Prediction of protein affinity in HIC systems using state-of-the-art structure-property modeling techniques

Steven M. Cramer Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute, Troy, NY

> Presented at Follow-on Biologics Workshop: Scientific Issues in Assessing the Similarity of Follow-on Protein Products

A New York Academy of Sciences Meeting

December 12 – 14, 2005 Brooklyn, New York

Motivation

- The *a priori* prediction of protein affinity and preparative chromatographic behavior has been a longstanding major goal in the bioseparations field. This work focuses on the development of novel Quantitative Structure-Property <u>Relationship</u> (QSPR) models for protein affinity in HIC systems.
- In addition to providing *a priori* predictions, this work attempts to provide fundamental insights into the underlying mechanisms of chromatographic selectivity as well as a technique for predicting column chromatographic behavior directly from protein crystal structure data.
- Finally, this work attempts to establish a framework for evaluating the similarities of proteins.

Description of the QSPR Modeling Approach

- Obtain experimental data that will be used as the dependent variable (e.g., retention data, isotherm parameters, etc.).
- Calculate a relatively large number of molecular property descriptors for each protein used in the experimental data set.
- Carry out feature selection to determine the molecular descriptors most highly correlated with the experimental response.
- Construct a QSPR model from the experimental data and selected molecular descriptors for a training set of molecules.
- Test the predictive ability of this model using a test set of molecules that have not been used in the generation of the model.
- Examine a graphical depiction (star plot) showing the relative importance of the selected descriptors to gain insights into the underlying mechanisms.

Molecular Descriptors

Encoding Structure : Descriptors

MOE Descriptors

- Classical physicochemical properties:
 - logP, molecular refractivity
- Pharmacophore features:
 - the number of H-bond donor/acceptor atom
 - polar or hydrophobic surface area
- Property-mapped subdivided surface area:

3D protein crystal geometry

map partial charge on molecular surface

blue: positive; red: negative

www.chemcomp.com

Protein Surfaces (EP)

lysozyme

HSA

TAE/RECON Descriptors

EP	Electrostatic Potential $EP(r) = \sum_{\alpha} Z_{\alpha} / r - R_{\alpha} - \int \rho(r') d(r') / r - r' $
Del(Rho)•N	Electron Density Gradient normal to electron density iso-surface
G	Electronic Kinetic Energy $G = -(\eta/4m) \int \{\nabla \psi^* \cdot \nabla \psi\} d\tau$
Κ	Electronic Kinetic Energy $K = -(\eta/4m) \int \{\psi^* \nabla^2 \psi + \psi \nabla^2 \psi^*\} d\tau$
Del(K)•N	Gradient of K Electronic Kinetic Energy normal to surface
Del(G)•N	Gradient of G Electronic Kinetic Energy normal to surface
Fuk	Fukui F ⁺ function scalar value $F^+(r) = \rho_{HOMO}(r)$
Lapl	Laplacian of the electron density $\nabla^2 \rho(r) = G(r) - K(r)$
BNP	Bare Nuclear Potential BNP $_{j} = \sum_{i=1}^{n} Z_{i} / r_{ij}$
PIP	Local Average Ionization Potential $PIP(r) = \sum_{i} \rho_{i}(r) \cdot \varepsilon_{i} / \rho(r)$

1. Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford Univ. Press, 1994.

2. Breneman, C.M.; Rhem, M. J. Comp. Chem. 18, 182-197, 1997.

Prediction of Column Performance (Ladiwala et al, A priori prediction of adsorption isotherm parameters and chromatographic behavior in ionexchange systems PNAS 2005 102: 11710-11715)

