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Collisional Breakup in a
Quantum System of Three

Charged Particles
T. N. Rescigno,1 M. Baertschy,2 W. A. Isaacs,3 C. W. McCurdy2,3

Since the invention of quantum mechanics, even the simplest example of the
collisional breakup of a system of charged particles, e2 1 H3 H1 1 e2 1 e2

(where e2 is an electron and H is hydrogen), has resisted solution and is now
one of the last unsolved fundamental problems in atomic physics. A complete
solution requires calculation of the energies and directions for a final state in
which all three particles are moving away from each other. Even with super-
computers, the correct mathematical description of this state has proved
difficult to apply. A framework for solving ionization problems in many areas
of chemistry and physics is finally provided by a mathematical transformation
of the Schrödinger equation that makes the final state tractable, providing the
key to a numerical solution of this problem that reveals its full dynamics.

Electron-impact ionization of atoms and mol-
ecules is one of the most basic phenomena in
low-energy collision physics. It is the funda-
mental mechanism for ion formation in mass
spectroscopy and is responsible for forming
and sustaining low-temperature plasmas that
are used in applications ranging from fluores-
cent lighting to the processing of silicon
chips. These collisions are governed by none
of the selection rules that limit optical exci-
tation, primarily because the incident electron
cannot be distinguished from those of the
target. Thus, electron impact stands as one of
the most efficient means for exciting and
ionizing atoms and molecules.

It seems almost incredible that even the
simplest example of an electron impact–initi-
ated breakup problem, the ionization of a hy-
drogen atom in a collision with an electron, has

resisted solution until now. Although the Schrö-
dinger equation has been known for more than
70 years, there has been no framework that
allowed its complete solution for this case. In
contrast, the bound states of the helium atom,
another system with only two electrons, were
computed accurately in the 1950s. That work
established a framework that allowed the devel-
opment of modern quantum chemistry as a
practical discipline. The theoretical framework
demonstrated here provides a basis for devel-
oping practical methods to treat ionizing colli-
sions of electrons with atoms and molecules.

The Quantum Mechanics of Three
Charged Bodies
Although the analytic solution of the wave
function for the isolated hydrogen atom
played a pivotal role in establishing the new
quantum theory during the early part of this
century, no corresponding solutions exist for
systems with three or more charged particles.
Indeed, the nonrelativistic quantum mechan-
ics of two-electron atoms has a long history,
beginning with the work of Hylleraas (1) on

bound states in the 1930s that culminated
with Pekeris’s (2) accurate determination of
the bound states of helium in the late 1950s.

Scattering problems are intrinsically more
difficult. It was not until 1961 that the sim-
plest collision problem in a two-electron sys-
tem, scattering of an electron by a hydrogen
atom without energy exchange, was solved
numerically by Schwartz (3) with Kohn’s
variational principle (4). Since then, the ef-
fort to solve the problem of collisions in
which energy is transferred into excitation of
states with quantum numbers n and l [e2 1
H(1s) 3 e2 1 H(nl )] has produced bench-
mark calculations of excitation probabilities
and angular distributions for excited bound
states of the hydrogen atom. In the case in
which only probabilities for excitation of the
target atom are required, the traditional ap-
proach has been to expand the unknown so-
lution of the Schrödinger equation in terms of
the known wave functions of the target—the
so-called “close-coupling” method. The ini-
tial applications of this method were confined
to low energies at which only a few target
states could be excited (5).

The next major hurdle to overcome was
the extension of such studies to collision
energies above that needed to ionize the tar-
get where a continuously infinite number of
final states is possible. The convergence of
the close-coupling method was convincingly
and dramatically illustrated by Bray and Stel-
bovics (6) in 1993, who showed that a “con-
vergent” close-coupling method could be de-
veloped for calculating elastic and excitation
probabilities. They replaced the true ionized
states of the hydrogen atom with a finite set
of “pseudostates” and systematically in-
creased their number until convergence was
achieved. Using these ideas, they performed
the first accurate computations of the total
probability for ionization. Their work com-
pleted another chapter on the dynamics of
two-electron systems, but not the final chap-
ter. Attempts to use this approach to predict
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any of the details of the process, such as the
angular distributions for the two outgoing
electrons or their respective energies, gave
results that oscillate widely about the correct
values (7) or require multiplication by un-
foreseeable overall constants to be compara-
ble to experiment (8).

