Radiation Curing of Composites Tutorial

C. C. Eberle ** C. J. Janke ** L. B. Klett ** G. E. Wrenn

Engineering Technology Division Oak Ridge National Laboratory

CENTER FOR COMPOSITE MANUFACTURING TECHNOLOGY

http://www.ornl.gov/orccmt/pages/homepg.html http://www.ornl.gov/etd/etdfctsh.htm

Managed by Lockheed Martin Energy Research Corporation for the United States Department of Energy under Contract DE-AC05-96OR22464

Introduction - Radiation Curing Of Composites

- Radiation processing is a revolutionary technology for manufacturing high-performance composite parts *efficiently* and *inexpensively*.
- Ionizing radiation in the form of high energy electrons or x-rays is used at controlled rates to cure polymers.
- Result is very fast, non-thermal, non-autoclave curing.

Outline

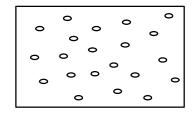
Polymer Matrix Composites

- A *brief* introduction to polymers and composites
- Thermal curing processes technology baseline
- Radiation Processing Technology
 - Ionizing radiation what is it?
 - Production and control of radiation
 - Commercial uses of radiation processes
- Radiation Curing of Polymer Matrix Composites
 - Radiation chemistry for polymers
 - Processing composite materials
 - Tooling options
- Issues and Unknowns

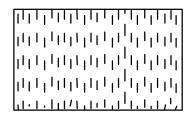
- Materials and properties
- Facilities and equipment
- Health and safety

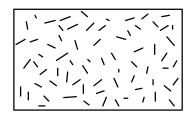
Composite

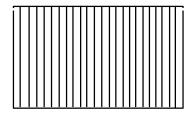
- A new material formed from two or more materials combined on a macroscopic scale.
- Composites can exhibit the best qualities of the constituents as well as new characteristics.
- Composites have the advantages of <u>flexibility</u> and <u>tailorability</u>.



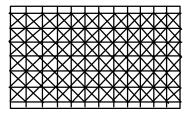
Types of Composites


- Particulate
 - concrete, aluminum flakes in paint, short fiber/whisker reinforced materials, SiC
- Fibrous
 - fiberglass, advanced composites
- Laminated
 - bimetals, safety glass, clad metals


Types of Reinforcement


Particulate Composite

Short-Fiber Unidirectional Composite


Short-Fiber Random Orientation Composite

Unidirectional Continuous Fiber Composite

			_			_	_	-						_	_	_	H
Η		H															H
					_				H								Ħ
																	Ħ
	_																H
Η		Η														Η	H
H		Η	H	H					F							Η	H

Crossply Composite

Multidirectional Composite

Types of Matrices

• aluminum

titanium

• copper

Metallic

•

Organic

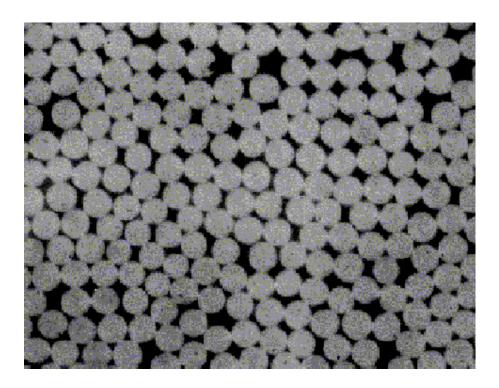
- thermosetting polymer
- thermoplastic polymer •

Ceramic

Carbon

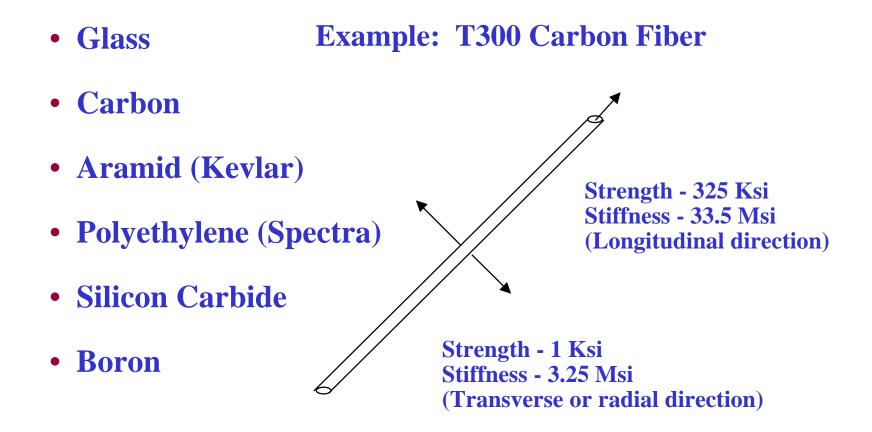
- high modulus derived from pitch
- high strength derived from acrylonitrile

