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Executive Summary

1
Introduction

The NASA Office of Earth Science and the US Geological Survey (USGS) are working together to develop a National Invasive Species Forecasting System (ISFS) for the management and control of invasive species on all Department of Interior and adjacent lands. This decision support tool (DST) will use early detection and monitoring protocols and predictive models developed at the US Geological Survey Fort Collins Science Center to process NASA and commercial data and create on-demand, regional-scale assessments of invasive species patterns and vulnerable habitats useful for a wide range of science, management, and policy decision-making activities. The community of ecologists and land managers who will use this tool are being involved in all stages of ISFS development. The system will be made broadly available to the natural resource management community through the Internet-based USGS National Biological Information Infrastructure program. 

This project builds upon NASA’s unique remote sensing capabilities and current joint USGS/NASA work on invasive species. The end product will be a dynamic and flexible decision support system to generate electronic and paper maps of “hot spots” for potential exotic species invasions. These maps will be used by private and public national, state, and local management agencies for remediation, management, and control. Over the next 10 years, we envision that the National Invasive Species Forecasting System will provide revolutionary capabilities of fundamental importance to understanding and managing the effects of invasive species on human health, the economy, native biodiversity, and ecosystem processes. The techniques developed here will have immediate use in other current and planned NASA Earth Science Enterprise research programs, including mapping climate change, temporal and spatial ocean change, disease outbreaks, and national and global carbon storage, and will create important new opportunities for commercial development.
1.1 Overview of Application Domain

During the past century, non-indigenous plants, animals, and pathogens have been introduced at increasing rates into all US ecosystems. A growing number of these species are becoming invasive, and contribute to declines in native species, changes in ecosystem function, and cumulative economic impacts currently estimated at more than $137 billion annually. 


An “invasive species” is defined as a non-native species whose introduction causes or is likely to cause harm to the economy, environment, or human health. The cost of infestations of leafy spurge alone to agricultural producers and taxpayers is $144 million/year in the Dakotas, Montana, and Wyoming. Aggressive invasive fishes in the Great Lakes threaten a commercial fishery valued at $4.5 billion which supports 81,000 jobs. Invasive Norway rats cause up to $19 billion/year in environmental and economic damage. Non-native livestock diseases cost $9 billion/year. In the coming decades, increasing human travel and trade and changing types and patterns of environmental disturbance are expected to exacerbate these impacts. Because of its high diversity of environmental conditions and habitats, the US is particularly vulnerable to invasions. 

The Federal Government has begun to mount an organized effort to address the invasive species threat, coalescing around Executive Order 13112 (1999). There is now a National Invasive Species Council, which has issued a draft Management Plan, and has assembled several technical working groups. The National Biological Information Infrastructure has several regional programs developing invasive species information systems as their highest priority initiative, and plans to establish a national node for invasive species in 2002. These efforts are coordinated with international initiatives under the United Nations (the Global Invasives Species Programme, GISP), NAFTA (the North American Biodiversity Information Network, NABIN), the Summit of the Americas the Inter-American Biodiversity Information Network, IABIN), and a number of bilateral agreements, to develop international exchange on invasive species information. Globalization has greatly increased the international movements of harmful species through travel and agricultural, horticultural, and pet industries, and has become a principal impediment to international trade agreements.

1.2 NASA and Application Mission Traceability

All of these efforts recognize the central role of NASA’s space-based sensors and advanced computational, modeling, and information technologies in addressing invasive species science and policy on a national and global scale. Both the potential for movements of invasive species, and the susceptibility of sensitive habitats to new invaders are known to be strongly influenced by climate warming, changes in rainfall, soil moisture, and runoff, and are increasingly driven by extreme events. As a result, a wide range of existing and emerging NASA Earth Science Enterprise technologies will be central to a better understanding of invasive species risks. At the same time, many invasive species greatly alter the water relations, carbon storage, fire cycle, and reflectance properties of landscapes, and may be an important feedback link to climate.

1.3 Introduction to Decision Support Tool (DST)

High resolution mapping of biological resources is central to confronting the invasive species threat. To meet the needs of the invasive species science and policy communities, we must be able to identify dominant plants and vegetation structures with a reasonable ability to distinguish between species. This is becoming possible with hyperspectral instruments at meter-scale resolutions, particularly when combined with LIDAR and other active sensors that can detect meter-scale vegetation structure, landforms, and soil surface properties. USGS uses advanced geostatistical methods, many derived from NASA Earth Science Enterprise support, to integrate multiple types and scales of data, including satellite images, aerial photography, and ground data of various resolutions in order to map biological resources. 