Although the first serious calculations on
ionization by electron impact did not appear
until the early 1990s, Peterkop (9) and simul-
taneously Rudge and Seaton (10) had worked
out the mathematical theory of ionization in
the early 1960s. The form of the wave func-
tion in which all three particles are widely
separated places a boundary condition on the
wave function that is so intractable that no
known numerical approach to solving the
Schrödinger equation has successfully incor-
porated it explicitly. The mathematical theory
has given rise to a number of “ansatz” stud-
ies—a large number have appeared in recent
years following the pioneering work of
Brauner et al. (11) in 1989—in which aspects
of the final state wave function for three
charged particles are incorporated into an ad
hoc formula for the ionization probability. A
recent review of these calculations (12) has
concluded that they perform poorly and that,
in the few cases in which they appear to work
well, the agreement with experiment is large-
ly fortuitous. There is another promising ap-
proach that involves casting the problem in a
time-dependent formulation (13), but it has
not yet been applied to calculate the detailed
ionization probabilities for the full problem
of electron-impact ionization of hydrogen.

Only recently has the application of very
large scale computing begun to yield results
on this problem, unleashing a flurry of activ-
ity as the community began to see that a
practical solution might be possible. Never-
theless, the complete breakup of a system of
three charged particles has remained an un-
solved problem until now. We found that an
unambiguous numerical solution of this prob-
lem requires not only the kind of massively
parallel computational resources that have
only recently become available but also a
fundamentally different approach to formu-
lating the problem. This research article pre-
sents numerical results of calculations on
electron-impact ionization of hydrogen by a
method that can give complete details about
the energy and angular distributions of the
two outgoing electrons. The first calculations
on the bound states of helium or on electron-
impact excitation of the hydrogen atom
opened the door to today’s calculations on
large molecules rich with previously un-
known physical effects. Similarly, the com-
plete calculations of electron-impact ioniza-
tion of the hydrogen atom point the way to
calculations on larger atoms and molecules
that will unravel the more complicated dy-
namics of those ionizing collisions.

Quantum Scattering Wave Functions
In collision problems, in contrast to bound
state problems, the wave functions are not
localized but extend over all space. Collisions
are intrinsically time-dependent, but the in-
teractions depend only on distances and not
explicitly on time, so the scattering informa-
tion can be found by solving the time-inde-
pendent Schrödinger equation familiar to
both chemists and physicists:

HC 5 EC (1)

where H is the Hamiltonian operator, C is the
wave function, and E is total energy of the
colliding system. When only one electron can
escape to large distances from the nucleus,
the form of the final state wave function is a
product of a bound orbital for one electron
(such as the 1s orbital of hydrogen) and a
free wave [or more properly, an outgoing
spherical wave, exp(ikr)/r, where i 5
=21, k is the momentum of the electron,
and r is its distance from the nucleus] for
the other. This is the boundary condition
under which the Schrödinger equation is to
be solved, and the wave function can be
easily analyzed by matching to this known
asymptotic form to give excitation proba-
bilities and angular distributions.

For breakup collisions, the asymptotic
form of the wave function is not so simple,
and when the particles are charged, the situ-
ation is more complicated still. Two electrons
can be at large distances from the nucleus,
and one might expect the corresponding as-
ymptotic form to be the product of the wave
functions of two free electrons. However,
because all three particles in this problem are
charged, the Coulomb potentials between
them fall off only as 1/r, the reciprocal of the
distances between them, which complicates
the explicit form of the wave function in the
breakup region. The asymptotic form for
breakup is sufficiently complicated that
knowing it has yet to provide a viable path to
a first-principles calculation of the complete
wave function.

We have devised a method that avoids this
problem completely (14, 15). We divided the
problem into two steps: (i) computing the full
wave function without explicit reference to
any asymptotic form and (ii) extracting the
required dynamical information from the
computed wave function, again without ex-
plicit reference to an asymptotic form.

