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N P 
Total water pumped into or out of wells = 31 F i)yAtn+l = - 

i 
j _ClQjA’n+l. 

N 
Total water crossing specified-head boundarjles = Xl QBiAtn+l. 

Total water crossing Cauchy-type boundaries 

= : ii1 ~,[(qBL]ij, + laL)ij, lil,i - ~i]]Atn+l. 

Average volumetric flow rates in time element n+l can be obtained by 
dividing the components by Atn+l, and running totals over time can be 

obtained by summing the components over all preceding time elements. The 
mass imbalance in time element n+l is obtained by summing the components, 
and a running mass imbalance is obtained by summing mass imbalances over all 
preceding time elements. 

EXTENSIONS OF THE BASIC EQUATIONS 

Unconfined flow 

When equation (1) is applied to area1 flow in an unconfined aquifer by 
using the Dupuit approximation (Bear, 1979, p. ill-114), transmissivities 
are functions of the current saturated thickness of the aquifer, as follows: 

T = Kb 
= "[h - zb], (65) 

where b is the saturated thickness h - z b of the aquifer, h is the elevation 

of the water table above some datum, zb is the elevation of the aquifer 

bottom referred to the same datum, and subscripts x and y were omitted from 
T and K for simplicity. Because b is head dependent and varies in time, 
equation (1) is nonlinear, with transmissivities that are head dependent and 
vary in time. 

Time variance of the transmissivities can be handled in the same manner 
as time variance of B.. 1 That is, the G.. coefficients, which contain the 

U 
transmissivities, can be written for time element n+l as 

G 
ij = 

G ij ,nan +G ij,n+lon+l' 

so that, by using the relationship A.. = G.. + IT.., equation (54) is 
replaced with 1J 1J 1J 

(66) 

rAt n+lh 

J A ij hj"n+l dt' 

0 
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h h 
+ G.. 

1J ,t-l+&l+l 
+ V.. h. 

1J J ,nan + hj,n+lan+l I On+ldt' 

s 1,, 12 + G.. 
1J ,n+l 

LAt 
h 

+ 12 + 3G ij,n+l + 4v (67) 

For an aquifer that remains unconfined (that is, h never exceeds the 
elevation of the base of an overlying confining bed) throughout the 
simulation period, matrix g is modified by replacing the storage 

coefficient, S e , in each element by specific yield, Se. 
Y 

Therefore, 2 is 

constant in time. Conversions from confined to unconfined flow (and vice 
versa) and their effect on 2 is discussed in a later section. 

Use of equation (67) in place of equation (54) modifies equation (56) to 

- 5, 1 1 
+ XAtn+l G + =n 3$+1 + 41 1 iin+l 

+ 2v it 
1 = -n = At,& (68) 

where equation (61) was used for f. Equation (68) can be written in a form 
analogous to equation (58) by using equation (57) and weighted average 
values of G.., defined as 

1J 

and 

Thus, 

+ 3G 1 ij,n+l 

G.. + 2G 
1J ij,n 1 ij,n+l ' 

Define the terms 

Then an off-diagonal element of g is given by 

(69) 

(70) 

(71) 

(72) 

Gij = Fi (73) 
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where b 
S 

is the aquifer thickness at node s = k,l,m, and $ps is the average 

aquifer thickness in element e, assuming that thickness varies linearly over 
the element. Computation of G.. 

1.J 
using equation (73) requires reassembling 

G ij element by element each time thickness b s is changed. An approximation 

that Cooley (1971) found to be good for a subdomain finite-element solution 
of axisymmetric, variably saturated flow problems avoids this reassembly. 
The approximation is to evaluate the head-dependent coefficient in G.. using 

iJ 
the head half-way between nodes i and j. For the present problem, this 

. 
approximation is equivalent to replacing $b, in equation (73) with the 

average thickness between nodes i and j. Thus, the approximation is 

where 

Gij = $I, + bj]fid4 = $bi + bj]Dij, 

D ij = C de.. 
ei l.J 

(74) 

(75) 

Because aquifer thickness is dependent upon head, a means of predicting 
this thickness at an advanced time level, n+L, is needed prior to solving 
equation (71). A simple and effective method is the predictor-corrector 
technique described by Douglas and Jones (1963). In the predictor step of 
this two-step process, the previously calculated thicknesses are used in g 
to form an equation of the same form as equation (58). This equation is 
then solved for the head changes over the time element, and heads at the 
advanced time level are predicted based on equation (57). Aquifer 
thicknesses are then updated using the predicted head changes, and these 
updated thicknesses are used to form E and G. These matrices are used in 
equation (71) to solve for the head cEanges=over the time element, which is 
the corrector step. 