1.4 Initial Partnering Activities

The government partner in this activity is the USGS Geological Survey’s National Institute for Invasive Species Science located at the USGS Fort Collins Science Center. Dr. Thomas J. Stohlgren is the ecologist lead and is working closely with the senior management of USGS located at USGS Headquarters in Reston, VA. Numerous partners are involved in the USGS NIISS program.

This effort is proceeding through three major phases. The first phase involves developing a prototype Invasive Species Forecasting System at selected test sites, such as Rocky Mountain National Park, CO, the Cerro Grande Wildfire Site, NM, and Grand Staircase-Escalante National Monument, UT. Sites have chosen in consultation with the USGS ecologists, land managers in bureaus of the Departments of Agriculture and the Interior and private stakeholder groups. At each test site, the project is compiling existing field survey data, ground measurements, and airborne and satellite data. Local and regional models are being refined and tested. 

The second phase will expand the system to include MODIS time-series data and high-resolution hyperspectral and other measurements in the modeling protocols. Doing periodic, on-demand, national assessments of management-scale risks will require unprecedented data integration and computing capacity, the infrastructure for which will be developed during this second phase. 

In phase three, the system will be deployed beyond the test sites and expanded into a fully operational National Invasive Species Forecasting System for use throughout the Department of Interior. The system will be made widely available to the scientific and management communities through the USGS National Biological Information Infrastructure program, which provides US interagency coordination for online biological databases and information services.

1.5 Systems Engineering Approach

{Most of this introductory material has been taken from the EOM article on the NASA/USGS Project. Becoming dated, but still a good source for a general overview.}
Overview of DST

{Here, in the case of ISFS, we need to emphasize that what USGS had when we first became involved with them was a geostatistically-based “modeling process” – rather than a mature DSS. In order for this process to be in a position to use more NASA data, three bottlenecks had to be overcome: (1) improved access to the software and hardware required to implement the process, (2) improved computational performance for the geostatisical code, and (3) better access to combined USGS and NASA data and a more sophisticated use of existing and new data products. The transition from a DSProcess to a DSTool thus requires in the case of this application three mutually dependent and in a sense equally important NASA contributions: (1) Engineering – to create a web-based workflow management environment more widely accessible to DOI/USGS partners and the extended community, (2) High-End Computing – to allow analysis algorithms to run fast on commodity cluster computers (ie consume more NASA data and model larger extents), and (3) Data Services – to facilitate the integration of new remote sensing measurements and data products into the USGS process.} 

1.6 Background

The ISFS system will have users from government agencies, universities, industry, and the general public. To the users, the ISFS is deployed as a web browser based system that will present options for applying a series of models to available datasets yielding predictive result sets. The system can ingest data from different sources and in different formats and existing models can be either run, or new ones created. The system outputs maps and additional information depicting the applied model and the predicted species distributions.
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1.7 Detailed Description

{Most of this comes from our Baseline Software Engineering Document. The language needs to be updated to reflect current thinking. Some of the equations and symbols haven’t copied correctly but can be repaired. I’m using .jpg place holders for the figures, but we have PostScript versions that print much better. Also need to add figure/table captions.}

1.7.1 USGS Modeling Process

In this section, we provide a general description of the core analysis approach that is the focus of our development efforts. Additional information about the geostatistical methods described here may be found in Isaaks and Srivastava’s Applied Geostatistics (1989). The USGS modeling approach is currently being used to identify areas at risk for exotic plant species invasions at the Cerro Grande Fire Site near Los Alamos, New Mexico (Kalkhan et al., 2002), in Rocky Mountain National Park, Colorado (Chong et al., 2000; Kalkhan et al., 2000a, Kalkhan et al., 2000b), and Grand Staircase-Escalante National Monument, Utah (Kalkhan et al., 2000c). 

Modeling Large-Scale Spatial Variability – As shown in Figure 2, the process begins with stepwise regression and trend surface analysis for geographical variables and measures of focal taxa to evaluate large-scale spatial variability in a study area. The functional form of this model is defined as:
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where, βij are the regression coefficients associated with the trend surface component of the model, γk are the regression coefficients associated with the q auxiliary variables, yk0, available as a coverage in the GIS data base, and η0 is the error term which may or may not be spatially correlated with its neighbors (Kallas, 1997; Metzger, 1997).