ornl - Bringing Science to Bife


- glass
- silicon carbide

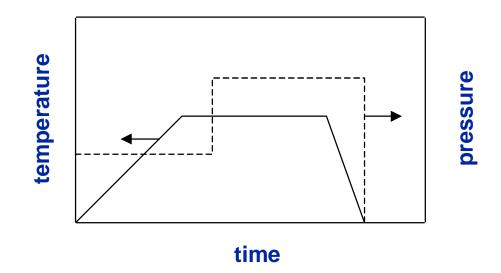
Two Basic Classes of Fiber Reinforced Composites

- Advanced (aerospace) Composites
 - Primarily used when <u>performance</u> is the driving issue.
 - Used primarily for weight advantage
 - Usually long (continuous) filaments
 - High specific strength and stiffness
 - Anisotropic bulk properties
- Commercial Composites
 - Low to medium performance
 - Usually short fiber or particle reinforcements.
 - Fiberglass is the most common composite used in manufacturing.


Advanced Composites

- Fibers
 - provide the mechanical properties (load bearing component).
- Matrix
 - maintains alignment, protects the fibers and transfers load between the fibers.

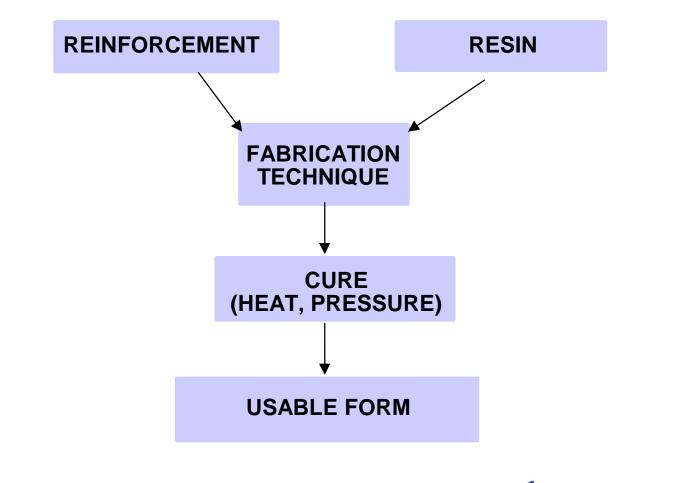
Fiber Reinforcements


Polymer Matrix Materials

- Thermoset Resins
 - Supplied in "liquid" form
 - Viscosity is a function of polymerization chemistry
 - Chemical triggers (hardeners) cause solidification
 - Heating used to accelerate solidification and crosslinking
 - Cannot be reprocessed by additional heating
- Thermoplastic Resins
 - Supplied in "solid" form
 - Viscosity is a function of temperature
 - Liquified by heating in fabrication processes
 - Solidified and hardened by cooling
 - May be softened and re-melted by additional heating

Typical Cure Cycle for Thermoset Resin

- Heating rate and cooling rate are important
- Vacuum may be needed to remove volatiles and trapped air

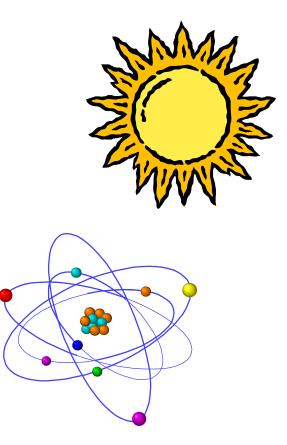


- Oven curing may use vacuum, but does not use pressure
- Most resins cure at 250 EF to 450 EF

04/19/99

Fabrication of Composites

Outline


- Polymer Matrix Composites
 - A *brief* introduction to polymers and composites
 - Thermal curing processes technology baseline
- Radiation Processing Technology
 - Ionizing radiation what is it?
 - Production and control of radiation
 - Commercial uses of radiation processes
- Radiation Curing of Polymer Matrix Composites
 - Radiation chemistry for polymers
 - Processing composite materials
 - Tooling options
- Issues and Unknowns

