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A signal is required to control the flow of UF, in gaseous diffusion plant 
€reezer/sublimer system. The original strategy envisioned for deriving a flow signal was to 
take the derivative of the freezer/sublimer weigh cell signal. However, the derivative of 
the digitized weight signal is noisy, preventing good control. In addition, a disturbance is 
introduced into the weight derivative signal because a refrigerant is circulated through a 
shell-and-tube heat exchanger inside the freezer/sublimer. The weight of the refrigerant is 
included in the weight measured by the weigh cell. If the circulation rate of the 
refrigerant is not steady state, a disturbance exists. 

Measurements of upstream pressure, vessel pressure, and output to the system control 
valve are available to the control system. Thus, if the flow through the control valve is 
characterized properly by these measurements, a Kalman filter can be used in conjunction 
with these auxiliary inputs and the weigh cell input to overcome the noise and disturbance 
problem and provide an improved estimate of flow rate. 

application is given, and recommendations are given for its implementation. 
A discussion of the development of a Kalman filter that could be used for this 

vii 





1. INTRODUCITON 

The purpose of gaseous diffusion plant freezerhblimer systems is to control the 
inventory of UF6 in the process cascade. When it is desired to decrease process inventory, 
UF, vapor is transferred from the process cascade into the freezedsublimer and frozen 
out. When it is desired to increase process inventory, m6 is sublimed out of the 
freezerhblimer and transferred back to the process cascade. This process technology has 
proven to be economically attractive for gaseous diffusion plants because it enables the 
plant to increase power usage during periods of low electrical utility d e m a n k u c h  as at 
night when inexpensive, nonfirm power is availableand decrease power usage during 
periods of high electrical utility demands. Power usage is proportional to process 
inventory. Control of freeze rate and sublime rate is important to this operation, 
especially when several freezedsublimer systems must operate in harmony during a major 
inventory swing. The purpose of this report is to recommend an improved method to 
estimate and control the freeze and sublime rates of freezerhubiimer systems. 

1.1 BACKGROUND 

To control the flow of UF, into the freezer/sublimer during freeze mode and out of 
the freezer/sublimer during sublime mode, a flow signal is required. The original strategy 
envisioned for deriving a flow signal was to take the derivative of the freezer/sublimer 
weigh cell signal. Because flow phenomena exhibit relatively fast dynamics compared with 
other typical process signals, measurement samples should be taken at a rate not less than 
once per second to ensure good controllability. Because the weigh cell has such a broad 
range, little resolution will exist between samples. At a sample rate of once per second, 
the derivative of the digitized weight signal used by the control system will be very noisy, 

Another problem associated with the weight derivative method is that unobservable 
inputs are present in the freezerhublimer system. As shown in Fig. 1.1, Freon-114 is used 
to cool and heat the freezerlsublimer system during freeze and sublime modes respectively. 
The weight of the Freon-114 is included in the weight measured by the weigh cell. If the 
circulation rate of Freon-114 is anything but steady state, an unobservable input is added 
to the weight-rate signal. The beginning of a typical freeze operation of the prototype 
freezer/sublimer system at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, 
Kentucky, is shown in Fig. 1.2. The filtered weight-rate signal has many oscillations. On 
the basis of this signal alone, it appears that a flow reversal has occurred. However, 
pressure measurements taken inside the vessel and upstream of the control valve do not 
confirm this. Obviously, the signal has been corrupted. A current hypothesis is that the 
period of oscillations in the graph corresponds to the time it takes for Freon-114 to make 
one pass through its circuit. The step change in UF, flow causes a perturbation in the 
Freon-114 circulation rate that is a function of the €low rate and circuit path length of the 
Freon-1 14. 



Fig. 1.1. Freezerbublimer process with proposed Kalman filter to determine UF6 
freeze or s u b b e  rate. 
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12 INCENTPVE FOR USING KALMAN FILTER 

A successful implementation of a Kalman filter has been used by Dow Chemical 
Company in an application very similar to ours.* The idea behind the method is to use 
other inputs in addition to the weigh cell signal to obtain the desired UF, flow rate. In 
our application, vessel pressure, stage 4 upstream pressure, and the control valve output 
signals are all available to facilitate the determination of flow rate. The additional 
measurements can be combined with a mathematical model of the system to obtain an 
improved status of weight rate. This approach is shown in Fig. 1.1. 