Stepwise multiple regression analysis is used first to identify the best linear combination of independent variables.  It also allows us to explore the variation in predicting total, exotic, and native plant species richness as a function of the TM bands, derived vegetation indices, tasseled cap transformation indices, slope, aspect, and elevation.  The selected independent variables are used in an Ordinary Least Square (OLS) procedure to describe large-scale variability estimates.

OLS estimators are used to fit the model if the variable of interest has a linear relationship with the geographical coordinates of the sample plots, the digital number (DN) value of any of the Landsat TM bands, and the topographic data.  In addition, the least squares method fits a continuous, univariate response as a linear function of the predicted variable. This trend surface model represents continuous first order spatial variation. Akaike’s Information Criteria “AIC”, (Brockwell and Davis 1991, Akaike 1997) is used as a guide in selecting the number of model parameters to include in the regression model where:

AIC = -2 (max log likelihood) + 2 (number of parameters)  
  
 (2)

When using maximum likelihood as a criterion for selecting between models of different orders, there is the possibility of finding another model with equal or greater likelihood by increasing the number of parameters (Metzger 1997).  Therefore, the AIC allows for a penalty for each increase in the number of parameters.  Using this criterion, a model with a smaller AIC is considered to have a better fit.  While, the model is kept as simplistic as possible, a more complex model could be used if the situation warrants it. 
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Modeling Small-Scale Spatial Variability – In the next stage of the model building process the residuals from the trend surface models are analyzed for spatial dependencies.  This is accomplished using spatial auto-correlation and cross-correlation statistics.  If the residuals are cross-correlated with other variables, we can use co-kriging to interpolate the residuals.  However, if the residuals are not cross-correlated, we use ordinary kriging.  Finally, the weights associated with the kriging and co-kriging models are estimated as a function of the spatial continuity of the data (Isaaks and Srivastiva 1989).  This estimation can be accomplished using a sample variogram to describe spatial continuity.  With spatial data, the variation of the samples generally changes with distance.  In other words, the variogram is a measure of how the variance changes with distance.  The variogram and cross-variogram models used in this analysis were considered “basic” models, meaning they are simple and isotropic (Reich et al. 1999).  They include, Gaussian, spherical, and exponential models. Since the primary focus of our work in this project involves improving the performance of kriging, we now describe this technique in some detail.
Kriging is a method of interpolation named after a South African mining engineer named D. G. Krige who developed the technique in an attempt to more accurately predict ore reserves. Over the past several decades kriging has become a fundamental tool in the field of geostatistics. Kriging is based on the assumption that the parameter being interpolated can be treated as a regionalized variable. A regionalized variable is intermediate between a truly random variable and a completely deterministic variable in that it varies in a continuous manner from one location to the next and therefore points that are near each other have a certain degree of spatial correlation, but points that are widely separated are statistically independent (Davis, 1986). Kriging is a set of linear regression routines which minimize estimation variance from a predefined covariance model.

The first step in ordinary kriging is to construct a variogram from the scatter point set to be interpolated. A variogram consists of two parts: an experimental variogram and a model variogram. Suppose that the value to be interpolated is referred to as f. The experimental variogram is found by calculating the variance (g) of each point in the set with respect to each of the other points and plotting the variances versus distance (h) between the points. Several formulas can be used to compute the variance, but it is typically computed as one half the difference in f squared.
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Once the experimental variogram is computed, the next step is to define a model variogram. A model variogram is a simple mathematical function that models the trend in the experimental variogram. As can be seen in the above figure, the shape of the variogram indicates that at small separation distances, the variance in f is small. In other words, points that are close together have similar f values. After a certain level of separation, the variance in the f values becomes somewhat random and the model variogram flattens out to a value corresponding to the average variance.