- Materials and properties
- Facilities and equipment
- Health and safety

"Radiation" And "Radioactive" Should Not Be Confused

- Radiation is a term to describe energy transport
 - Sunshine
 - Radio waves
 - X-rays
- Radioactive is a term to describe a substance
 - Radon
 - Cobalt
 - Tritium

Definitions

- Radiation
 - electromagnetic energy transmitted by waves (light) or a stream of energetic particles (e.g., electrons)
 - emitted from natural sources (e.g., the sun)
 - emitted from a radioisotope (e.g., thorium, cobalt)
 - produced by a particle accelerator
- Ionizing Radiation
 - photons and/or particles with sufficient energy to remove an electron from a stable atom
- Activation
 - conversion of a stable material to a radioactive material
 - can be caused by high-energy ionizing radiation

Definitions

- Gray (Gy) = J/kg
 - the SI unit of measurement of absorbed radiation
 - one joule of energy is absorbed per kilogram of matter being irradiated
 - 1 kGy = 1000 Gy
- Electron volt (eV) = 1.602×10^{-19} joules
 - a unit of *energy* equal to the energy acquired by an electron accelerating through a potential difference of 1 volt.
- Rad
 - another common dose unit. 100 Rad = 1Gy
- Sievert and REM
 - special units for measuring radiation effects in people

04/19/99

Typical Energies

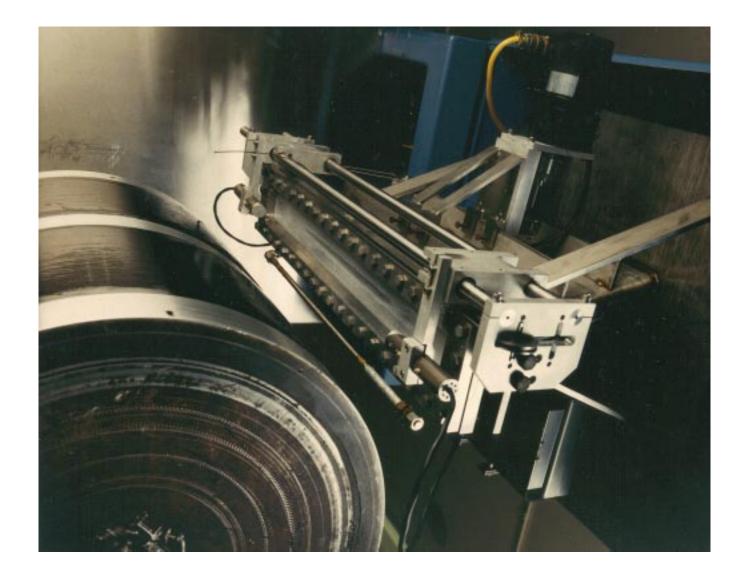
- 1.8-3.1 eV: visible light
- 3.1-250 eV: ultraviolet light
- 10-100 eV: outer shell electron binding energies
- 25 keV: television tube electron beam
- 200 keV: electron beam welder
- 100-200 keV: medical radiography
- 100-300 keV: electron curtain for curing inks, films, coatings
- 100 kev-10MeV: part radiography for nondestructive evaluation
- 1.17 MeV and 1.33 MeV: gamma rays from Cobalt-60