13 REPORTOVERVIEW 

The first exercise that must be undertaken is to derive the system model. This 
exercise is detailed in Sect. 2. Section 3 discusses the development and application of the 
Kalman filter to the system. A control strategy based on the Kalman filter technique is 
presented in Sect. 4. Section 5 summarizes the major conclusions and recommendations 
of this work. 
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2. FLOWMODELDEVELOPMENT 

To help develop a simulator/trainer system for the process inventory control system 
(PICS) project, a previous flow model had been developed from earlier, limited testing of 
the freezer/sublimer system.* This model proved unsatisfactory on the basis of new data. 
Therefore, a new approach was taken to improve the flow model for use with the Kalman 
filter. 

2 1  NEW MODEL DERIVATION 

Empirical data were used to develop the flow model for the freezer/sublimer system. 
A series of test data was taken in late 1990 to help characterize flow through the 
weight-rate control valve. Pertinent data consisted of freezer/sublimer internal pressure, 
upstream stage 4 pressure, control valve output signal, and vessel weight. 

An expression that describes compressible flow through a control valve is given by3 

where 

and 

F = flow rate, 
N" = numerical constant, 
Fp = piping geometry factor, 
C, = valve flow coefficient, 
Pl = upstream absolute pressure, 
P2 = downstream absolute pressure, 
Y = gas expansion factor, 
X = ratio of pressure drop across valve to absolute upstream pressure, 
A4 = molecular weight of fluid, 
Tl = upstream absolute temperature, 
2 = gas compressibility factor. 

In the data gathered at Paducah on the prototype freezerhblimer, the upstream 
temperature was not measured and will have to be considered a constant. The terms N", 
Fp, M, and 2 are also constant. Combining constants in Eq. (2.1) yields 
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F = N’YP,C,fl, 

where N’ is a proportionality constant. The gas expansion factor varies from 1 (when 
X = 0) to 0.67 (when flow is choked). Also at choked flow, X has an upper limit. The 
valve flow coefficient C, is predominantly a function of the valve position u. In the earlier 
flow model development, it was attempted to characterize the system on the basis of a 
single freezer/sublimer run in which valve position changed constantly. C, , N’, and the 
point of choking were all determined from a single set of data. Because more data were 
available for the second model development, a new approach was taken in which the 
system characteristics were based on several runs of the system. In addition, the new data 
contained periods where the control valve position remained constant for long periods, 
thus allowing a better characterization at that valve position. In the earlier model 
development, three C, relationships were assumed, and the best was chosen on the basis 
of least-squares analysis. The new model development consists of taking data at several 
valve positions and determining the C, function from this, rather than assuming a 

relationship. To find the relationship, Eq. (2.3) is solved for C, , or F/(N’YP,Jiy). Valve 
choking and the gas expansion factor are addressed in Sect. 2.2. For now, assume Y = 1. 

using the weight derivative during periods when the Freon-114 circulation rate was 
considered to be at steady state. The plot is shown in Fig. 2.1 for different data sets. The 
next step was to find an equation that provides the best fit of the data. Roffel and 
Rijnsdorp describc a valve characterization of the following form which appears to match 
our data,‘ 

The method consisted of plotting data points of F/(PIrm vs u ,  where F is found by 

N c, = JP’ (2-4) 

where N is a constant that we will use to incorporate the proportionality constant of 
Eq. (2.3) with that required for the C, relationship here, a is the ratio of the squares of 
system capacity to valve capacity, R, is the valve rangeability, and u is the valve output 
scaled between 0 and 1. It is necessary to solve Eq. (2.4) for the three parameters N, a, 
and R, by using data from tests. Because the equation is nonlinear, a least-squares 
solution cannot be solved explicitly. However, preliminary parameters can be found by a 
mcthod in which a computer program is written to scan through bracketed values of each 
parameter by using nested loops and saving the set of parameters with the least sum of 
squared errors compared to the test data. The values of the parameters are bracketed by 
using engineering judgment. The interval between the bracketed values is divided into as 
many subintervals as is practical. A computer program uses nested loops to loop through 
each value of each parameter, and the sum of squared errors as compared with actual data 
is computed. As the program proceeds from loop to loop, the least sum of squared errors 
is saved along with the values of the parameters for the least sum. A preliminary set of 
parameters (N = 1.6, a = 0.029, and R, = 47) was derived by using this method. 
However, this method does not provide the optimum solution, because it depends on the 
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resolution assigned to the parameters in the bracketed method @e., the number of 
subintervals that the bracketed values are divided into). 