Once the model variogram is constructed, it is used to compute the weights used in kriging. The basic equation used in ordinary kriging is as follows:
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where n is the number of scatter points in the set, fi are the values of the scatter points, and wi are weights assigned to each scatter point. The weights used in kriging are based on the model variogram. For example, to interpolate at a point P based on the surrounding points P1, P2, and P3, the weights w1, w2, and w3 must be found. The weights are found through the solution of the simultaneous equations:
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where S(dij) is the model variogram evaluated at a distance equal to the distance between points i and j. For example, S(d1p) is the model variogram evaluated at a distance equal to the separation of points P1 and P. Since it is necessary that the weights sum to unity, a fourth equation:
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is added. Since there are now four equations and three unknowns, a slack variable, l, is added to the equation set. The final set of equations is as follows:
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The equations are then solved for the weights w1, w2, and w3. The f value of the interpolation point is then calculated as:



By using the variogram in this fashion to compute the weights, the expected estimation error is minimized in a least squares sense. For this reason, kriging is sometimes said to produce the best linear unbiased estimate (BLUE). However, minimizing the expected error in a least squared sense is not always the most important criteria and in some cases, other interpolation schemes give more appropriate results (Philip & Watson, 1986).

An important feature of kriging is that the variogram can be used to calculate the expected error of estimation at each interpolation point since the estimation error is a function of the distance to surrounding scatter points. The estimation variance can be calculated as:



When interpolating to an object using the kriging method, an estimation variance data set is always produced along with the interpolated data set. As a result, a contour or iso-surface plot of estimation variance can be generated on the target mesh or grid.

Since kriging is a rather complex interpolation technique and includes numerous options, a complete description of kriging is beyond the scope of this report. The reader is strongly encouraged to consult the UNCERT User Guide (Wingle, et.al, 1995) and the GSLIB textbook (Deutsch and Journel, 1992) for more information. Other good references on kriging include Royle et. al. (1981), Davis (1986), Lam (1983), Heine (1986), Olea (1974), Journel & Huijbregts (1978). Isaaks and Srivastiva’s (1989) chapter on “Ordinary Kriging” is particularly helpful. 

1.7.2 Modeling Workflow

The practical implementation of the modeling process, as developed and used by colleagues at USGS, consists of a pre-processing step, a modeling step, and a post-processing step. 


Pre-Processing – Pre-processing activities merge ingested datasets to create a data product that can be analyzed in the subsequent modeling step. In the baseline scenario, the field data are merged with the Landsat and DEM information at the same UTM x,y coordinates. Resampling may be performed at this time if the input data are not at the same resolution, and the Landsat data may be processed to higher level products, e.g. tassel cap coefficients, principal components, atmospherically corrected reflectance values, etc. The merged data product is written to backing store in a common analysis format.


For the most part, this pre-processing step is a straightforward application of common techniques, and is thus not a major focus of our current work. A possible exception to be explored in the future is the pre-processing that might be needed to accommodate new data sets in the model, e.g., atmospherically corrected hyperspectral data which presents different types of computational challenges.

Modeling – The primary modeling pipeline uses the merged, flat file resulting from the pre-processing step. The file is logically arranged with one row of data for each field survey point.  The data sampled at each point are arranged in columns.  The file contains a simple internal ASCII header that contains the number of rows and columns along with a one-word column descriptor.  The columns include a subset of the following data: location, plant, soil, digital elevation model (DEM), and remote sensing information such as Landsat DN and derived quantities (e.g. tassel cap coefficients or NDVI values). A series of statistical analyses are then performed in S-plus as follows:

1) Read the input field data to create an object within S-plus.

2) Compute the distance matrix, which is the Euclidean distance between each sample point.

3) Perform a stepwise multiple regression with total plants as the dependent variable and the DEM, remote sensing, soils, etc. data as the independent variables.

4) Perform a weighted ordinary least squares (OLS) fit to the total plants for the independent variables that are found to be significant predictors.

5) Compute Moran’s I coefficient to determine if there is spatial structure in the residuals of this OLS fit.

6) If there is no spatial structure then skip to step 10.

7) Compute the variogram of the residuals to determine the spatial structure.

8) Determine whether a gaussian, exponential, and spherical model best fits the variogram.