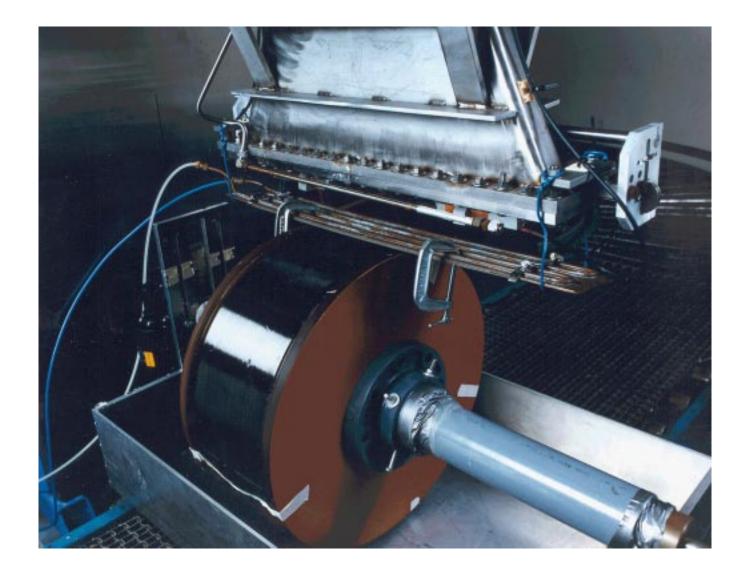
Typical Energies

- <5MeV: electrostatic accelerators
- 10 MeV: industrial RF accelerators
- 150 MeV: ORELA (Oak Ridge, TN)
- 4GeV: CEBAF (Hampton, VA)
- 50 GeV: SLAC (Stanford, CA)
- 90 GeV: LEP (CERN, Switzerland)
- 7 TeV: LHC (CERN, Switzerland planned)
- 20 TeV: SSC (cancelled)

Effects of Typical Radiation Doses

- 50 mGy: allowable *annual* dose for radiation worker
- 10 Gy: lethal dose for humans
- <1 kGy: Teflon structurally unstable
- 15-35 kGy: sterilization
- 20 kGy: curing of polyester resins
- 100-200 kGy: curing of epoxy resins
- 200 kGy: natural rubber unsuable
- 1000 kGy: polyvinylchloride unusable
- 50-100 MGy: polyimide degraded significantly




Accelerator Systems For Radiation Processing

- Accelerator Schematics
- Typical Configuration
- Scan Horn
- Foil Window
- X-ray Conversion Plate
- Shielding Considerations

Outline

- Polymer Matrix Composites
 - A *brief* introduction to polymers and composites
 - Thermal curing processes technology baseline
- Radiation Processing Technology
 - Ionizing radiation what is it?
 - Production and control of radiation
 - Commercial uses of radiation processes

Radiation Curing of Polymer Matrix Composites

- Radiation chemistry for polymers
- Processing composite materials
- Tooling options
- Issues and Unknowns

- Materials and properties
- Facilities and equipment
- Health and safety

04/19/99

Radiation Curing of Composites

- Visible and ultraviolet light curable resins can be cured by electron beams or X-rays.
- Usually, the thermal and mechanical properties of these resins are not suitable for high-performance applications (e.g., aerospace).
- The ionizing radiation initiates reactions in the resin that cause molecules to crosslink.
- Radiation-cured cationic photoinitiator epoxy resins have thermal and mechanical properties that meet most requirements for high-performance applications.

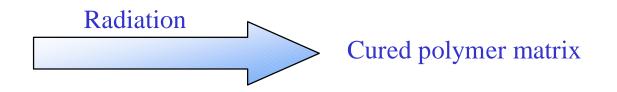
Radiation Induced Polymerization and Cross-linking of Resin Systems

- Schematic for epoxy acrylates
- Epoxy resin formulations
- Cationic resin chemistry with photoinitiators
- Photoinitiator chemistries
- Cationic epoxy material properties

Unique Capabilities

- Selectable cure temperatures
- Improved part performance and quality
- Ability to cure thick parts in one cycle
- Part thickness limited to 1-2" (electron) or 12" (X-ray)
- Material integration flexibility
 - different resin systems and fibers
 - metal fasteners
 - low temperature materials
- Tight tolerances from minimal thermal mismatch
- Removes need to "balance" fiber architectures
- Curing may be interrupted and restarted

04/19/99


How Radiation Curing Works

- Electrons are accelerated to near the speed of light.
- Magnets direct the stream of high energy electrons toward the part that is to be processed.
- The electrons may be converted to X-rays using a suitable target material placed near the part.
- The high energy electrons or X-rays deposit the energy needed to initiate polymerization and crosslinking reactions in suitable polymers.
- Energy is deposited volumetrically and near instantaneously (nano-microseconds)

Radiation Curing

 Epoxy resin + cationic initiator (1-3 parts per hundred) + tougheners/additives/fillers/diluents

- No harmful chemical hardeners or catalysts
- Longer pot life and shelf life
- Less volatile emissions
- Composite material costs, fabrication time, and end-uses comparable to conventional thermally cured products

