Realizing Daniel's Vision for Nanoscience: The Molecular Foundry

1

.

Daniel Speaking at First Molecular Foundry Workshop - 2002

Come here and enjoy...

Coffee...

The view...

www.foundry.lbl.gov

Research!!!

Control and Manipulation of Optical Fields at the Nanoscale

Nanopatterning for plasmonic antennas

- Bowtie antennas, two metallic triangles facing tip to tip with small gap.
- High local field in sub-wavelength volume

Need for Smallest Gap

Resonance of "Cross" Nanoantennas

COMSOL simulation of normalized E-field at resonant wavelength

• Optimize interaction with all polarizations

Eq. 75

Plasmonic Nanoantennas

Plasmonic Color Nano-sorter

Bowtie Nanoantennas: E-beam Fabrication

150nm bowtie, 4nm gap.

Bowtie chains.

Gold liftoff of bowtie, 5nm gap.

Gold liftoff of e-beam exposed bowtie cross.

Scanning Nanoantenna Micro(Nano)scope

Optical Imaging Spectroscopy

- + 10nm resolution
- + high lateral control

Stefano Cabrini, Alex Weber, Jim S

Raman, nanoCARS, photoluminescence, etc.

- ~ 10⁵ times more efficient than NSOM
- 5-10 times better spatial resolution
- > 10 times larger enhancement than ANSOM

Novel nanofabrication techniques essential for these length scales and "substrates"

Electron-beam Induced Deposition and differential dry etching to build plasmonic nanostructures

Better signal-to-noise for nanoscale structures

Three Raman setups on one Microscope

- Imaging based on nonlinear optics (FWM) renders higher spatial resolution
- ITO under ebeam exposure has large FWM signal

- TPPL competes with FWM
- But TPPL can be subtracted by using the signal with long delay

Broadband CARS spectra from HSQ on Si

P. Adams, P. J. Schuck, M. Schmidt Energy Biosciences Institute and Molecular Foundry

CARS image of Lignan concentration in dry arabidopsis leaf section

~ 1600 cm⁻¹ band

BioFuels Goals:

- •Visualize the chemical and physical obstacles to biomass breakdown.
- Develop better pretreatment procedures
- •Identify suitable plant materials

Self-Similar Au Nanoparticle Chains

VOLUME 91, NUMBER 22

PHYSICAL REVIEW LETTERS

week ending 28 NOVEMBER 2003

Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens

Kuiru Li,^{1,*} Mark I. Stockman,^{1,†} and David J. Bergman^{2,‡}

¹Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA ²School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel (Received 17 June 2003; published 26 November 2003)

Fabrication by DNA Self-Assembly

DNA "triple crossover molecule

Baoquan Ding, Stefano Cabrini, Ronald N. Zuckermann and Jeffrey Bokor

Molecular Foundry

Results: 3 particle 'half-chains'

- DNA triple-crossover molecules used for selfassembly of 3-particle gold chains
- Particle spacing ~2.5 nm with tight control (±0.8 nm)
- Yield is low, but improving
- Optical characterization
 in progress

Ideal "Single-molecule" Probes: Upconverting Lanthanide-doped Nanocrystals

Shiwei Wu*[†], Gang Han*[†], Delia J. Milliron*, Shaul Aloni*, Virginia Altoe*, Dmitri V. Talapin[‡], Bruce E. Cohen*[§], and P. James Schuck*[§]

*Molecular Foundry, Lawrence Berkeley National Lab

Luminescence image of Upconverting Nanoparticles (UNCPs) in a cell

Why do we study the UCNPs?

Ideal single-molecule probe

- ✓ Good brightness
- ✓ Uninterrupted emission (no blinking
- ✓ No photobleaching

 ✓ Near-zero overlap with background autofluorescence (anti-Stokes, two-photon, etc)

- ✓ Bio-compatibility (watersoluble, non-toxic)
- ✓ Deep penetration (NIR)

Transparent in visible

Emission Spectrum

Er,Yb:NaYF Single-particle upconverting luminescence

Confirmation of "single particle"

• All particles emit; i.e. – no "dark" particles

Photostability and Non-blinking

UCNPs as imaging probes in the cell

The Molecular Foundry – A User Facility

• A user facility for nanoscience - no recharge

Six Research Facilities

- Imaging and Manipulation of Nanostructured Materials
- Nanofabrication
- Theory of Nanostructured
 Materials
- Inorganic Nanostructures
- Biological Nanostructures
- Organic and Macromolecular Synthesis

- Access to state-of-the-nanoart equipment and expertise
- Two page proposal process
- www.foundry.lbl.gov

Four Research Themes

Multimodal *in situ* Nanoimaging and Spectroscopy

Combinatorial Nanoscience

Single-Digit Nanofabrication

Synthesis and Characterization of Nanointerfaces

Next Proposal Submission Deadlines: Oct. 13, 2008

A STATE OF A DESCRIPTION OF A DESCRIPTIO