Computing the Wave Function for the
Breakup Problem
To compute the wave function, we use a
mathematical transformation of the Schröd-
inger equation itself that makes the wave
function approach zero as the coordinates of
any electron, ri, become large, just as it
would in a bound state. Expressing the wave
function as the sum of two terms, the scat-

tered wave function, Csc(r1,r2), plus the
known initial state, Fo(r1,r2), allows us to
rewrite the Schrödinger equation as

@E 2 H~r1,r2)]Csc(r1,r2)

5 @H~r1,r2) 2 E]Fo(r1,r2)

5 @H(r1,r2) 2 E][w1s(r1)e
ikizr2

6 w1s~r2)e
iki zr1# (2)

The electron coordinates are measured from
the nucleus, and Fo describes the initial state
of the system, namely, a free electron with
momentum ki incident on a hydrogen atom in
its ground state, w1s. The 6 sign determines
the symmetry of the wave function under
interchange of the coordinates r1 and r2,
which is a consequence of the quantum me-
chanical indistinguishability of the electrons.
The plus and minus signs depend on the total
spin S of the two electrons: plus for singlets
(S 5 0) and minus for triplets (S 5 1). The
key aspect of Eq. 2 is that the scattered part of
the wave function, Csc(r1,r2), contains only
outgoing waves at large distances and carries
all of the information about the scattering
dynamics.

The transformation we apply to the Schrö-
dinger equation is called exterior complex
scaling, under which a real scalar distance, r,
is transformed as

R~r! 5 H r, r , R0

R0 1 ~r 2 R0!eih, r $ R0 (3)

where R0 is a large real number and h is a
positive number between 0 and p. This trans-
formation is applied to the radial coordinates
of both electrons. Exterior complex scaling of
coordinates was invented by Simon (16) in
1979 to prove formal mathematical theorems
in scattering theory (17). The crucial aspect
of this transformation is that the scattered
wave tends to zero exponentially at large
distances because it is purely outgoing. Al-
though a solution of the original Schrödinger
equation in the breakup region would require
the imposition of the complicated three-body
asymptotic boundary condition, the trans-
formed Schrödinger equation can be solved
for the scattered wave by imposing the
boundary condition that it vanish as either
electron coordinate goes to infinity, exactly
as though it were a bound state.

A pictorial representation of the exterior
scaling transformation and its application in
two dimensions is shown in Fig. 1. In the
unshaded portion of the diagram, the electron
coordinates r1 and r2 are both real. Thus, in
this restricted region, the wave function we
compute under the exterior scaling transfor-
mation coincides with the physical wave
function for the system; that is, it is identical
to the one that would be obtained by applying
the correct Coulomb asymptotic boundary
conditions for breakup.
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The Schrödinger equation for this prob-
lem is an equation in six variables. The next
step to solving it is to expand the wave
function in terms of functions of the angular
coordinates of the electrons:

Csc(r1,r2)

5
1

r1r2
O

L,l1,l2

cl1l2

L ~r1,r2!=l1l2

L ~r̂1,r̂2) (4)

The functions =l1l2

L , so-called coupled spher-
ical harmonics (18), are eigenfunctions of the
total angular momentum, L, and the angular
momenta of the individual electrons, l1 and
l2. The use of the expansion given by Eq. 4 in
the equation for the scattered wave results in
sets of coupled two-dimensional second-or-
der differential equations for the radial com-
ponents of the wave function, cl1l2

L (r1,r2). Be-
cause the total angular momentum is con-
served, there is only coupling between com-
ponents that have the same value of L.

We solve the resulting equations by con-
verting them into large systems of complex
linear equations using a finite difference rep-
resentation of the Hamiltonian operator on a
two-dimensional numerical grid. The grids
used here, whose real portion extends out to
130 Bohr radii, consist of ;250,000 total
points. The systems of complex linear equa-

tions that we solve are on the order of 5
million by 5 million. Such calculations re-
quire special techniques and are only practi-
cal to carry out on massively parallel super-
computers.