Radiation Curing

- Throughput \leftrightarrow **Power** level
 - high velocity electrons lose their energy through interaction with the target materials
- *Penetration Depth* ↔ *Energy* level
 - beam penetration also depends on part density

Radiation Curing

- Dose profiles at different beam energies
- Beam penetration through composite structure
- Temperature profile during processing
- Effect of varying temperature on part stability

Thermal Curing of Composites

- Thermal energy initiates crosslinking of the polymer
- Has a significant impact on the composite quality (overcure/exotherm)
- Requires long cure times (diffusion from surface of part to interior)
- High energy consumption
- Cure process cannot be interrupted once it is initiated
- A significant cost in the manufacture of polymer matrix composites

Radiation Curing Vs. Thermal Curing

RADIATION CURING IS AFFORDABLE, FAST, AND SAFE

- Reduced manufacturing costs and energy requirements
- Reduced tooling costs
- Generally at least ten times faster
- Simplified processing and material handling
- Reduced costs related to environmental, safety and health compliance

Dosage and Dose Rate

- Radiation curable carbon/epoxy laminates can typically be cured with a dose of 100-200 kGy
- Dose rate must also be considered for process tooling to control temperature rise

 $T_{max} = D/C_p$

 T_{max} = temperature rise (°C) D = exposure dosage (kGy) C_p = material specific heat (J/g•° C)

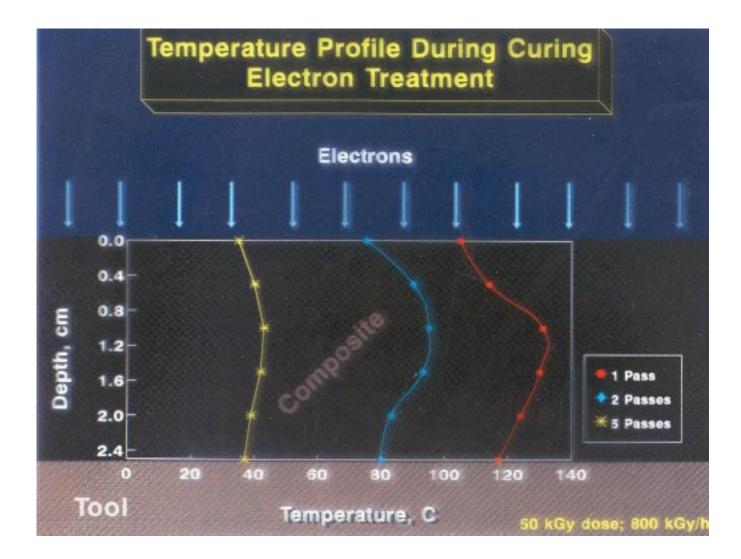
Energy Requirements

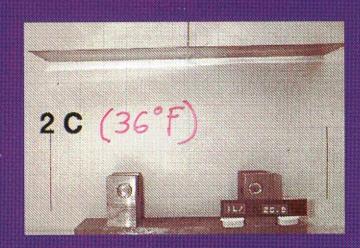
Thermal Curing Versus Radiation Curing

Product Description	Size (cm)	Mass (kg)	Thermal Cure Energy (kWh/part)	Radiation Cure Energy (kWh/part)
Hatch	122 cm x 244 cm	15.8	35	4.12
Cover (1)	x 3.3 mm			
Sports	Cylinder wall	0.3	0.24 (3)	0.02
Equipment (1)	1.5 mm thick			
Filament	Cylinder wall	2.0	13.5	1.73
Wound Tube (2)	5.1 mm thick			