The predictor step is expressed by the :Eollowing equations. Based on 
equation (58), 

C = 

W3)Atn+l +sn+jm*=! - [sn+!]in 

where 6 
* 

is the predicted head-change vector and 

The thickness bi n is 
I 

G =- 
ij,n ; i# j. 

b. 1,n = it i,n - 'bi' 

(76) 

(77) 

(78) 

and b 
j ,n 

is defined similarly. From equation (57), the predicted head 

vector, iz, at time level tn+l is 
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"* 
h = +* + $. - (79) 

The corrector step uses heads ;I" 
equations. Based on equation (71) - 

to form the following corrector 

(80) 

where c* and c?* are the approximations of 'd and i, defined, using equations = = = 

(69), (70), (74), and (79), as 

z* ij + bj,n) + 3[~~i,n + 4'2 + bj,n + 46J Dij 

Dij ' i f j, (81) 

and 

-* 
G ij + bj,n] f 2[;bi,, + $2 + bj,n + 56; Dij 

i n + b. D.., i # j. 
, 1 J,n iJ (82) 

In practice, to reduce round-off error {g/[(2/3)bfntl] + E* + l}&* is 

subtracted from both sides of equation (80) to create a residual form of the 

equation so that 6 - 6* is actually solved for. Head change 6 is then - - 

directly computed as 6 = 6 - 6* + S*. 
-I l- 

The head at the end of the time - - 

element is calculated using equation (57). 

Mass-balance calculations could be based on equation (80). However, 
more information about the accuracy of the predictor-corrector scheme can be 
obtained by computing mass-balance components from an equation derived from 

equation (71) in which E and c are computed using in+l, which is 

2 
(2/3Mtn+l 

2 
- W3)Atn+1 

= 0, 
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where, by employing equations (57), (69), (70), and (74), it can be verified 
that 

E -6 ij ij = $Si -I- hj]Dij. (84) 

Equation (83) becomes equation (64) when g is not time variant. 

Because E and c are computed using in-,1 instead of h", 6 is only the - - 

approximate solution of equation (83). If the time element Atn+l is too 

large, then the approximate solution will be poor, and this will result in a 
large mass imbalance as computed using equation (83). In this case, the 
time-element size should be reduced. 

The algorithm used to implement the predictor-corrector method is 
summarized by the following steps. 

1. Predictor: Solve equation (76) for 6*, and solve equation (79) for h". 

Then compute a predicted average head vector h* 
-* 

using h = Is* + 5,. 

2. Compute elements of c* and G* using equations (81) and (82). 

3. Corrector: Solve the residual form of equation (80) for 6 - 6*, and - - 

compute the average head h using h = S - 6* + h*, - - - which is obtained by 

combining h* = 6* + 5, and h = 6 + h 
* 

-I l- 
* 

- - -n' Compute 6 = 6 - 6 + 6 . - - 

4. 

5. 

Compute the weighted average mass-balance components using equation (83). 

Update the aquifer thickness for the next time element using 

b -n+l =$g+b -n' (85) 

which is obtained by using the definition of b and equation (57). 

6. Compute in+1 using 

(86) 

which is derived by combining equations (57) and (63). 

7. Advance the time-element index, n, defin'e a new Atn+l, and return to 1, 
unless the simulation time limit has been r'eached. 

Drying and resaturation of nodes 

If the water table declines to the base of the aquifer at a node during 
a simulation, then the node is said to "go dry" (figure 7). Although the 
aquifer thickness at the node is zero, horizontal flow to or from adjacent 
saturated nodes can still exist by virtue of equation (74). Thus, the node 
should remain active and hydraulic head at the node should still be 
calculated. An approximate method of simulating this process is to solve 
the finite-element equation (equation (71)) using zero aquifer thickness at 
dry nodes. Because the storage term Cii is not altered when a node goes 
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dry, this use of equation (71) assumes (1) that water is released from or 
taken into storage in the aquifer where the saturated thickness is greater 
than zero and in the material underlying the aquifer where the saturated 
thickness is zero, (2) that the specific yield of the aquifer and underlying 
materials is the same, and (3) that both of these sources of water 
contribute to horizontal flow in the aquifer. If the material underlying 
the aquifer is explicitly incorporated into the simulation as a confining 
unit (R > 0), then this unit serves to vertically convey water to or from 
the aquifer in addition to releasing or taking on stored water at dry nodes. 
Because dry nodes are active nodes in the flow system, solution of equation 
(71) can produce heads that decline below the aquifer base so that the water 
table can move laterally away from the dry nodes (figure 7). In this case, 
the computed heads at the dry nodes can be thought of as effective heads 
that allow approximation of horizontal flow in the aquifer near the dry 
nodes. If all nodes j adjacent to a dry node i also are dry, then, from 
equation (74), all G.. 