linearized sum of squares to provide a better fit to the data. A truncated Taylor series 
expansion is performed on Eq. (2.4). Partial derivatives are required for the truncated 
Taylor series expansion. Partial derivatives of Eq. (2.4) with respect to the three 
parameters are given in the next three equations. 

A better method can be used that begins with the preliminary parameters and uses a 
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The truncated Taylor series expansion, using only first partial derivatives, is given by 
the following equation, where the deltas refer to changes in parameters from their initial 
values, and the zero subscripts refer to the initial parameter values, which is where the 
partial derivatives are evaluated: 

Because Eq. (2.8) is linear, it can be solved by traditional least-squares techniques. 
All variables in Eq. (2.8), except parameter-related values, can be obtained from 
experimental testing. Described earlier was how to derive initial values of the parameters; 
changes from those initial values, AN, Aa,  and ARv , are what we are solving for. With 
several sets of data, a matrix is set up of the following form, where the nonzero subscripts 
refer to data point numbers: 

or 

y = d i e ,  (2.10) 

where y is an (n x 1) vector, di is an (n x 3) matrix, and 8 is a (3 x 1) vector. This matrix 
equaton is over-specified when the number of data points exceeds the number of 
parameters being solved for as is our case. The equation is solved by using the 
least-squares technique with 
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(2.11) 

Equation (2.11) is solved, the changes are made to the parameters, the parameters are 
reentered into the equation as new initial values, and the routine is continued iteration by 
iteration until the parameters change no more than a specified tolerance. The 
parameters, as determined by this exercise, are N = 1.69, p! = 0.055, and R, = 33.7. The 
fit is shown in Fig. 2.2. ]Because a butterfly valve is used as the system control valve, 
leakage exists when the valve is closed. That is why the curve does not go through the 
origin. 
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Fig. 22 Valve characterization and test data. 

Choked flow exists when flow is no longer a function of fi, usually occurring when 
downstream pressure drops to the point where flow is sonic through the vena contracta of 
a control valve. Further decreases in downstream pressure do not result in further 
increases in flow rate-sonic flow is the limiting factor. To check for choked flow, a graph 

of FIP, vs @ was prepared at constant valve positions u. If flow choking exists in the 

flow regime of interest, FIP, will be a linear function of &f until a maximum fl is 
reached. At this point, FIP, will level off and will no longer be a function of 0. Two 
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examples are shown using data from the tests at Paducah. Enough data to make this test 
are available at only two valve positions, at -15% and -36%. Figure 2.3 shows the test at 
-15%, and Fig. 2.4 shows the test at -36%. In each figure, two clusters of data are 

present: a set at lower 6 and a set at somewhat higher 0. If F/Pl is strictly linear with 

fi, a straight line should go through both sets of data and the origin. If choking exists, a 
line through the origin and the lower set of data may not go through the higher set of 

data. The data in Fig. 2.3 show a strong argument that choked flow exists at 0 = 0.71 
or X = 0.50. However, Fig. 2.4 is not such a strong argument. If there is choking, it 

exists around \rx = 0.81 or X = 0.66. In both cases, the determination of the C, function 
will not worsen considerably if it is assumed that choked flow is not present. Notice also 
that the gas expansion factor is assumed to be unity. Because this value is a function of 
flow choking, it is difficult to specify the gas expansion factor without more knowledge of 
choking conditions. Attempts to incorporate the gas expansion factor scattered the data 
more than the data shown in Fig. 2.2. Given the fact that this model will be used as only 
a starting point estimate in the Kalrnan filter, it is not worthwhile to determine a flow 
equation with any more accuracy than shown here. The modeled flow will be compared 
with on-line data to determine a refined estimate. 

