i,t unseeded,i,k,t unseeded,i,k,tn k51k

[14]

Data for estimating ln(wmax,i,t) were collected 2 and 3 yr
after the application of 2,4-D and glyphosate. Leafy spurge
populations typically recover from exposure to these herbi-
cides within 2 yr of application (Chow 1984; Ferrell et al.
1989; Lym and Messersmith 1985).

Predicted leafy spurge values were calculated for each
seeded grass species (i.e., each j) as follows:

ln(w )i,j,t11

nk w (1 1 ag )1 i,j,k,t i,j,k,t11
5 ln w exp r 1 2O i,j,k,t w5 6[ ][ ]n wk51k max,i,t11

[15]
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Measures of Model Performance
Model Accuracy

We used two classes of tests for assessing the model. The
first type of test evaluated whether the model was realistic.
Do curves generated with the model match the data? Are
the parameter estimates realistic? When conducting these
kinds of tests, it is best to use data with minimal measure-
ment error, even if it means conducting tests with slightly
abstract interpretations (e.g., using data from a given year
and site to predict other data gathered during the same year
and at the same site). It is much more difficult to identify
unrealistic features of models when the accuracy assessment
data are imprecise because measurement error and temporal
and spatial variation tend to mask problems with the model.

We graphed model predictions vs. observed data to assess
whether the model was realistic. Because current-year data
were often the most accurate data available, we sometimes
relied on data from a given year and site to formulate pre-
dictions of plant abundances for that same year and site. As
such, the graphs are designed for identifying realistic and
unrealistic features of the model, and they only indirectly
assess the model’s ability to predict future weed management
outcomes.

If the model structure or parameter estimates are unre-
alistic, slopes of predicted vs. observed relationships might
differ significantly from 1.0. We used a bootstrap procedure
to test the null hypothesis that predicted vs. observed slopes
are equal to 1.0 (Efron and Tibshirani 1993; Hjorth 1994).
Cases were randomly sampled with replacement (i.e., each
case could be selected multiple times) to construct bootstrap
samples with n equal to the original number of data points.
A linear regression relationship was fitted to 10,000 of these
bootstrap samples, and the resulting empirical histogram of
slope coefficients was compared to 1.0. If the least-squares
estimate of the slope term was ,1.0, then the following
quantity was interpreted as the P value of the null hypoth-
esis: 2 3 ((number of bootstrap samples . 1.0)/10,000). If
the slope estimate was .1.0, then 2 3 (1.0 2 (number of
bootstrap samples . 1.0)/10,000) was interpreted as the P
value.

Model Predictive Capability

Even if our model is quite realistic, it may still be inferior
to off-site experiments at predicting grass and leafy spurge
responses to management. The model formulates predic-
tions from on-site data. If these data have large observation
variances or are biased, then prediction accuracy could be
very poor even if the model is good. Also, if management
units are similar to sites where the experiments take place,
then experiments might predict management unit responses
quite accurately. In this case, slight imperfections in the
model or measurement error might cause model-based pre-
dictions to be inferior to predictions based on off-site ex-
periments. If off-site experiments predict grass and leafy
spurge abundances more accurately than the model does,
then the previously outlined extrapolation problems are not
severe enough to warrant use of the model, and predictions
based on off-site experiments would be preferred.

A second class of test was used to compare model-based
predictions to predictions based on off-site experiments.
Model predictions were formulated with Equations 7, 9, and

13. Equations 8, 11, 12, and 15 were useful for evaluating
model accuracy, but predictions based on these equations
were not tested against predictions based on off-site exper-
iments. A test of Equation 8 would be highly redundant
with a test of Equation 9, and a test of Equation 11 would
be redundant with a test of Equation 13. A test of Equation
12 would compare experiment- and model-based predic-
tions of grass biomass production in untreated control plots.
Such a test would be of little relevance to managers that are
trying to predict grass response to leafy spurge control ef-
forts. Using Equation 15 to predict how grass seeding will
affect leafy spurge production requires an estimate of how
seeding will affect grass production at the site of interest.
Because grass response to grass seeding is unknown before
grasses are seeded, it is unclear how Equation 15 could be
used to formulate future predictions of leafy spurge response
to grass seeding. Equation 15 is used to predict leafy spurge
response to several seeded grass species. Therefore, the Equa-
tion 15 test is well-suited for determining if spatial and tem-
poral variation in grass species compositions affects our
model’s predictive capability.