iJ 
= 0, and horizontal flow in the aquifer near the dry 

node ceases. Water table decline at the dry node will also cease unless the 

underlying unit is a confining unit (R > 0) and ii > Hi, or the node is on a 

Cauchy-type boundary (a>O) and ii > HBi, or known sources and sinks in Bi 

are negative, which is treated below. 

If a pumping well (or other specified sink) is located at a node that 
goes dry, then the net discharge at the node is too large for the aquifer to 
sustain. This incompatibility must be rectified by the investigator. 

!&. (i=k,l,m ; r=n,n+l)=computed hydraulic head at node i 
and time level r 

b,,, (i=k,l,m ; r=n,n+l)=saturated thickness at node i and 
time level r 

77 Water table 

Figure 7. Node k in element e drying up as the water table declines during 
simulation. 
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However, to allow the simulation to continue, and to suggest how much 
discharge the model can supply, the following automatic procedure is 
followed. If the net specified flux is negative at a node that is predicted 
to go dry at the end of a predictor step, then the net flux at the node is 
permanently cut in half beginning with the corrector step. Discharge can 
continue to be reduced by a factor of two on subsequent time elements if the 
node continues to go dry. If this procedure is insufficient to maintain a 
positive saturated thickness, the head at the node may drop below the 
aquifer base, and the dry node may at least temporarily supply water to the 
sink, which is physically unrealistic. However, the results of this 
procedure should indicate to the investigator how the model input could be 
changed to yield a physically compatible situation. 

Combined confined and unconfmed flow 

Equation (1) can be applied to a problem where there is confined flow 
in some areas of the aquifer and unconfined flow in other areas. In this 
case, conversion can take place from one type of flow to another at any time 
or place in the aquifer (figure 8). Where flow is confined, the storage 
coefficient in equation (1) is the artesian storage coefficient, S, and 
transmissivity is constant in time. Where flow is unconfined, the storage 
coefficient is the specific yield, S and transmissivity is time variant, 
as given by equation (65). Y' 

If flow at node i converts from confined to unconfined, or vice versa, 
during time-element n+l, the time interval Atn+l is divided into two 

subintervals, OiAtn+l and (l-Bi)Atn+l, where Bi is the unknown proportionate 

point in the time interval when node i converts. The storage-change term 
analogous to equation (53) is then approximated as the sum of the two 
storage-change terms resulting from treating the two subintervals as 
subelements, each having its own basis functions and approximate function 
for hydraulic head. Thus, for the subinterval BiAtn+l 

where 
ii = ii ,p + Zticp, 

j, On+1 
n =l-B-’ i 

(1) 
ae 

=‘Tn+l 
ei ’ 

(87) 

(88) 

(89) 

and z ti is the elevation of the top of the aquifer and equals the head at 

node i at time tn + BiAtn+I. For the subinterval l-Bi Atn+I, 
t 1 

ii w+ ; (2) 
i - Ztia6J i,n+lOn+l' (90) 

where 
(2) = an Ol9 1-Bi' 

(2) = 1 _ -2 
an+l i-e * i 

(91) 

(92) 
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Confined Unconfined Unconfined Confined 

Aquifer 

Aquifer base 

.  _.. _) .  -  .  .  - - - - - - .  - -  -  . - . - - -  
- .  . - -  

v Locates potentiometric surface in the confined part of the aquifer and 
water-table position in the unconfined part 

Figure 8. Cross section showing conversion from confined to unconfined flow 
at time t near a well pumped at volumetric rate Q. 