The resulting model of flow (or weight rate) as a function of upstream stage 4 
pressure, vessel pressure, and valve position is shown in the next equation. In freeze 
mode, Pl is upstream stage 4 pressure and P2 is the vessel pressure. In sublime mode, Pl 
is the vessel pressure and Pz is upstream stage 4 pressure divided by 5. Based on 
operating experience, the rule of thumb is that A-line pressure is about one fifth B-line 
pressure. During freeze mode, UF, is transferred from B-line; and in sublime mode, UF, 
is transferred to A-line: 

(2.12) 

23 DEADTIME 

Because the control valve is not in very close proximity to the freezer/sublimer vessel, 
a dead time will exist between the time action is taken at the control valve and the time a 
corresponding change is noticed in the reading from the weigh cell. Tests have shown 
that this dead time is on the order of 10 to 12 s. Therefore, in calculations where the 
weight rate, as determined from weigh cell readings, is compared with the flow rate, as 
determined from the model developed here, dead time T~ should be included in the 

(2.13) 
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A Kalman filter is analogous to closed-loop control in that it samples a measurement, 
compares this measurement against its own estimate, and takes corrective action via the 
Kalman gain and the error between the two. A schematic is shown in Fig. 3.1. A 
full-fledged Kalman filter recursively adjusts the Kalman gain K to minimize the 
covariance matrix of the error between the actual measurement and the estimate. 
Steady-state Kalman filters use a constant value for the Kalman gain that has been derived 
by analysis of filter performance. Development of the flow model for our system was 
covered in Sect. 2. This model will be used by the Kalman filter. Development of a 
full-fledged Kalman filter as well as a steady-state filter for freezer/sublimer systems is 
presented in this section. In our system, the plant and model observable inputs are the 
control valve signal, upstream pressure, and downstream pressure. The unobservable 
input is Freon-114 weight. The measurement is freezer/sublimer weight, and the estimates 
are €low and freezer/sublimer weight. 

Fig. 3.1. Analogy of Kaiman filter to feedback controller. 

3.1 SY!TIEM MODEL EQUATION 

The system model equation is represented in state space discrete-time form by the 
following general matrix equation, where A is the state matrix, B is the input matrix, x is 
the state vector u is the input vector (not to be confused with the scalar u used as valve 
position in the preceding section), and w is noise, or the mismatch between the model and 
actual data: 

x(k+l) = AX&) + Bu(k) + ~ ( k )  . (3-1) 
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For our system, we are interested in two states: flow (or weight rate) and weight. 
The inputs to the system are upstream and downstream pressure and control valve output. 
Because the relationship of these inputs to actual flow and weight is nonlinear, it is easier 
to use modeled flow as the input. The linearized system state equation then takes the 
following form, where xl = flow or weight rate, x2 = weight, and F = modeled flow: 

3 2  MEASUREMENT MODEL EQUATION 

The state space measurement equation, in general, is given by the following matrix 
equation: 

z(k) = Hx(k) + ~ ( k )  , (3.3) 

where z is the measurement vector, H is the measurement matrix, and v is the 
measurement noise. For our system, weight is the only real measurement-other inputs 
are incorporated into the model. The equation is 

3 3  KAL.MAN FILTER EQUATIONS 

A classical Kalman filter consists of five distinct steps? (1) computation of Kalman 
gain, (2) updating the estimate, (3) updating the covariance matrix, (4) projecting the 
estimate, and (5) projecting the covariance matrix. The classical equations and 
corresponding equations for our application are shown in this section. 