We used an index similar to the coefficient of determi-
nation (R2) to compare model predictions with predictions
based on off-site experiments:

n1 2(Y * 2 Y )O i obs,in i51V 5 1 2 [16]n1 2(Ȳ 2 Y )O i obs,in i51

Predicted values (Y* ) were formulated with our model,
Yobs’s are ‘‘predictee’’ values, and Ȳ is the mean over plots
receiving the same or similar treatments as Yobs but at other
sites. The mean-square error that results from predicting
plant abundances at a given site from experiments conduct-
ed elsewhere is given by the denominator of Equation 16,
and the mean-square error that results from using the model
is given by the numerator. The index V describes variation
explained by the model that is not explained by experiments
conducted at other sites. If the value of V is positive, the
model has probably addressed one or more of the extrapo-
lation problems.

For the accuracy assessment involving Equation 7, isY *i
predicted leafy spurge stem length density for the monocot
herbicide–treated plot of SPRE i, and Yobs,i is the corre-
sponding observed value. The term Ȳ denotes mean leafy
spurge stem length density over all monocot herbicide–treat-
ed plots (except for the monocot herbicide–treated plot at
SPRE i ), and n is the total number of SPREs. The calcu-
lation of V for Equation 9 was the same as that for Equation
7, except that Y*, Yobs, and Ȳ were predicted and observed
grass biomasses in dicot herbicide–treated plots. For the V
calculation involving Equation 13, Ȳ was grass biomass data
averaged across all herbicide-treated plots, except for the
plots being predicted.

Results and Discussion

Using Grass Data to Evaluate the Model
Model Evaluation Using Grass Data from SPRE

Picloram-treated plots produced more grass biomass than
did untreated plots in all but one SPRE (Table 1). Lower
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FIGURE 1. Predicted vs. observed data from selective plant removal experi-
ments. Each data point within a graph is from a different experiment. (A)
Grass biomass in plots treated with a dicot-specific herbicide (gp, p denotes
picloram) is modeled as a function of grass population growth rate (rg), a
leafy spurge competition parameter (b), grass biomass in untreated plots
(guntreat), leafy spurge stem length density in dicot herbicide–treated plots
(wp), and grass carrying capacity estimated from untreated plots (gmax). (B)
Leafy spurge stem length density in plots treated with a monocot-specific
herbicide (ws, s denotes sethoxydim) is modeled as a function of the leafy
spurge population growth rate (rw), a grass competition parameter (a), leafy
spurge stem length density in untreated plots (wuntreat), grass biomass in
monocot herbicide–treated plots (gs), and leafy spurge carrying capacity
estimated from untreated plots (wmax).

grass production in the one SPRE was likely due to picloram
injury of grasses, plot-to-plot variation in grass carrying ca-
pacities, absence of leafy spurge competition with grasses, or
mutualism between leafy spurge and grasses. A plot of pre-
dicted vs. observed grass data shows that Equation 8 tended
to overpredict the data (Figure 1A). The hypothesis test of
the predicted vs. the observed slope being equal to 1.0 con-
firms this assessment; we rejected this hypothesis (P 5 0.02).

Many factors could have caused the overpredictions. Per-
haps competition at most SPRE sites was more intense than
was competition at the site where the model was developed.
Or, maybe the structure of the model that gives rise to the
data varies spatially. If either of these explanations caused
the overpredictions, then the model will probably tend to
slightly overpredict grass biomass production. Another pos-
sibility is that the population growth rate at most SPRE sites
is greater than at the site where the model was developed.
If this is true, the model will tend to overpredict grass bio-
mass production in the first few growing seasons following
severe leafy spurge mortality events, but the predictions will
become more accurate as grasses fully equilibrate to leafy
spurge removal.

Other plausible explanations for lack of fit have nothing

to do with parameter variation. Vore (1984) found that leafy
spurge roots often survived exposure to picloram, even when
aboveground biomass production was completely sup-
pressed. If leafy spurge roots survived, they may have con-
tinued to compete with grasses for soil resources after piclo-
ram was applied. Picloram sometimes injures grasses, and
this, too, could explain the overpredictions.

Although the model tended to overpredict SPRE grass
data (Figure 1A), it still predicted SPRE grass biomass more
accurately than did off-site experiments. Because the value
of V for Equation 9 is 0.21, the model explains 21% of the
variation in grass biomass production that is left unex-
plained by off-site SPREs.

All data for calculating V for Equation 9 were measured
during the same year, so error owing to temporal variation
was ignored. Factoring out temporal variation may have
caused the mean-square errors to be underestimated. Tem-
poral variation would likely have a similar effect on mean-
square errors resulting from model-based predictions and
experiment-based predictions. Therefore, temporal variation
would probably not dramatically affect V, which is the ratio
of the mean-square errors.

Model Evaluation Using Grass Data from Herbicide
Experiments

Leafy spurge herbicides increased grass production at all
herbicide experiment sites (Table 1). On the basis of Figure
2, the model did not systematically over- or underpredict
grass biomass production at herbicide experiment sites. Be-
cause we failed to reject the null hypothesis that the slope
is equal to 1.0 (P 5 0.47), we believe that the model was
an unbiased predictor of grass biomass at these sites.