• Hydrophobicity values for amino acid residues based on the four

hydrophobicity scales

	Cowan-		Miyazawa-		Hearn	
	Whi	ittaker	Jernigen			
	Orig.	Norm.	Orig.	Norm.	1	2
Alanine	0.42	0.660	5.33	0.391	0.06	2.62
Arginine	-1.56	0.176	4.18	0.202	-0.85	1.26
Asparagine	-1.03	0.306	3.71	0.125	0.25	-1.27
Aspartic acid	-0.51	0.433	3.56	0.105	-0.20	-2.84
Cysteine	0.84	0.763	7.93	0.819	0.49	0.73
Glutamine	-0.96	0.323	3.87	0.151	0.31	-1.69
Glutamic acid	-0.37	0.467	3.65	0.115	-0.10	-0.45
Glycine	0.00	0.557	4.48	0.252	0.21	-1.15
Histidine	-2.28	0.000	5.10	0.354	-2.24	-0.74
Isoleucine	1.81	1.000	8.83	0.967	3.48	4.38
Leucine	1.80	0.998	8.47	0.908	3.50	6.57
Lysine	-2.03	0.061	2.95	0.000	-1.62	-2.78
Methionine	1.18	0.846	8.95	0.987	0.21	-3.12
Phenylalanine	1.74	0.983	9.03	1.000	4.80	9.24
Proline	0.86	0.768	3.87	0.151	0.71	-0.12
Serine	-0.64	0.401	4.09	0.188	-0.62	-1.39
Threonine	-0.26	0.494	4.49	0.253	0.65	1.81
Tryptophan	1.46	0.914	7.66	0.775	2.29	5.91
Tyrosine	0.51	0.682	5.89	0.484	1.89	1.39
Valine	1.34	0.885	7.63	0.770	1.59	2.30

Machine Learning: Support Vector Machines (SVM)

Support Vector Regression (SVR)

• Minimize the regularized empirical error:

• Avoid overfitting by controlling the model complexity

Quantitative Structure-Retention Relationship Models for Protein Binding in HIC Systems

HIC: Protein Retention Data

Retention Data on Butyl and Phenyl 650M Resins

HIC: Protein Retention Data

Retention Data on Phenyl Sepharose and Phenyl 650M Resins

Differences in retention for different resin backbone chemistry

QSRR models can capture the differences in binding affinity

Rensselaer

QSRR models can predict t_r for test set proteins

QSRR: Model Validation

• Y-Scrambling Analysis

- Test of the modeling algorithm

Madal	"Real" model		"Scramble	Probability	
widdei	$R^2_{\rm r}$	$Q^2_{ m r}$	Avg. R_s^2	Avg. $Q_{\rm s}^2$	$P(R^2_{s} \ge R^2_{r})$
Butyl Sepharose	0.84	0.98	0.38	-2.36	0.53 %
Phenyl Sepharose	0.96	0.65	0.46	-4.84	2.24 %
Butyl 650M	0.96	0.90	0.42	-0.46	0.18 %
Phenyl 650M	0.93	0.77	0.35	-2.27	0.18 %

- Extremely low *P* values indicate that the non-linear SVR algorithm cannot fit scrambled data

Rensselaer

Can't fit random data using the SVM modeling approach

Rensselaer

Investigation of Protein Binding in HIC Systems under Low Salt Conditions

Motivation > Industrial HIC processes which employ low salt binding conditions are desirable for the following reasons: reduce protein denaturation 0 *improve protein recovery* 0 reduce the expense associated with high salt buffer 0 preparation minimize the time and cost related to desalting 0

Experiment Conditions:

- o 26 proteins
- Batch mode by applying High Throughput Screening (HTS) technique
- Binding at 0.5 M $(NH_4)_2SO_4$, 25 mM phosphate pH7.0 and elution at 25 mM phosphate pH7.0 buffer.
- o 5 resins:

GE Healthcare Resin: Butyl Sepharose, Phenyl Sepharose (high sub) *Tosoh Resin:* Butyl 650M, Phenyl 650M and Hexyl 650C.

Comparison of Protein Binding on Different Resins

Protein Binding and Elution (on Phenyl Sepharose_high sub)

Summary of Protein Classification on Different Resins

	BuSe	PhSe	Bu650	Ph650	Hx650
Class I: low binding/ low elution	1,3,5,6,7,8, 11,12,13,161 7,18,19,2022, 23,25	1,2,3,6,8,9,111 2,14,1718, 19,22,23,26	1,2,3,5,6,8,9, 11,12,14,16, 17,18,19,20, 21,22,2325,26	1,2,3,5,6,7,811 ,12,13,14,16,1 7,18,19, 22,23,24,25,26	1,2,3,7,8, 11,12,13, 16,17,18, 20,21,22, 23,26
Class II: low binding/ high elution	2,4,9,10 14,24,26	7,13,16,20,25	7,13	9,18,20	6,25
Class III: High binding/ high elution	21	5,10,24	10,24	10	5,19
Class IV: high binding/ low elution	15	15,21	15,21	15,21	9,10,14 15,21, 24