33.1 Computation of Kalman Gain 

Computation of the Kalman gain is given by the following matrix equation: 

K(K) = P(k)HT[HP(K)HT + R(k)]-' , (3-5) 

where K is the Kalman gain, P is the estimation error covariance matrix, and R is the 
covariance matrix of the measurement noise v. Because there is only one measurement 
(weight), R is a scalar and can be represented by r, the variance of the weight 
measurement. The remainder of the equation is broken down as follows, wherepq are 
elements of the estimation error covariance matrix: 
Then the Kalman gain equation for our system is 
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3 3 2  Updating the Estimate 

The general matrix equation €or updating the estimate is 

(3-9) 

where the hat represents an estimate and the superposed minus sign represents a 
preliminary estimate based on the last output projected forward one step by the system 
model. Then, for our system, 

(3.10) 

Inspection of Q. (3.10) shows that both flow (xl)  and weight (xz) are based on just 
one raw measurement, weight. This may appear odd at first, but because the units of Kl 
are inverse time, then it is obvious that units of' flow, or weight per unit time, are used. 
Equation (3.10) also points out the job of the Kalman filter-to compromise between raw 
measurement data and modeled data. It is easier to see this with the weight estimate. If 
K2 = 0, the Kalman estimate is based wholly on the system model. I€ K, = 1, the Kalman 
estimate is based wholly on the raw weight measurement. In practice, the Kalman gain 
will lie between these two extremes, 
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3 3 3  Updating the Estimation Error Cwariance Matrix 

The general equation for updating the estimation error covariance matrix and its 
interpretation to our system is given by 

P(k) = [I - K(k)H] P-(k) 

(3.11) 

33.4 Projecting the Estimate 

The estimate €or the upcoming time step, based on the system model, equation (3.2) is 

(3.12) 

3 3 5  Projecting the Estimation Error Covariance Ma& 

The projection of the estimation error covariance matrix for the upcoming time step is 
derived as follows, where Q is the model covariance matrix: 

P-(R+I) = A P ( ~ ) A ~  + Q 

1 + P I 1  4121 At p 1 1  + P l 2  

(3.13) 
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3.4 DETERMINATION OF THE MODEL COVARIANCE MATRIX 

The model covariance matrix Q is a measure of the model vs data mismatch shown by 
w in Eq. (3-1). It can be determined from experimental data. The definition of the 
covariance matrix is given in the following equation, where x is the state vector that 
contains both the flow state and the weight state, and the tilde refers to modeled values of 
the state vector based on the system model equation (3.2): 

Q = B((x - S)(X - i?)3 . (3.14) 

For our system, the model covariance is a (2 x 2) matrix of the form 

(3.15) 

Notice that to determine Q properly, a value of x1 flow is needed. Because an actual 
mcasurement of flow is not available, the derivative of weight was used. Because the 
correlation of UF, flow rate to the weight derivative varies from data set to data set (it is 
affected by Freon-114 flow rate), several of the data sets must be analyzed to yield a 
general value for the model covariance. This was done by determining the model 
covariance matrix of ail the data sets shown in Appendix A and choosing the model 
covariance matrix whose element values lay in the midrange of all element values of the 
complete set of data. The matrix chosen is 

(3.16) 

Values of the elements of the covariance matrix affect how the Kalman filter will 
compromise between the system model and the raw measurements. As the ratio q,l/qz 
increases, x1 will follow measurements closer; when the ratio decreases, x1 will foilow the 
model closer. 

35 STEADY-STAEKALMANFiLTER 

The estimation error covariance matrix element values usually will converge to a 
constant over a certain length of time. A simplified, steady-state Kalrnan filter can be 
used that is based on the ultimate values of the covariance values. Tests of the prototype 
data show that values converge to Kl = 0.0067 and K2 = 0.995 given the covariances in 
Eq. (3.16). The closeness of the value of K, to one indicates that an estimate of weight is 
probably not necessary; the raw value could be used just as well. 
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3.6 OFF-LINE RESULTS FROM TEST DATA 

A comparison of the original filtered weight-rate signal, modeled flow signal, and 
Kalman-filtered flow signal for Test 1126A is shown in Fig. 3.2. The original data are the 
same as those shown in Fig. 1.2. As described earlier, the original weight-rate signal shows 
extreme oscillations, so extreme that flow reversal is implied. The modeled flow does 
show high initial flow followed by one valley before stabilizing. However, an offset exists 
between the modeled flow and the raw weight-rate signal after the raw signal has 
stabilized. The Kalman-filtered signal begins with a high initial signal followed by a valley 
lower than that of the modeled signal, but the Kalman-filtered signal then converges with 
the raw weight-rate signal after the raw signal has stabilized. 