The model tended to outperform off-site experiments in
predicting grass biomass at herbicide experiment sites. The
model explained V 5 48% of the variation in grass biomass
that could not be explained by the off-site herbicide exper-
iments. The V estimate for Equation 11 constitutes a very
realistic test of the model because future predictions were
formulated exclusively from presently available data.

Using Leafy Spurge Data to Evaluate the Model

Model Evaluation Using Leafy Spurge Data from SPRE

Plots treated with sethoxydim produced more leafy spurge
than did untreated plots in all but four SPREs (Table 1).
Reduced leafy spurge production in the four SPREs was
probably due to sethoxydim injury of leafy spurge, plot-to-
plot variation in leafy spurge carrying capacities, absence of
grass competition with leafy spurge, or mutualism between
grasses and leafy spurge.

The model appeared to slightly overpredict the leafy
spurge data (Figure 1B). We concluded that the overpred-
ictions were not statistically significant because the null hy-
pothesis that the predicted vs. observed slope is equal to 1.0
was not rejected (P 5 0.73).

Average off-site leafy spurge data did not predict leafy
spurge stem length density as accurately as did Equation 7
(V 5 0.53). Like the Equation 9 V estimate, the Equation
7 V estimate relied on predicted and observed data that were
measured during the same growing season. An additional
abstraction in calculating V for Equation 7 was that the grass
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FIGURE 2. Predicted vs. observed grass biomass data from herbicide experiments. Each set of connected points is from a unique combination of site and
year. Grass biomass (g) is modeled as a function of leafy spurge stem length density (w), a leafy spurge competition parameter (b), and site-specifically
estimated grass carrying capacity (gmax).

FIGURE 3. Predicted vs. observed leafy spurge data from grass seeding experiments. Each data point is from a unique combination of site, year, and grass
species. Seeded grasses were commercial varieties of Elymus spp. (m, b, d, r), smooth brome (s), western wheatgrass (w), slender wheatgrass (e), green
needlegrass (n), crested wheatgrass (c), and intermediate wheatgrass (i, p). Current-year leafy spurge stem length density in plots seeded with grasses (wt11)
is modeled as a function of the leafy spurge population growth rate (rw), a grass competition parameter (a), previous-year leafy spurge stem length density
(wt), current-year grass biomass (gt11), and leafy spurge carrying capacity estimated from unseeded plots (wmax).

mortality data were observed in contrast to being predicted
from other sites. We chose a test of model accuracy, as op-
posed to a more realistic test of the model’s predictive ca-
pability, because it is highly unlikely that managers would
use the model to predict leafy spurge response to intentional
grass removal with herbicides.

Model Evaluation Using Leafy Spurge Data from Grass
Seeding Experiments

Grass seeding decreased leafy spurge production (Table
1). Equation 15 appeared to systematically underpredict
data from some site–year combinations and overpredict data
from other site–year combinations (Figure 3). The null hy-
pothesis that the predicted equaled observed slope was equal
to 1.0 was rejected (P 5 0.0001). Prediction error could
have resulted from between-site differences in leafy spurge

population growth rates, between-site differences in com-
petitive relationships, or error in the relationship we used to
convert leafy spurge biomass to units of stem length density.
Equation 15 appeared to predict leafy spurge response to all
grass species with similar accuracy.

Summary
Our model is given by Equations 1 and 2. This model

tends to outperform mean data from off-site experiments at
predicting grass and leafy spurge abundances (i.e., V . 0).
Therefore, we believe the model could improve on our cur-
rent ability to predict weed management outcomes.

Several factors distort the view of model accuracy given
by Figures 1–3, and these same factors affect V estimates.
Predictor and response data were often measured during the
same growing season or sometimes even in the same plots,
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so error owing to temporal and spatial variation is under-
represented. An exception to this is the V value estimated
from herbicide experiment data (see Equation 11). Also, be-
cause the model predicted spatially varying plot data, the
figures illustrate error resulting from plot-to-plot variation
in the response variable. In practical applications, the model
would most likely be used to predict mean grass and leafy
spurge abundances over entire management units (i.e., fixed
response variables). Finally, measurement error, grass injury
by dicot herbicides, leafy spurge injury by monocot herbi-
cides, aboveground leafy spurge mortality that was not pro-
portional to belowground mortality, and the imperfect re-
gression relationship used to relate leafy spurge biomass to
stem length density could have inflated prediction error. Im-
perfections in the accuracy assessment data sets, though a
major source of annoyance in testing the model, would not
always cause prediction error when using the model to pre-
dict weed management outcomes.