(1) Graphite/Epoxy (2) Glass/Epoxy (3) Post Cure Only

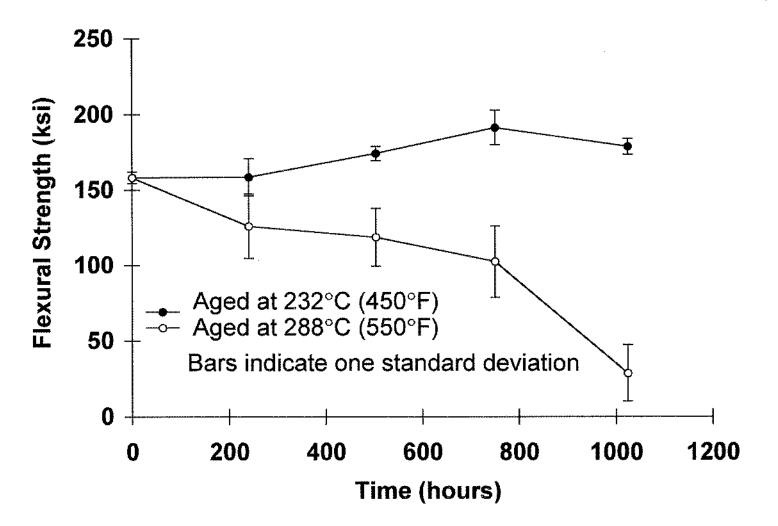
Data courtesy of AECL

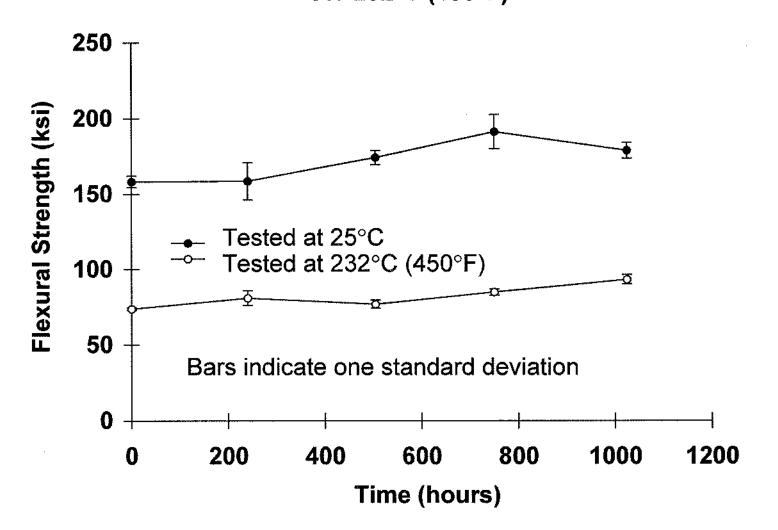

ornl - Bringing Science to Bife


04/19/99

Conversion of High-Energy Electrons To X-Rays

- Greater Penetration
- Reduced Dose Rate
- Lower Temperature Rise




Varying Curing Temperature

FLEXURAL STRENGTH OF ELECTRON BEAM RESIN 8H/IM7 UNIDIRECTIONAL LAMINATES VERSUS AGING TIME IN AIR-TESTED AT 25°C

FLEXURAL STRENGTH OF ELECTRON BEAM RESIN 8H/IM7 UNIDIRECTIONAL LAMINATES VERSUS AGING TIME IN AIR AT 232°C (450°F)

Tooling Flexibility

- Electron beam curing opens the door for alternative tooling materials and cost effective solutions
- Foams, plasters, woods, plastics, metals,
- Tooling should be optimized for:
 - weight
 - cost
 - temperature rise
 - ability to pass energy through for a closed mold
- Cure possibilities: total cure on tool, partial cure in mold, cure in-situ

Design Factors for Tooling

- fabrication process itself
- dimensional stability/ achievable tolerances
- mold fabrication process
- maintenance, handling
- repair
- venting
- part curing pressure
- temperature level
- need for resin flow
- required thermal expansion

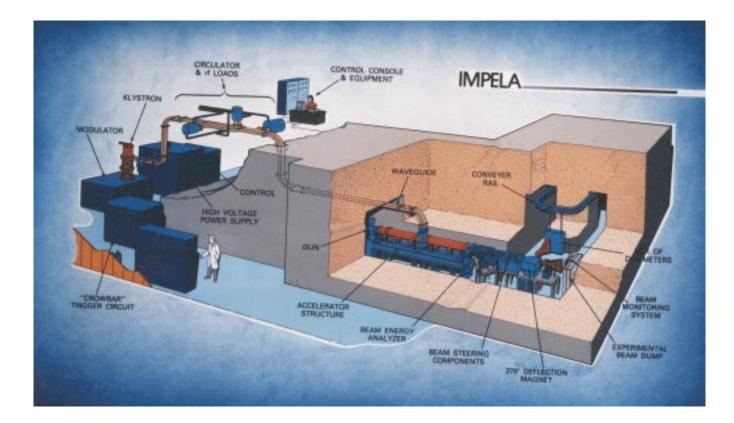
- part release
- wear/durability
- mold fabrication process
- thermal mass/conductivity
- cooling
- undercuts/hardware/inserts
- surface finish
- ease of mold duplication
- radiation absorption