9) Perform kriging to estimate the residual surface across the entire study area.  The kriging can be performed either in S-plus or using a Fortran program.

a. If S-plus kriging is performed:

i. The kriged residual surface is created directly as an S-plus object.  Error estimates are also calculated.

ii. The kriged residuals and estimated errors are then written to separate ASCII files.  These files contain headers listing the number of rows and columns in the kriged surface along with georeferencing information.

b. If Fortran kriging is performed:

i. The residuals at each field sample point are written to an intermediate ASCII file, along with a header containing parameters that control the kriging.  These parameters include the number of rows and columns to be kriged, the spatial resolution and georeferencing information for the kriged surface, the number of field sample points, the number of nearest neighbors to include in the estimation, the parameters describing the variogram model (e.g. range, nugget, sill, gaussian), and finally a flag indicating whether to calculate the error estimates for the kriged residuals.

ii. The compiled and linked Fortran executable is invoked.  It reads the above file of residuals, performs the kriging, and writes the kriged residuals to an output ASCII file.  The format of this file is identical to that created if S-plus kriging is performed.  The error estimates for the kriged residuals are written to a separate file using the same format.

c. The ASCII files with the results of the kriging are converted to a binary raster format using a simple filter.  Separate header files are created so that the kriging results can be easily viewed the using version 3.5 of ENVI, the Environment for Visualizing Images from Research Systems, Inc. (see http://www.rsinc.com).  

10) Apply the results of the OLS fit to the maps of the significant independent variables to create an estimate of the spatial distribution of the total plants.

11) If the residuals were kriged in step 9, then add the kriged residual surface to the estimate of the total plants.


Post-Processing – The post-processing step applies the results of the above modeling activities to generate products such as the map shown in Figure 5. In the canonical case, we:

12) Create a JPEG rendering of the total plants map.  Steps 10 – 12 are performed using version 5.5 of IDL, the Interactive Data Language from Research Systems, Inc.

13) Create separate header files so that the total plants and error estimates can be easily read using ENVI.
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1.7.3 Baseline Performance Evaluation

In this project, we are working with three “canonical” study sites: the Cerro Grande Fire Site in Los Alamos, NM (CGFS), Rocky Mountain National Park, CO (RMNP), and Grand Staircase Escalante National Monument, UT (GSENM). The three sites provide contrasting ecological settings and analysis challenges and vary in the types and scales of data used, areas covered, and maturity of the investigation. 

Initially, the most comprehensive modeling efforts involved the Cerro Grande site which covers approximately 50,000 acres. Cerro Grande modeling activities integrate a range of environmental attributes and data sets including, as described below, data from 79 field sample plots. The Rocky Mountain study site, at nearly 25,000 acres, is a smaller study area but includes data from nearly 200 field sample sites. RMNP has been studied the longest of the three sites. The newest study area is Grand Staircase Escalante National Monument, which at 1.9 million acres is by far the largest investigation to be undertaken with these modeling techniques. The gathering of field data started three years ago and continues with over 350 plots being studied to date.

Each study site is being used to examine various aspects of the analysis approach being refined here. Cerro Grande provides the best opportunity to analyze baseline performance characteristics of the modeling system. RMNP is a rich and mature dataset, but appears to show only weak spatial anisotropy for the dependent variables currently being considered, making it a poor candidate for kriging. GSENM will be a particularly abundant dataset, but field work for GSENM will not be completed until the end of this summer. At later stages of the project, both RMNP and GSENM will be important for evaluating new and larger applications of the modeling system.

Cerro Grande Fire Site – Investigating spatial relationships among fuels, wildfire severity, and post-fire invasion by exotic plant species through linkage of multi-phase sampling design and multi-scale nested sampling field plots, pre- and post-fire, has been accomplished on the CGFS. The technique provides useful information and tools for describing ecological and environmental characteristics including landscape-scale fire regimes, invasive plants, and hot spots of diversity (native and non-native plants) for the site.

The Cerro Grande Fire Site is located near Los Alamos, New Mexico with elevation range from 1932 to 3200 meters. The Cerro Grande fire began as a prescribed fuel treatment by Bandelier National Monument, Los Alamos, NM on 4 May 2000.  The fire escaped control and was declared a wildfire on 5 May 2000.  The fire was contained on 24 May after burning about 19,300 ha of lands managed by seven different agencies, including the town of Los Alamos, NM.  However, 60% of the fire area burned 10-11 May, 2000, and 60% of the fire was on the Española District of the Santa Fe National Forest (Burned Area Emergency Rehabilitation [BAER] Team 2000).  Initial remotely sensed estimates of burn severity were classified as high (35%), moderate (9%), and low (56%).  
To predict the distribution, presence, and patterns of native and exotic species, we used 79 data points (based on Modified-Whittaker nested plots of  1000 m2) to represent different variables that were extracted from Landsat TM data (eight bands, six vegetation indices, and six bands of tasseled cap transformation indices), topographic data (elevation, slope, and absolute aspect), and vegetation characteristics. Spatial statistics were used to integrate these data to model large- and small-scale variability.