I I I I I 1 I -7 
- 3  -+ - 

I I 
0 4 8 12 16 20 24 

T i m  C m l n )  

Fig. 3.2 Comparison of raw weight-rate signal, modeled flow signal, and Kalman- 
filtered flow signal for test 1126A data. 

Plots of all the experimental data sets are compared in Appendix A. In addition to 
the weight-rate comparisons, graphs of weight comparisons between the actual vessel 
weight and the weight as determined by integrating the Kalman-estimated flow are shown. 
The vessel weight signal is less noisy than the raw weight rate signal; therefore, it serves as 
a better guide as to whether the Kalman-estimated flow signal i s  accurate. The two 
signals should converge. In the graphs of sublime tests, the integrated Kalman flow signal 
is reset to that of the raw weight signal after completion of the Freon-114 transfers. The 
Freon-114 transfer in sublime mode represents a drastic bias error to the weight derivative 
and, consequently, an error in the flow signal. Therefore, at the beginning of sublime 
mode (for the first -220 s) the Kalman filter should be coded to rely totally on the 

18 



modeled flow rate and to ignore the weight signal. The sublime-mode graphs in 
Appendix A reflect the addition of this code to thc Kalman filter. 

Given the results of the test data, it appears that a Kalman filter is useful in this 
application. However, on-line testing of the Kalman filter should be carried out before 
proceeding fully. Because more instrumentaion is involved in deriving the weight-rate 
signal using this method, calibration of one instrument with respect to another becomes 
more crucial. Preliminary testing data indicate that at low flow rates, zero shifts in the 
pressure transmitters may cause a problem not only because of a negative differential 
pressure but also because the square root of this signal is taken. A square root taken of a 
negative signal would cause an error in the processing algorithm. 

3.7 IMPLEMENTATION 

The analysis up to this point may seem to indicate that the Kalman filter is a 
complicated system. Like many developments, the theory behind the implementation is 
more complicated than the actual mechanism for carrying out the implementation. In our 
case, the Kalman filter can be coded into standard data acquisition and control systems. 

3.7.1 Pemnal-Chmputer-Based Data Aqukition System 

A pseudolisting of code is given in Appendix A which can be used to test the Kalman 
filter on the prototype freezedsublimer system by using a personal-computer-based data 
acquisition system. This listing is for the steady-state Kalman filter; the full-fledged 
Kalman filter would take more code than shown here. 

3.72 Texas Instruments DD Control System 

Figures 3.3 and 3.4 represent an implementation of the Kalman filter in the Texas 
Instruments D/3 control system. Figure 3.3 is a block diagram of the continuous control 
strategy required, and Fig. 3.4 is a logic diagram of a device that feeds status bits to the 
continuous control strategy. The D/3 is the control system chosen for inventoq control at 
PGDP. The Kalman filter is not a straightforward application for the fill-in-the-blank, 
connect-the-block configuration used in control systems like the D/3. However, the 
strategy is implementable, and iE greater processing capability is required, the D/3 
Sequencing and Batch Language could be used. The digital device logic assumes that 
signals are available to determine whether the system is in freeze or sublime mode. The 
diagrams shown here convey the concept for implementation. The actual configuration 
will probably differ when the strategy is studied in detail by the end programmer. 
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The goal of the Kalman filter is to provide a suitable freeze or sublime rate signal of 
the freezedsublimer system that can be used as an input to a controller. This section 
discusses two types of control strategies to be considered when developing the control 
strategy. The first makes use of the flow model that was developed in Sect. 2, and the 
second is a conventional control strategy. 

4.1 PROCESS MODEGBASED CONTROL S T R A m Y  

An existing method of nonlinear control, process model-based c o n t r ~ l , ~  could be used 

The characterized flow of the prototype freezer/sublimer system as a function of 
with the flow equation already developed. An explanation of this method follows. 

upstream and downstream pressure and valve output is shown by 

But what if the equation is solved for u? This equation would give a steady-state 
valve output as a function of flow set point as well as upstream and downstream pressure 
as 

where FT is the flow set point. 
Figures 4.1, 4.2, and 4.3 show what the behavior of the valve output signal should be 

relative to the flow set point, upstream pressure, and downstream pressure respectively. 
Of course, the calculation block shown in Eq. (4.2) will not perfectly remove biases 

and other modeling errors; therefore, the loop should be closed with a control block 
added. But the control block could feed into the calculation block in such a way that the 
calculation block could linearize the output and adjust it for varying process conditions. 
Instead of acting on the raw flow set point Fsp , the calculation block could act on the 
controller output U*. Input ranges to the block would have to be checked to ensure that 
no divisions by zero or memory overloads occurred in the calculation block. 