Tooling Test Results and Observations

- Ceramics
 - Cures of 4500-7500 kGy
 - No failures to date
- Epoxies
 - Six of seven stable past 7000 kGy
 - One material lost dimensional stability at 4500kGy
- Plasters
 - Dimensional failures at 4125-7125 kGy
- Polycyanate
 - No failure to data at cures of 5625-6750 kGy
- Polyvinyl Chlorinate
 - Dimensional stability and hardness failed at 0-4125 kGy

04/19/99

Tooling Test Results and Observations


- Urethanes
 - Eight of 15 stable to 5000-7500 kGy
 - Seven lost dimensional stability at >750 kGy
- Woods
 - Mahogany lost hardness at 3750kGy
 - Jelutong lost harness at 750 kGy
- Others
 - Acrylate lost hardness at 6750 kGy
 - Phenolic lost hardness at 3750kGy

Accelerator Facility Schematics

- Unipolis Facility
- Impela Facility

Product Size Limits - Contract Facilities 1996

- E-BEAM Services (Cranbury, NJ)
 - 3.7 m x 0.8 m x 0.8 m (12 ft x 2.5 ft x 2.5 ft)
- Iotron (Vancouver, BC)
 - 2.5 m x 1.1 m x 1.0 m (8 ft x 3.5 ft x 3 ft)
- Aerospatiale (Bordeaux, FR)
 - 10.0 m x 4.0 m dia. (32.5 ft x 13 ft)
- Acsion (Pinawa, MB)
 - 2.7 m x 1.2 m x 0.6 m (8.5 ft x 3.5 ft x 2 ft)
- New facilities coming online will be discussed in workshop.

Outline

- Polymer Matrix Composites
 - A *brief* introduction to polymers and composites
 - Thermal curing processes technology baseline
- Radiation Processing Technology
 - Ionizing radiation what is it?
 - Production and control of radiation
 - Commercial uses of radiation processes
- Radiation Curing of Polymer Matrix Composites
 - Radiation chemistry for polymers
 - Processing composite materials
 - Tooling options

Issues and Unknowns

- Materials and properties
- Facilities and equipment
- Health and safety

Materials Issues

- Effect of curing temperature on the performance of composites over the expected use temperature range
- Mechanical property requirements
 - material qualification
- Curing under pressure is often impractical
 - vacuum bagging
 - debulking/consolidation under pressure
 - voids
- Fiber selection
 - use of organic fibers (polyethylene, nylon) must be done with caution

Materials Issues

- Fiber sizings for e-beam curing
 - G-sizing is most compatible so far
- Shear properties require improvement
 - New DOE CRADA research partnership is being formed to address issue
- Applicability of radiation curing process to wider range of resins
- X-ray cured materials need additional characterization

Facility Issues

- Existing facility infrastructure is limited
 - size
 - availability
 - accelerator power and energy
 - locations (concentrated on coasts)
- Dedicated facility costs
 - Accelerator facility costs are projected to be somewhat less than high volume autoclaves
 - Current estimates are on the order of10 million for multipurpose, high-throughput facility, more if vault is to be extremely spacious

Facility Issues

- ES&H issues associated with ionizing radiation
 - Routine industrial hazards
 - falls and accidents
 - material handling
 - electrocution
 - Removal of Ozone
 - Radiation protection
 - shielding
 - time
 - distance

Potential Applications And Demonstrations

Ground Vehicles

- •Compressed Natural Gas Tanks
- •Tires and Tank Treads
- •Molded Parts (rapid prototyping)
- •Integrated Polymer/Metal Parts

Buildings and Infrastructure

•Foam-Filled Polymer Structures

•Polymer/Wood Composities

Industrial Systems

•Lightweight/Low Vibration Parts

Aircraft and Space Vehicles

- •Cryogenic Fuel Tanks & Lines
- •Integrated Polymer / Metal Composites
- •High Temperature Composite Shafts
- •Rocket Nozzle Structures
- •Flywheel Components

Weapon Systems

- •Ballistic Protection Structures
- •Rocket and Missile Casings
- •Antennas and Reflectors