Decision Tree Learning for Protein Binding

- Recursive Partitioning (RP) : discover logical patterns within datasets
- Given data characterized by descriptors and belonging to different categories, derive rules based on the descriptors which correctly categorizes as many observations as possible.
- Method identifying the best splitting rule at each step is important. (e.g. Gini Impurity score minimize the impurity of the resultant nodes.)
- Output in the form of a tree diagram
- CART (Classification And Regression Trees)
 - Developed by Stanford University and UC Berkeley
 - Automatic Self-Validation Procedures
- Data: 22 proteins categorized according to binding percentage (high, medium, low) on 5 different resins.

BuSe (CART analysis)

Terminal Node 1: 3,5,6,9,10,12,14,18,19,22.

Terminal Node 2: 2,4,7,8,11,13,16,17,20.

Terminal Node 3: 1,15,21.

FASA_H: fractional water accessible surface area of all hydrophobic atoms.

B_1ROTR: fraction of rotatable single bonds.

Protein Similarity using PEST: Shape-Aware Molecular Descriptors from Property/Segment-Length Distributions

PEST (Property-Encoded Surface Translation) adds shape information that encodes the spatial relationships of surface properties.

A property-encoded surface is subjected to internal ray reflection analysis.

Molecular shape information is obtained by recording the ray-path information, including segment lengths, reflection angles and property values at each point of incidence.

Breneman et al., "New developments in PEST shape/property hybrid descriptors" J. Computer-Aided Mol. Design, **17**, 231–240, (2003)

PEST Descriptors

□ TAE Internal Ray Reflection - low resolution scan

Isosurface (portion removed) with 750 segments

Protein EP & Hydrophobic Mapping

Rnase B

Lactoferrin

Catalase

PPEST lysozyme mlp2

MLP2

Similarity Measurement

$$d_{ij} = 1 - \frac{2 \cdot \sum_{k=1}^{K} \min(x_{ik}, x_{jk})}{\sum_{k=1}^{K} x_{ik} + \sum_{k=1}^{K} x_{jk}}$$

□ x_{ik} : value of the *k*th descriptor for the *i*th protein □range from 0 to 1.

- •0: complete identity
- •1: have nothing in common

MLP2

mlp2(d1)	lys	RnaseA	RnaseB	lactoferrin	catalase
Lys	0	0.120	0.105	0.130	0.229
RnaseA	0.120	0	0.022	0.139	0.205
RnaseB	0.105	0.022	0	0.132	0.194
Lactoferrin	0.130	0.139	0.132	0	0.112
Catalase	0.229	0.205	0.194	0.112	0

EP & MLP2

ep&mlp2(d2)	lys	RnaseA	RnaseB	lactoferrin	catalase
Lys	0	0.449	0.451	0.351	0.761
RnaseA	0.449	0	0.043	0.366	0.693
RnaseB	0.451	0.043	0	0.375	0.690
Lactoferrin	0.351	0.366	0.375	0	0.707
catalase	0.761	0.693	0.690	0.707	0

Potential uses of these approaches for follow-on biologics

- After identifying key variants by mass spec, use QSRR to design appropriate analytical chromatographic steps for quantitation and/or process chromatographic steps for variant removal.
- Carry out detailed similarity measurements using a range of property-shape hybrid molecular descriptors to examine the "similarity" of follow on protein products with respect to various properties.

Summary

- QSPR models were successfully generated for predicting protein retention in HIC systems from protein sequence and crystal structure.
- Proteins can be classified based on their low salt binding and subsequent elution and CART can be employed as a classification tool.
- The ability to quantitatively relate shape, surface EP, and surface MLP differences between proteins without alignment provides new information for studying protein surface hydrophobicity and for evaluating protein similarities.
- The synergy of these methods provides a unique opportunity to develop powerful predictive tools and methods for gaining significant insight into the fundamental physics of the protein chromatographic processes.

Acknowledgements

- Students: Asif Ladiwala, Jie Chen, Fang Xia, Matt Sundling and Qiong Luo.
- Professors: Curt Breneman, Kristen Bennett.
- Funding: NIH, NSF (PHAT), GE Healthcare,