A block diagram of the proposed scheme along with the Kalman filter is shown in 
Fig. 4.4. 
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4.2 CONVENTIONAL LINEAR CONTROL SrJhATEGY 

Flow is typically one of the fastest responding process variables in industrial 
manufacturing facilities. Ideally, a control loop should be linearized to capitalize fully on 
linear feedback control strategies. However, when the time constants involved are small, 
it does not take long to recover from the effects of controlling a nonlinear system with 
linear feedback control. 

A conventional linear control strategy for the freezer/sublimer system would entail 
using the Kalman-filtered flow rate as the process variable input to a standard 
proportional-integral-derivative controller. No linearization would be involved. 
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5. CONCLUSIONS AND REtXXMENDAmONS 

Unless the characteristics of the freezerlsublimer system are found to change 
drastically with time, we recommend the use of a steady-state Kalman filter to estimate 
freeze and sublime rates of the freezerlsublimer systems. This strategy is simpler than 
continuously updating the Kalman gain factors, but preliminary testing indicates that it 
works for a fairly broad range of test cases. The steady-state Kalman gains can be used 
for both freeze and sublime modes. 

characterization or compensation of the controlled variable. Use of these techniques 
would only complicate the control system. We recommend the use of conventional linear 
control strategy. 

Because the analysis in this report represents only off-line analysis of actual plant 
data, we highly recommend that the algorithms be tested on-line with the prototype 
freezer/sublimer system before using them in the design of the remainder of the control 
system. 

out of the freezer/sublimer vessel is not feasible, because of high costs associated with 
installation of a meter on several parallel freezer/sublimer systems or because it is simply 
not practical to install a flow meter in the line for physical or mechanical reasons. If these 
premises are not true, installation of a flow meter should be addressed. 

No benefits are foreseen in using a nonlinear control strategy or any other 

The premise of this report is that using a flow meter to measure flow of UF, into and 
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Appendix A 

FREEZE AND SUBLIME DATA, WEIGHT-RATE AND WEIGHT COMPARISONS, 
AND KALMAN FILTER AND CONTROL ALGORITHM PSEUDOCODE 





F~xeze Data 

Table kl. 1106C data 

Table A 2  1103C data 

T a b l e u ,  1126Adata 

~~ 

Table A4. lllOA data 
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u, % 

15.72 

36.0 

56.5 

77.0 

105.8 

5.29 

Sublime Data 

Table A.5. 1108B data 

0.246 I 0.67 I 0.72 

0.593 I 0.67 I 0.72 

0.838 I 0.55 I 0.67 j 0.46 1 0.55 

0.44 0.46 

~~ 

0.714 

1.086 

1.459 

1.661 

Table A6. 1103E data 

xhigh I F/(pl 

Table A7. 1105C data 

U, % F/P1 I I Xhigh 

0.80 

0.76 

0.313 

0.687 

0.332 
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'Kalman Filter and Control Algorithm Pseudocode 

DIM $(-12 TO 0), P1(-12 TO 0), P2(-12 TO 0), PYMl(-IZ TO 0), E(-1 TO 0). F(O TO 1) 

dT = 1 
Kc = 1.5 
Ki = 0.4 

'scan period in seconds 
'controller proportional gain used in simulations 
'controller reret rate used in simulations 

'Set initial conditions of estimates 
x1 = 0 'flow estimate 
x2 = 0 'weight estimate 

'Begin looping 
Do 

'Reset variables in FIFO arrays 
FOR i = -12 to -1 

S(i) = S(i+l) 
Pl(i) = Pl( i+ l )  
mi) = P2(i+l) 
PYNl(i) = PYNl(i+l)  