By using equations (87) through (92), the integrals involving the storage term 
C ii (see equation (53)) for both subintervals are formed and evaluated as 

I 'iAtn+l 
C 

0 

dt' = C(l) ii 
da(') 
-AL 

+ 'ti dt 
1 

,j')dt' 

(93) 

and 

Atn+l 

I 
d; (2) i oit{dt' = Cii C 

'iAtn+l 

ii dt 

da(2) A 

'ti 
-AL 

dt + hi,n+l 

= 1 ($2) 
2 ii I 

; 
i,n+l - 'ti 1 , 

(94) 

where Cl:) is the storage term before conversion, and Ci:) is the storage 

term after conversion. 
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The required finite-element equation for node i and time-element n+l is 
obtained by summing the equations for the two subintervals, so that the 
storage-change term is the sum of equations (93) and (94). This sum is one- 
half the total change in water stored during time element n+l (Prickett and 
Lonnquist, 1971, p. 40-41; Trescott and others, 1976, p. 10-11; and Wilson 
and others, 1979, p. 52). It is instructive to note that this sum can be 
written as 

+c:y 
I 
zti - Iti n 

1 
+ $cg' ii n+l 

1 ;a ;, 

I 2 - 'ti 1 

= 1cw A 
2 ii I 'ti i,n + 2'ii I 

= ;& [ 

I 
- ii n i,n+l , 1 

_ lcw h 
2 ii I 'ti - hi,n I 

where 

, . + c(l) - d2) e^ ii I II 
Fi n+l - ii. ii i , 1, 

l,n 

-ii h 'ti i.n 

(95) 

ei = h . -. 
h -ii i,n+l i,n 

(96) 

h 
Therefore, if head is assumed to vary linearly within time-element n+l, 8. 
is an estimate of 8. and the term in brackets defines an effective storaie 
coefficient for timeielement n+l. 

By making use of equations (95) and (96) and approximating the sum of 
terms of the form of equation (67) for the two subintervals by the analogous 
term (equation 67) for the entire time element, an equation of the form of 
equation (68) may be written to include the possibility of one or more 
conversions within time-element n+l as 

c(2) ; = I - ; 1 I -n+l -n + p - g(2) ) [Zt - Sn) + kAtn+l[En + 3Gn+1 + 4!]in+l 

1 
+ zAtn+l En+ &+l I 

+ 2V ; = -n = Atn+lB' 1 
(97) 

where C(l) = Cc2) 
jj jj 

for all nodes that do not convert in the time interval 

Atn+l, and zt is the vector of nodal aquifer-top elevations. Hence, the 

equation to replace equation (71) is 

c(2) 
= W3)Atn+l + c + l]f = i - [i + E]S, + C(2~~~:1)(It - in]. (98) 

The predictor-corrector method is used to solve equation (98). For the 

predictor step, 
"* 

the predicted head vector h is obtained using equations 

(76) and (79) with 2 = $j (1) . These predicted heads are used to determine 
which nodes, if any, convert during the time interval and to estimate the 
saturated thickness for all nodes that are either unconfined during the 
entire time interval or convert from confined to unconfined conditions 
during the time interval. 

Predicted heads i: were found to be poor estimates of hi n+l for nodes 

that convert from confined to unconfined conditions; thus, they cannot be 
directly used to calculate saturated thickness for the corrector step. This 
problem occurs because the artesian storage coefficient is usually several 

orders of magnitude smaller than the specific yield, so that unless ii=l, 
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the change from C(1) to C(2) + ii ii Cii) - Ci:)];, is large. It was also found 

that total storage changes during confined to unconfined conversions are 
usually determined much more accurately in the predictor step than the head 
values. Therefore, an expression that can be used to revise a predicted 

head can be developed by equating the predicted change in storage, 
h \ 
h to the change in storage calculated with the conversion, to obtain 

($1) 
ii Zti (99) 

*t 
where h. 
yields i 

is the revised predicted head. Solution of equation (99) for i; 

(100) 

For confined to unconfined conversions, Cl:) << p) h h' * 
ii so that hi n - hi is 

, A "* A* 
much zrflaller than hi,n - hi. However, if hi predicts a conversion, so 

will h.. 1 

The corrector step incorporates any possible conversions. If < < Zti 

<it 
h "* 

i,n or h i,n <z <h., ti I. then a conversion is assumed to have taken place. 

The corrector equation is 

= (2/3)Atn+l , (101) 
-* -* “* At 

where entries G.. and G.. are computed using hi or hi as appropriate. 
iJ 1J 

As in the case of purely unconfined flow, the magnitudes of the errors 
generated by the predictor-corrector method are indicated by the mass- 
balance errors. If the errors are large, then the time element sizes should 
be reduced. 

Point head-dependent discharge (springs and drainage wells) 

The discharge rate from springs or drainage wells varies with the head 
in the aquifer and declines to zero as the head declines to some elevation 
zp (figure 9). Discharge is zero as long as the head remains below z . 