Our analysis did not conclusively identify the major
sources of prediction error. Much of the error could have
resulted from unaddressed or insufficiently addressed extrap-
olation problems or random error. Alternatively, the major-
ity of the error could have resulted from imperfections of
the accuracy assessment data sets. We can use properties of
the accuracy assessments to speculate about which extrapo-
lation problems may have caused substantial error. Without
question, equilibrium plant abundances and carrying capac-
ities vary temporally (Rinella and Sheley 2005a), but tem-
poral variation could have manifested itself in a portion of
only one accuracy assessment (Figure 2, solid lines, and V
calculated from the herbicide experiment data). In all other
accuracy assessments, the data for estimating carrying ca-
pacities (i.e., predictor data) were gathered during the same
year as the observed data (i.e., predictee data). Temporally
varying carrying capacities caused prediction error, but so
did other sources of error.

On the basis of Figure 3, we strongly suggest that ex-
pressing competitive effects on a per-unit plant abundance
basis circumnavigates the need to model grass species sepa-
rately. No ‘‘by-species’’ patterns of over- or underprediction
are evident in Figure 3. Other studies support the notion
that a gram of plant biomass suppresses neighboring plants
similarly, regardless of which species produces the gram
(Aguiar et al. 2001; Goldberg 1987; Mitchell et al. 1999;
Peltzer and Kochy 2001; Rinella and Sheley 2005b).

If the structure of the model is inaccurate or if an appro-
priate structure at one site is not necessarily an appropriate
form elsewhere, systematic deviations about x 5 y lines (Fig-
ures 1–3) would result. Systematic prediction error was not
apparent in Figure 1B or Figure 2, but possible biases are
depicted at the upper end of the X plane in Figure 1A and
in the lower portion of the plane in Figure 3. However,
because so many factors could have caused systematic errors,
it is impossible to attribute these errors to any one cause.
There is no strong evidence that the model structure is in-
accurate, and therefore, we conclude that the model could
at least partially alleviate the nonlinearity problem.

On the basis of the slopes of lines connecting untreated
plot data to treated plot data, the competition problem may
have been a significant source of prediction error (Figure 2).
Depending on site and year, competition appeared to be
more (slope . 1.0) or less (slope , 1.0) intense than the

model predicted. However, we cannot rule out the possibil-
ity that variation in slope resulted from between-plot vari-
ation in grass carrying capacity, unintended herbicide injury,
measurement error, or other previously discussed factors,
rather than variation in competition intensity.

If competition intensity does vary spatially or temporally,
one covariate that could explain this variation might involve
small-scale spatial structuring of leafy spurge and grass pop-
ulations. Our model is based on the assumption that spatial
structuring is invariant across sites and years or, if variable,
that it does not affect competition intensity (Pacala 1997).
A second covariate might be an overall plant productivity
term. Whether competition intensity increases in magnitude
(Grime 2001; Keddy 2001) or remains similar (Newman
1973; Wilson and Tilman 1991) as productivity increases is
a point of contention among ecologists. We did not observe
a pattern when we used the herbicide experiment data to
plot competition intensity vs. plant productivity (data not
shown). Therefore, we do not believe competition intensity
varies widely over the productivity range that leafy spurge
invades, or at least over the productivity range within which
herbicides are tested.

Variation in population growth rates could be a substan-
tial source of error in Figures 1 and 3 (Figure 2 does not
assess the population growth rate parameter). Our model
assumes that asymptotic approaches to carrying capacity are
the same for all grass species and within all environments.
The model is also based on the assumption that population
growth is not influenced by plant stage class structuring
(e.g., 1 cm of leafy spurge seedling height is equivalent to
1 cm of flowering stem height) or that the populations al-
ways have a stable stage class distribution. When modeling
communities that are not near equilibrium, such as com-
munities in which biological control or herbicides have re-
cently induced massive leafy spurge mortality, these assump-
tions are less likely to be valid, and if invalid, could be
important sources of error. Further testing and elaboration
of our model would benefit from experiments specifically
designed to measure grass and leafy spurge population
growth rates at a variety of sites, for a variety of grass species,
and over several dissimilar growing seasons.

The dynamics of crop–weed systems have been studied
much more thoroughly than the dynamics of weed-invaded
natural systems. Therefore, invasive weed ecologists will prof-
it greatly from the ideas, advancements, and conclusions of
agro-ecologists. However, because perennial grasslands are so
different from annual cropping systems, we cannot expect
opportunities, challenges, and accomplishments of invasive
weed ecology to completely mirror those of agro-ecology.
We believe our analysis illustrates that attempts to predict
population trajectories in perennial weed–dominated eco-
systems may not culminate in the same pessimism that has
resulted from similar attempts in annual weed–dominated
croplands (Cousens and Mortimer 1995).
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