We can get a striking visualization of the
scattering process by looking at the radial
components of the scattered wave function.
Three different radial components for L 5 2
at an incident energy of 17.6 electron volts
(eV) are shown in Fig. 2. The singlet com-
ponent with l1 5 l2 5 1 (Fig. 2A) is the
easiest to explain. It is symmetric under in-
terchange of r1 and r2. The large-amplitude
oscillations along the r1 and r2 axes are due to
discrete excitation processes in which one
electron is confined to a region near the
nucleus. The circular wavefronts that span
the space between the two axes are due to
ionization in which both electrons are moving
away from the nucleus, and they exhibit the
wavelength corresponding to the total energy
available to the two outgoing electrons. The
triplet component with l1 5 l2 5 1 is shown
in Fig. 2B. In contrast to the singlet compo-
nent, this radial function is antisymmetric
under the interchange of radial coordinates so
the ionization wave is zero along the line
r1 5 r2. A component with l1 5 2 and l2 5 0
is shown in Fig. 2C. This component itself is

Fig. 1. The exterior complex scaling transfor-
mation. This mapping is applied to the radial
coordinates of each electron. (Top) Real (Re)
and imaginary (Im) parts of one radial coordi-
nate plotted in the complex plane. The coordi-
nate is real from 0 to R0; beyond R0, it is rotated
into the upper half plane by an angle h. (Bot-
tom) The scaling of a two-dimensional coordi-
nate system. Both coordinates are real on an
interior box extending from 0 to R0. Outside of
this box, at least one of the coordinates is
complex. The hyperspherical coordinates r and
a, which are used for calculating ionization flux,
are also shown.

Fig. 2. Three representative radial functions that are part of the expansion
of the full scattered wave for electron-hydrogen collisions. The real parts
of the scattered wave are plotted as functions of the radial coordinates of
the two electrons with the origin in the leftmost corner. All other radial
components of the scattered wave will be similar in shape to one of the
three cases depicted. (A) A singlet component with l1 5 l2 5 1, which is
symmetric in the two radial coordinates. (B) The corresponding triplet
component, which is antisymmetric. (C) A component for which l1 and l2
are different. Oscillations in the wave functions indicate outgoing waves
moving away from the nucleus. The higher amplitude oscillations along
the edges are due to elastic scattering and excitations of the hydrogen
atom in which only one electron is scattered whereas the other remains
bound near the nucleus. The circular wavefronts throughout the grid
correspond to ionization. Beyond 130 Bohr radii (24), the radial coordi-
nates are complex, and the radial functions are exponentially damped.
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asymmetric, but there is also a complementary
component with l1 5 0 and l2 5 2 that pre-
serves the overall symmetry of the full wave
function. The large-amplitude, short-wave-
length oscillations along the r1 axis are due to
elastic scattering. Longer wavelength processes
that correspond to various excitations of the
hydrogen atom are also present and cause the
“beat” pattern in the amplitude near the r1 axis.
All of the radial components combine with the
known angular factors to form the complete
scattered wave through Eq. 4. Once the wave
function is computed, we have information
about all the physical processes that occur in
this collision, but we must devise a way of
extracting that information without recourse to
the three-body asymptotic form.

Analyzing the Scattered Wave to
Obtain Probabilities
Exterior complex scaling gives us a method
for computing the physically correct wave
function over a finite region of space where
both r1 and r2 are real. The next task is to
devise a method for analyzing this wave
function to get probabilities and angular dis-
tributions for ionization. We do this by com-
puting the quantum mechanical flux. The
quantum mechanical flux is a concept dating
from the 1920s on which formal scattering
theory and the concept of scattering cross
sections are based (19). For a two-electron
system, the flux (or probability current den-
sity) is a six-dimensional vector defined as

F 5
1

2i
@~C!*¹C 2 C¹~C!*# (5)

where the asterisk denotes complex conjuga-
tion. The flux corresponding to ionization is
evident in the outgoing waves seen in the
radial functions plotted in Fig. 2. We want to
describe the outgoing flux in a convenient
coordinate system, hyperspherical coordi-
nates, which replaces the two radial distances

r1 and r2 by a hyperradius r 5 (r 1
2 1 r 2

2)1/2

and an angle a 5 tan21(r1/r2) (see Fig. 1). As
the electrons get very far apart, the angle a
also parameterizes the energy sharing be-
tween the two electrons as ε1 5 E cos2a and
ε2 5 E sin2a. We can then label the outgoing
flux at any point by F(r, a, u1, w1, u2, w2). In
the limit r 3 `, this flux is directly propor-
tional to the probability of ionization with
electrons ejected with energies ε1 and ε2 and
directions specified by the respective angles
u1, w1, u2, and w2.