P 
Discharges from springs or drainage wells may be simulated by adding a point 
head-dependent sink function to equation (1) to give an equation of the form 

ah+T XX ax 
ah a, 1 I XY ay 

&+T +G yxax 
ah 1 YY ay 

+ R(H-h) + S +w+p=s$ (102) 
P 

The term S 
P 

is the sink function, given by 

Sp = j~6~-apj]6(y-bpj)C?pj, (103) 

35 



Figure 9. Cross section showing configuration of water-table position, V, 
and controlling elevation for point head-dependent discharge functions. 

where QPj 
is the volumetric rate of head-dependent discharge 

[length3/time] (negative for a sink) at point 
( 
apj,bpj), and there are pp 

such points. Discharge 
Qp j 

is assumed to vary linearly with head as long as 

head is greater than z 
P' 

Thus, it is calculated from 

QPJ - I Cpj(zp- h), Ih > zp 

0 ,hIz ' 
P 

(104) 

where C 
Pj 

is a function of hydraulic conductance of aquifer materials in the 

vicinity of the spring or drainage well [length2/time]. Nonlinearity of the 
sink function results from the fact that the form of the function is 
dependent on the head in the aquifer. 

To incorporate equations (103) and (104) into the finite-element 
equations, it is assumed that the point sinks are located only at node 
points. Hence, spatial finite-element discretization is applied to 
equations (103) and (104) to yield 

where 

4 
cpi[zpi- 

i- 0 
ii) , iGi > zpi 

,&z ’ pi 

(105) 

(106) 

a 

and subscript i indicates that the quantity is at node i. 
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Case 1. Head above zPi through- Case 3. Head rises above zPi 

out the time element within the time element 

Case 2. Head drops below zPi 

within the time element 

Case 4. Head below zPi through- 

out the time element 

I 
J 

"pi 

G,n+* 'in+1 ‘in '-T--l-~ 

Datum 

I 

‘pi = controlling elevation at node i 

$, (r=n,n+l) = hydraulic head at node i and at time level r 

Figure 10. Four possible cases involving change in head over time element 
n+l during which there is point head-dependent discharge. 

To time integrate the sink function, four cases involving the change in 

head hi over time element n+l must be distinguished (figure 10). If the 

sink function changes form within the time element, then the element is 
divided into two subintervals, diAtn+l and (1 - 4i)ht,l, defined by 

proportional change-over point #i. Because head is assumed to vary linearly 

within the time element, di is defined by 
A 

Formulations for each of the four cases in figure 10 are as follows: 
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1. Head above z 
Pi 

throughout 

rlCpi[zpi --"i]gn+ldt# = 

1 r 

the time element. 

AtI-l+l 
I [ C pi 'Pi -;1 i,nan -E; i,n+lOn+l On+ldt' 1 

0 h 
pi , 

- hi n+l 11 . (108) 

2. Head drops below z 
Pi 

within the time element. This sink function must 
h 

allow for linear variation of head from h 
i,n to 'pi during the time interval 

tn to tn + 4iAtn+l, after which the sink function vanishes. 

rlCpi[zpi - ;i]on+ldt' = rlCpi[zpi - hi,n~n - hi,n+lc7n+l]c7n+ldt' 

iAtn+l 

= 'pi 'pi -i i,nOn - 'pi - ii 1 ' 
i,n 4, 

+ iti n an+l an+ldt' 
, 1 I 

= cPi =Pi 
- ;i,n]/~iAtn+l[-~]cn+ldt' 

= ;l;Atn+lCpi(zpi - ii n], , (109) 

h 

where equation (107) was used to eliminate h 
i,n+l' 

3. Head rises above z 
pi 

within the time element. This sink function must 

allow for linear variation of head from z to El 
pi , 

i n+l during the time 

interval tn + diAn+l to tn+l, before which the sink function vanishes. 
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= cpi I 
zpi - 'i,n+l]jzI+ll - 1 ?dJ"n+ld'. 

i 

zpi - ;li n+l , 
, 

where equation (107) was used to eliminate hi n, and 
, 

4, _ 'icdi + '1 
i 2 ' 

(110) 

(111) 

4. Head below z 
Pi 

throughout the time element. The sink function vanishes 

during the entire time element. 