In the canonical case, we use trend surface models that describe the large-scale spatial variability using stepwise multiple regressions based on the Ordinary Least Squares (OLS) method.  Models with small variance were selected.  In addition, the residuals from the trend surface model based on the OLS estimates were modeled using ordinary kriging for modeling small-scale variability based on a Gaussian semi-variogram.  The final surfaces were obtained by combining two models (the trend surface based on the OLS and the kriging surface of residuals).  All models were selected based on lowest values of standard errors, AICC statistics, and high R2.  For large-scale spatial variability models using the OLS procedure, R2 values ranged from 10.04% to 58.6% and all variables were significant at α ( 0.05 level.  When adding the kriging model with the OLS model, R2 values ranged from 60% to 84%.

Baseline Hardware and Software Environment – The baseline processing system uses a combination of COTS and public domain software to generate maps of estimated biodiversity or ecosystem parameters. The major software components include the following:

· S-plus version 6.0.1 for Linux has been used for the baseline test cases. S-plus is a commercially available statistical package the common use in many scientific communities. The functionality of S-plus has been enhanced by a large collection of spatial statistical functions developed and maintained by Drs. Robin Reich and Richard Davis of the Colorado State University (see http://www.cnr.colostate.edu/~robin/). 

· Version 3.5 of ENVI, the Environment for Visualizing Images from Research Systems, Inc.

http://www.rsinc.com). ENVI is a commercially available image analysis application in common use in the remote sensing community.

· Version 5.5 of IDL, the Interactive Data Language from Research Systems, Inc. IDL is a commercially available image analysis application in common use in the remote sensing community.

The baseline processing hardware is a singe-processor AMD machine running RedHat Linux 7 (kernal 2.4.9-31) at 1.2 GHz with 1.5G of RAM and 60G of disk space.


Computational Performance Characteristics –Three factors influence the performance of the model: the size of the output surface area over which kriging occurs (area), the total number of number of sample points in the data set (pts), and the number of “nearest neighbor” (nn) sample points from the total data set actually used to compute a kriged value for any given point in the output area. When we first began work with colleagues at USGS, a scalar, single-processor run of this model using S-plus took approximately two weeks. The major computational bottleneck in the model is the kriging routine. Solving for the weights in the equations that form the ordinary kriging system (Eq. 6) uses LU decomposition with backsubstitution to do matrix inversions. The overall computational complexity of ordinary kriging is thus O(n3), and the time required to compute a result is strongly influenced by the number of sampled data points used to estimate the residual surface across the entire study area. 

In order to achieve the two-week result described above, initial USGS model runs limited kriging (and thus the size of the computed covariance matrices) to only 18 out of the total 79 sample points for Cerro Grande. The kriging process iterates over the rows and columns of the output surface. For each (i,j) point of the output surface area, 18 nearest neighbor sample points were found and ultimately transformed into the appropriate weighted average to estimate the kriged value at point (i,j).  This sub-sampling of 18 nearest neighbors is significant because it represents an accommodation that may be appropriate and exploitable in some circumstances while other types of applications may require the use of significantly more sampled points or the entire set of sampled points. The implications of these options will be explained in more detail below.

The output surface representing the entire CGFS area consists of 652 x 715 points, and the canonical CGFS dataset consists of 79 data points. Appendix B and Figures 6a and 6b show the results of baseline runs of the CGFS case and confirm that processing time scales linearly with both the size of the output surface (area) and the number of total data points (pts). In contrast, processing time increases order n3 with respect to the number of nearest neighbors (nn) being used in the kriging routine (Figure 7). In order to do our baseline run, a FORTRAN kriging routine was developed that ran approximately two orders of magnitude faster than the original S-plus routine (see Appendix D). While the overall project of growing this analysis approach into a comprehensive Invasive Specie Forecasting System involves many elements, kriging will continue to be the focus of our efforts to improve model performance.
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Consideration of NASA Inputs