The wave function computed under exterior
complex scaling is physically meaningful only
in the region where both coordinates are real.
Therefore, we must evaluate the flux through a
hypersphere whose radius r lies within the un-
shaded portion of the grid shown in the lower
portion of Fig. 1. It can be shown that, for
electron-impact ionization, the probability com-
puted in this fashion approaches its asymptotic
limit as 1/r. We obtain the r3 ` limit of the
flux by extrapolating calculations performed for
several sizes of the real part of the grid, R0. We
found that the flux reaches its asymptotic value
quite smoothly for values of a that are not close
to 0 or p/2. For the calculations reported here,
the largest value of R0 considered was 130 Bohr
radii.

The Ionization Probabilities and Cross
Sections
In scattering experiments, the probabilities for
quantum events are usually expressed as a cross
section with units of area, which for a particular
process is the ratio of particles scattered per unit
time to the flux (particles per unit time per unit
area) of incident particles. For ionization, a
number of different cross sections are frequent-
ly measured. The total cross section for ioniza-
tion measures the total ionization probability at
a given collision energy, irrespective of how the
available energy is shared between the two free
electrons that reach the detector or their direc-
tion of ejection relative to the incident beam.
The single differential (SDCS) or energy-shar-
ing cross section, ds/dε, measures the probabil-
ity for ionization collisions that produce elec-
trons at specific energies, irrespective of their
directions of ejection. Because electrons are
identical particles, it is physically impossible to
distinguish which electron was originally
bound in the atom. If ε1 and ε2 denote the
energies of the two electrons in the final state
(energy conservation demands that ε2 5 E 2
ε1), then the SDCS must be symmetric about
E/2. The SDCS is important because it plays a
large part in determining the way energy is
distributed among ions and electrons in low-
temperature plasmas and in determining the
electron energy distribution function itself. Un-
fortunately, experimental determination of the
SDCS is difficult because it requires an extrap-
olation into regions where measurements are
not possible (20).

The most detailed information about ioniza-
tion is contained in the so-called triple differ-
ential cross section (TDCS), ds/(dεdV1dV2),
which measures the ionization probability for
producing electrons at specific energies and
directions. The availability of such data places
the most stringent test on the quality of a cal-
culated wave function because it is sensitive to
complex phases of its components.

We compute the SDCS by applying the flux
operator to our calculated wave function. Inte-
gration over the directions of ejection of the two
electrons, because of the orthonormality of the
coupled spherical harmonics, collapses the
SDCS expression into a simple sum of contri-
butions from each radial component of the scat-
tered wave function. Our calculated SDCS at an
incident energy of 25 eV, along with the exper-
imentally determined values of Shyn (20), is
shown in Fig. 3. Other first-principles attempts
to compute the SDCS have produced results
that fail to display the proper symmetry about
E/2 (21). Our results are symmetric about E/2,
as they must be because they were extracted
directly from a wave function with the proper
exchange symmetry.

For the TDCS, there is no integration over
the directions of ejection, and thus the cross
section contains terms that depend on interfer-
ence between the various partial wave compo-
nents, cl1l2

L (r1,r2), of the scattered wave func-
tion. The TDCS for electron-hydrogen ioniza-
tion has been measured by Röder et al. (22, 23)
in the “symmetric coplanar” geometry. In this
geometry, the electrons exit with the same en-
ergy, and the incident electron beam and the
outgoing electrons all lie in the same plane. A
diagram of the geometrical arrangement for this
situation is shown in Fig. 4A. The experimen-
tally determined values are plotted along with
our calculated cross section in Fig. 4, B to F.
Röder et al. (23) state that the absolute error for
the experiments is as large as 40% but that the
relative error is on the order of the sizes of the
symbols. The small asymmetry about 90° in
Fig. 4B suggests the size of the relative error,
whereas the error bars show the absolute error.