NEXT1 

'Read new variables for this scan 
READ s, UPRES, PT306, w 

S(0) = s 
PY301(0) = PYMl 

'Set new values of array variables 
IF S = 53 THEN 

'F,S is iu sublime mode 
Pl(0) = pTu)6 
P2(O) = UPRES/S 

Pl(0) = UPRES 
P2(O) = m 

ELSEIF S = 66 THEN 
'FB is in freeze mode 

ENDIF 

This section of code checks to see if the F 6  bas just been switched to sublime mode. 
'If it bas, a flag is set for 220 s. During this time, the P/S weight input is ipored, 
'and the controller acts on the modeled flow only. 
IF S(-11) .c > 53 THEN 

SublimeStartup% = false% 
Timer = 0 

ENDIF 
IF S(-11) = 53 AND S(-12) <> 53 THEN SublimeStartup% = true% 
IF Sublimestartup% THEN 

Timer = Timer + 1 
IF Timer > 220 THEN 

SuhlirneStartup = false% 
Timer = 0 

ENDIF 
ENDIF 
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'Update estimates 
IF SublimeSlartup% THEN 

x1 = x1 
X 2 = X 2 - 1 3 . 4 * d T t  0.995 ' (W-XZ)  

XI = X l  + 0.0067 * (W - X2) 
ELSEIF S(-11) = 66 THEN 

X2=X2+0.995 * ( W - X 2 )  

X 2 = x 2 + 0 . 9 9 5  ' ( W - X 2 )  

ELSEIF S(-11) = 53 THEN 
X1 =X1-0.0067*(W-X2) 

ELSE 
x1 = 0 
X Z = W  

ENDIF 

'ignore weight input during sublime startup 
'freon transfers around 13.4 Ibb 

'freeze mode weight rate 
'freQe mode weight 

'sublime mode weight rate 
'sublime m d e  weight 

'weight rate E 0 except in freeze or sublime mode 
'use raw weight input 

'Set old and new e m r  term 
q-11 = YO) 
E(0) = SP - x1 

PYMl = PY301 t Kc * (E(0) - E(-1) t Ki dT yo)) 
'Control Algorithm (PI mode--no derivative) 

'Limit control output between 0 and 100% 
IF PY301 > 100 THm PY301 = 100 
IP PY301 c 0 THEN PYX1 = 0 

'Calculate modeled flow 
F(0) = F(1) 
Ip S(-11) = 53 OR S(-11) = 66 THEN 

ELSE 

ENDIF 

F( 1) = 1.6*P1(-1 l)*SQR((Pl(-l l)-W(-l l))/Pl(-ll))~SQR(l t ,029.67 * (2*(1-(PY301(-1l)/lOO)))) 

F(l) = 0 'set modeled flow Lo zero if not in freeze or sublime mode 

'Project BW estimate for neEt scan 
X1 E X1 + F(1) - F(0) 

IF S = 66 THEN 
IF S = 53 THEN 

X2 = X2 t dT* X1 
X2 = X2 - dT XI 

'weight rak 

'weight (increases in fneze mode) 
'weight (deereases in sublime mode) 

LOOP 

END 

Variable Definitions 

Kc 
Ki 
pTu)6 
PYM1 
s 
SP 
Timer 
UPRES 
W 
x1 
x2 

= controller proportional gain 
= controller integral term (resets/s) 
= freezcrisublimer prmure (pia) 
= coatroller output signal to valve (%) 
= freaerhublimer status (53 Q sublime, 66 = freeze) 
= controller set point (Ib/s) 
= freon weight shift timer at beginning of sublime mode 
= upstream stage 4 pressure (pia) 
= measured weight (Ib) 
= estimated weight rate (Ibb) 
= estimated weight (lb) 

Arrays 
A m y s  are used to store past values of key variables to enable calculating flow wiib deadtime and to tnck past values of other variables. 

E() 
Po 
PLO 
P2() 
So = freeidsublimer status array 
PY3010 = valve output array 

= controller e m r  term array 
E flow model a m y  (Ibb) 
= general upcrerm pressure used for bo& fm and sublime modes (r UPRES in freere mode, = PT306 in sublime mode) 
= general downsixam pressure used for both freeze and sublime modes (= PT306 in freeze mode, = UPREs/s in sublime mode) 
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