1.8 Overview of NASA Inputs Matched Against Technical Requirements

1.9 Detailed Description and Analysis of NASA Inputs to Improve DST

1.9.1 Engineering

{I think most of this material can come from our Software Design Document.}

1.9.2 High-End Computing

{This also is from our Baseline Software Design document. Shows our approach to algorithm speed ups – but the language/timings, etc. need to be updated and contextualized for the evaluation report. We’re progressed through this almost to completion and can update this or other benchmarking documents with improvement results.}

Parallelization Strategy – The overall goal for code improvement is to reduce processing times and increase the amount of data handled by the model. As described below, increasing the amount of data handled by the model translates into either increasing spatiotemporal resolution or increasing coverage (Table 6.1). We first wish to accomplish quantitative improvements in the underlying model that have been agreed upon by the user community as minimal advances needed to improve core capabilities. These goals were driven by the knowledge that in Year 3 of the project we will build a 32-node cluster in the USGS facility. We refer to these as “Community Improvement Goals.” The ESTO/CT program, however, provides access to even greater computational capabilities that can be used to apply this modeling approach to some important and challenging problems that have heretofore been unapproachable. We would therefore like to use CT's clusters to attain more challenging performance improvement goals at the same time we are accommodating basic needs. We refer to these complimentary challenges as “Advanced Improvement Goals.” Each will be described below.
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Milestone 1 – First Code Improvement (Parallelization): Improve implementation of the model to deliver canonical products mX faster than the baseline implementation. 

For Milestone 1, we will focus on the community goal of increasing speed by at least a factor of 25. This corresponds to “m = 25” in our Milestone F Goal Statement. Our approach will be to develop parallel, Message Passing Interface (MPI) versions of the model. In the model, the kriged estimate for each pixel of the output surface does not depend on neighboring pixels. The kriging process is thus spatially independent, and we expect to achieve good scaling performance by domain decomposition. A parallel implementation of kriging would have three steps. The first step would broadcast input data from a “control node” to all other nodes of a cluster. The second step would have each node compute its piece of the kriged surface. For example, node 1 could process rows 1 – 16, node 2 could process rows 17 – 32, etc.  The final step would assemble the entire kriged surface on the control node. The parallel second step is maximally efficient; the first and last serial steps are the overhead costs of a parallel implementation.


Achieving a 25x speed up will require approximately 75% scaling efficiency on a 32 node cluster, or its equivalent on a larger cluster
. This efficiency requires that we krig the CGFS residuals in about 3.0 minutes.  A completely efficient implementation would give a run time of about 2.5 minutes. We must therefore incur no more than 30 seconds of parallel overhead to meet our goal. We feel this is attainable since even a serial broadcast of the input data using ‘scp’, followed by a serial gather of the individual pieces of the kriged surface, can be accomplished in this time on a 10base-T network.  A cluster built with 2Gbps Myrinet and using much lower overhead communications calls should be able to perform substantially better. Further, it should be possible to hide nearly all the step three communications overhead by overlapping the computation of the current row with the sending of results from the previous row to the control node. In this approach each processor would calculate the first row, asynchronously send a message to the control node with the results of the first row, then immediately continue processing the second row. Synchronization would only be required at the end of the second row to check that the results of the first row had been received successfully. This approach should be efficient since only a small number (~31) of fairly large messages (~2.6 kB) need to be sent each time a row has been calculated (~5.7 seconds).

Milestone 2 – Second Code Improvement (Adaptive Kriging): Improve implementation of to accommodate 10X more input data over baseline condition and Milestone 1 at nX the time required in the baseline implementation. (Depending on the science problem, this enhanced capability may be used to increase spatial resolution, temporal resolution, or coverage.


For Milestone 2, we will focus on the community goal of increasing by a factor of 10 the amount of data that the model is able to process. There are two ways that the model can be construed to accommodate more data: the model can either handle more data points in its kriging routine or it can krig data over a larger area. For both cases, we propose to combine the improvements achieved through parallelization with an adaptive approach to sub-sampling datasets.


In natural systems, spatial processes have a finite range of influence. As the number of sample data points grows (say from 79, in the case of CGFS, to 10x = 790), we do not necessarily wish to scale the kriging procedure to the full set of sampled data. (In fact, if the entire data set is used, computing the covariance matrix need only be done once, vastly reducing the computational complexity of the kriging task.) Ideally, we would rather scale on the basis of the number of spatially-relevant nearest neighbors in the region we wish to estimate. In many cases, this will involve only a fraction of a larger dataset. In the original applications of the model, USGS arbitrarily kriged using only 18 of 79 sample points based on a simple notion of nearest neighbor Euclidian distance of sample points from points of the output surface. We propose to refine these techniques by using a “sliding window” that at each point of the output surface adaptively selects a subset of sample points for kriging based on statistics or on an understood spatial influence on the physics or biology of the dependant variables being examined. We refer to this approach as “adaptive kriging.”