Figure 4B describes the case in which the
two detectors are placed 180° apart. The cross
section in this case is strongly peaked at angles
of 0° and 180°, where one electron is scattered
forward and the other “recoils” in the backward
direction. In the “symmetric coplanar” geome-
try, there is near zero probability of both elec-
trons being ejected perpendicular to the direc-
tion of the incident electron. In the other cases
depicted in Fig. 4, for which the detectors are
separated by smaller angles, the lowest proba-
bilities always correspond to the two electrons
being scattered at equal but opposite angles
from the incident direction. We verified that the
curves shown in Fig. 4, B to E, are converged
with respect to the number of angular momen-
tum components included, whereas the larger
discrepancy in Fig. 4F is due to the need for
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Fig. 3. Single differential ionization cross sec-
tion (SDCS) for electron-hydrogen collisions at
25-eV incident energy. The ionization potential
of hydrogen is 13.6 eV, so the total energy
available to the ionized electrons is E 5 11.4
eV. The calculated SDCS is symmetric about
E/2 5 5.7 eV as expected. Experimental data
from Shyn (20) are shown for comparison.
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more angular momentum components in our
calculations to describe the ejection of electrons
in closer directions. Overall, our results are in
excellent agreement with measured values, both
in shape and magnitude.

Understanding Ionizing Collisions and
Their Role in Common Phenomena
The theoretical approach and numerical calcu-
lations we have presented here make possible a
complete numerical solution of the simplest
nontrivial problem in atomic collision theory—
electron–hydrogen atom scattering—some 40
years after it was first attacked. The key to

success in this work is the use of mathematical
transformations that were originally invented as
tools to prove formal theorems in mathematical
physics and that avoid the explicit use of the
asymptotic boundary condition for breakup that
has been the barrier to such calculations for four
decades. Although the calculations presented
here will certainly be improved upon, their real
importance is that the only approximations in
the method are in the finite size of the grid that
is used and the number of angular components
retained in the expansion. The procedure we
have outlined involves no uncontrolled approx-
imations, and the effects of the numerical ap-

proximations can in principle be made arbitrari-
ly small, given sufficient computing power.
This fact distinguishes this approach from other
theoretical methods that have been proposed to
study ionization. Some have been found to give
surprisingly good results, but, thus far, all have
involved uncontrolled approximations that can-
not be systematically eliminated.

Because low-energy electron-impact ion-
ization pervades a wide range of physical
processes, it is important to be able to predict
the details of this most basic collision phe-
nomenon in more complicated contexts. We
have succeeded in solving the problem of
electron-impact ionization of hydrogen, but
further work needs to be done to treat ioniza-
tion of many-electron atoms and molecules.
Phenomena can appear that are absent from
the two-electron system we treated here. With
multielectron targets, there is the possibility
of quantum interference between direct ion-
ization and ionization from metastable states
that may lead to signatures in the angular and
energy distributions of exiting electrons. In
the case of molecules, the additional nuclear
degrees of freedom open the door to a richer
set of phenomena such as fragmentation and
attachment.

We expect that the ideas presented here
will lead to further developments that will
enable the treatment of ionizing collisions of
electrons with more complicated atoms and
molecules. There are several promising meth-
ods being developed within the electron-scat-
tering theory community, and the ultimate
solution to theoretical treatment of electron-
impact ionization of molecules will undoubt-
edly draw on methods and concepts from
several of these efforts. At a time when large-
scale computers are generally thought to be
necessary to investigate the “complexity” of
the physical world in the very different sense
of treating increasingly larger systems, it is
noteworthy that the same computing power
and tools are needed to answer a basic phys-
ics question for one of the simplest systems
imaginable in physics and chemistry.
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R E P O R T S

Quantum Impurity in a Nearly
Critical Two-Dimensional

Antiferromagnet
Subir Sachdev,* Chiranjeeb Buragohain, Matthias Vojta

The spin dynamics of an arbitrary localized impurity in an insulating two-
dimensional antiferromagnet, across the host transition from a paramagnet
with a spin gap to a Néel state, is described. The impurity spin susceptibility
has a Curie-like divergence at the quantum-critical coupling, but with a uni-
versal effective spin that is neither an integer nor a half-odd integer. In the Néel
state, the transverse impurity susceptibility is a universal number divided by the
host spin stiffness (which determines the energy cost to slow twists in the
orientation of the Néel order). These and numerous other results for the
thermodynamics, Knight shift, and magnon damping have important applica-
tions in experiments on layered transition metal oxides.

The recent growth in the study of quasi–two-
dimensional transition metal oxide com-
pounds (1) with a paramagnetic ground state
and an energy gap to all excitations with a
nonzero spin (the “spin-gap” compounds
such as SrCu2O3, CuGeO3, and NaV2O5) has
led to fundamental advances in our under-
standing of low-dimensional, strongly corre-
lated electronic systems. These systems are
insulators and thus are not as complicated as
the cuprate high-temperature superconduc-
tors (which display a plethora of phases with
competing magnetic, charge, and supercon-
ducting orders); this simplicity has exposed
the novel characteristics of the collective
quantum spin dynamics.

One of the most elegant probes of these
spin-gap compounds is their response to in-
tentional doping by nonmagnetic impurities,
such as Zn or Li, at the location of the
magnetic ions. Such experiments were initial-
ly undertaken on the cuprate superconductors
(2, 3), but their analogs in the insulating
spin-gap compounds have proved to be a
fruitful line of investigation (4). They have
demonstrated a remarkable property of the

paramagnetic ground state of the host com-
pound: Each nonmagnetic impurity has a net
magnetic moment of spin 1⁄2 located in its
vicinity (for the case in which the host com-
pound has magnetic ions with spin 1⁄2). The
confinement of spin is a fundamental defin-
ing property of the host paramagnet and is a
key characterization of the quantum-coherent
manner in which the host spins form a many-
body, spin zero ground state; this confining
property was predicted theoretically (2, 5) for
the paramagnetic states of a large class of
two-dimensional antiferromagnets.

We describe here the quantum theory of
an arbitrary localized deformation in such
antiferromagnets; examples of deformations
are (i) a single nonmagnetic impurity, along
with changes in the values of nearby ex-
change interactions, and (ii) a change in sign
of a localized group of exchange interactions
from antiferromagnetic to ferromagnetic. Our
main concern is the behavior of the impurity
as the host antiferromagnet undergoes a bulk
quantum phase transition from a paramagnet
to a magnetically ordered Néel state; we
show that the spin dynamics of any deforma-
tion is universally determined by a single
number—an integer or half-odd integer val-
ued spin S.

Apart from applications to experiments on
materials intentionally driven across a quan-

tum phase transition, our results also lead to
new insights and predictions about the behav-
ior of impurities in existing spin-gap com-
pounds. The traditional view of the spin-gap
paramagnet is based on strong local singlet
formation between nearest-neighbor spins
(Fig. 1A); the resulting picture of doping by a
nonmagnetic impurity is that the partner spin
of the impurity site is essentially free. To
obtain any nontrivial dynamics, one performs
an expansion about such a decoupled limit,
and this yields simple localized spin behavior
with nonuniversal details, depending on the
specific microscopic couplings. In practice,
however, spin-gap systems are usually well
away from the local singlet regime, and
strong resonance between different singlet
pairings leads to appreciable spin correlation
lengths: Their spin gap, D, is significantly
smaller than J, a typical nearest-neighbor
exchange. A systematic and controlled ap-
proach for analyzing such a fluctuating sin-
glet state, which we advocate here, is to find
a quantum-critical point to a magnetically
ordered state somewhere in parameter space
and then to expand away from it into the
spin-gap state. The coupling between the
bulk and impurity excitations becomes uni-
versal in such an expansion, and all dynam-
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Fig. 1. The coupled-ladder antiferromagnet. The A
links are solid lines and have exchange J; the B
links are dashed lines and have exchange lJ. The
paramagnetic ground state for l , lc is sche-
matically indicated in (A): The ellipses represents
a singlet valence bond, (u12& 2 u21&)/=2
between the spins on the sites. The Néel ground
state for l . lc appears in (B).
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