Intelligent minimization of the number of nearest neighbors can significantly improve the model’s ability to handle larger datasets. Perhaps more important, it provides a context for exploring mechanistic aspects of the modeling problem that are elided by the overarching statistical approach. Assuming that adaptive kriging uses 10% of the total number of sampled points, a 10x increase in dataset size essentially returns us to the baseline condition where we would expect a 25x speed-up through the Milestone F parallelization. Since the problem scales linearly with area, performing adaptive kriging over a ten-fold larger output area would result in an expected speed-up of approximately 2.5x. These cases correspond respectively to “n  = 25” and “n  = 2.5” in our Milestone G Goal Statement. 

It is important to note that adaptive kriging using more data over a fixed-size area essentially increases model spatial resolution; adaptive kriging using a fixed-size dataset over a larger output area increases model spatial coverage; in both cases, repeated runs of adaptive kriging using time-series data increases the model’s temporal resolution. All three classes of improvement have been identified by the research community as needed enhancements to the science and technology underlying biotic prediction. 

Advanced Applications – The scenarios described here represent only a starting point and a means of documenting quantitative improvements in the underlying model. Along the way, and not explicitly a part of the project’s formal milestones, we also hope to apply the model to some important and challenging problems that have heretofore been unapproachable. For example, an important component of the model is its consideration of the source of error in the application of the model. We would like to use Monte Carlo simulation methods to examine the effects of error propagation, which should become possible with next year’s work. We are also developing scenarios where the system can be used for interactive “what-if” explorations of large datasets. Finally, and perhaps most important, we are positioning the project to accommodate a new suite of data sources that will become available soon. County-level plot data are currently being gathered from a range of sources for the entire state of Colorado (66.7 million acres), and decadal-scale time series data on the spread of several invasive species in the Southwestern US (500 million acres) are being assembled. Within the next year, we believe it will be possible to use 512-node and larger clusters running this modeling system to take on problems three to four orders of magnitude larger than the canonical cases.
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1.9.3 Data Services, Measurements, and Models

{Much of this can come from out Software Design Document, the Schnase’s ISDS proposal, and Morisette’s MODIS Time-Series proposal.}

1.10 Description of Past and Current NASA Contributions

{Basically, it goes like this:

Engineering

· Predicting Regional-Scale Exotic Plant Invasions in Grand Staircase-Escalante National Monument (Schnase, NASA Carbon NRA, 10/01-9/04, $715K)

High-End Computing

· Biotic Prediction: Building the Computational Technology Infrastructure for Public Health and Environmental Forecasting (Schnase, NASA ESTO/CT CAN, 2/02-2/05, $1.1M) 

Data Services, Measurements, and Models

· The Invasive Specie Data Service: Towards Operational Use of ESE Data in the USGS Invasive Species Decision Support System (Schnase, NASA REASoN CAN, 12/03-12/08, $3.1M)

· Value Added Products from MODIS Time-Series Data Sets to Support DOI/USGS Invasive Species Management (Morisette, NASA EOS NRA, 12/03-12/06, $250K) }

Gaps in Meeting DST Needs

Conclusions and Recommendations

The National Invasive Species Council has noted, “no comprehensive national system is in place for detecting and responding to incipient invasions.” Yet the threat of invasive species is perhaps our most urgent economic and conservation challenge. There is a growing sense among land management agencies that a national assessment of native and non-indigenous plant diversity needs to be completed on all public lands. Especially high on the agenda are issues such as detecting the loss of native plant diversity caused by non-indigenous plant species, predicting where non-indigenous species are most likely to damage native diversity so that management can be targeted at the most vulnerable areas, and developing a science-based long-term monitoring plan for vegetation and soil resources. The work proposed here addresses concerns common to most land managers, and NASA has an essential role to play helping USGS build this capacity.

1.11 Findings

1.12 Recommendations

1.13 Next Steps

1.14 Technology Plan
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� As part of this project, we will build and deploy a cluster of at least 32 nodes at USGS specifically to support these modeling activities.
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