To obtain the terms that add into equation (71), the results of cases 1 
through 4 must be multiplied by -2/Atn+l and converted to residual form 
using equation (57) to give 

1. lC - 3 pi 'pi [ 
- ii n +2z f; , I pi- i,n+l 11 

= c .s. - c 
I 

-ii 
Pi 1 pi 'pi 1 i,n * 

2. - ~4;cpi[zpi- ii,&]. 

= (1 - d;]cpisi - $1 - &]cpi[zpi- hi,n]. 

(112) 

(113) 

(114) 

4. No formulation. 

Addition of these terms into equation (71) consists of adding the 
coefficient of Si (that is, Cpi or (1 h 

- d;)Cpi) into matrix y and adding the 

term containing z 
pi 

- hi n onto the right-hand side. Because di is unknown 

at the beginning of the time element, the predictor-corrector method is used 
to solve the modified equation (71). 

The predictor step is initiated by checking whether hi n >- z 

iii/Z 
pi Or 

pi' If the former is true, 'then case 1 is assumed and if the latter 

is'true, then case 4 is assumed. Prediction equation (76) is then solved 
"* 

with the appropriate terms added in, and predicted heads h are obtained 
using equation (79). 
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H = hydraulic head at 
top of confining 
unit or riverbed 

h = hydraulic head 

I 
Confined 1 Unconfined 

I 
I Datum 

Figure 11. Cross section showing aquifer dewatering beneath a confining 
unit or riverbed sediments having low permeability. 

To initiate the corrector step, heads h; and hi n are checked to 
, 

determine which of cases 1 through 4 apply. If case 2 or case 3 applies, 
then 4i is estimated from h 

z.-h. 
di = Ai1 A1'? 

hi - hi n 
, 

(115) 

Predicted head i: was found to be a good prediction of hi n+l unless the 
, 

time-element size was too large. The corrector equation is formed by adding 

the appropriate terms into equation (80), in which E* and C* may or may not 
be time variant depending on whether flow is unconfined orEconfined. 

Areal head-dependent leakage combined with aquifer dewatering 

Vertical leakage through a confining unit overlying an aquifer being 
dewatered or leakage through the bed materials (assumed to have low 
permeability) of a river that is wide enough that it cannot be considered to 
be a line source or sink, may be simulated using a function in equation (1) 
similar to R(H - h) (figure 11) (Prickett and Lonnquist, 1971, p. 33-35). 
The difference is that in the present case the maximum rate of leakage to 
the aquifer is attained when the head in the aquifer declines below the base 
of the overlying confining unit or riverbed sediments. 
in head results in a constant rate of leakage. 

Any further decline 
There is no maximum rate of 

leakage from the aquifer when the head rises above the base of the confining 
unit or riverbed sediments. With this leakage function included, equation 
(1) may be written as 

a ah ah 
ax Tag G ah + T 

1 I XY ay 
aT *+T + ay YX ax 1 YY ay 

+ R(H - h) + Sa + W + I? = SE, (116) 
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where 

sa = (117) 

In equation (117), Ra is the hydraulic conductance [time -l] of th e confining 

unit or riverbed sediments overlying the aquifer, Ha is the head at the 

distal side of the confining unit or riverbed sediments, and zt is the 

elevation of the base of the overlying confining unit or riverbed sediments. 
The term R(H - h) is retained in equation (116) to allow for a confining 
unit underlying the aquifer. 

Spatial finite-element discretization applied to equation (117) results 
in an equation analogous to equation (27). Therefore, the leakage term 
resulting from the patch of elements for node i can be written 

where 

Q = 
t 

Caikai - ii), iii > Zti 
ai C ai I 

Hai - zti , hi I zti 
I 

C ai = $g ReaAe, 
i 

(118) 

(119) 

and Qai is the volumetric flow rate at node i [length3/time] from leakage 

through the overlying confining unit or riverbed sediments. 

Four cases similar to those developed for the point head-dependent sink 
functions (figure 10) are used to integrate equation (118) over time. The 
time element is divided in the same manner into two subintervals if the head 
in the aquifer crosses the base of the overlying confining unit or riverbed 
sediments within the element. For convenience, the same designation oi is 

used for the changeover point in time. The four cases can be expressed as 
follows: 

1. Head above zti throughout the time element. 

rlCaibai - hi]on+ldt' 

Atn+l 
= C ai s [I H ai,n - 'i n an + 9 I I Hai n+l - hi n+l On+1 9 , I I an+ldt' 

0 

ai,n+l -ii i,n+l (120) 
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2. Head drops below zti within the time element. This function must allow 

for linear variation of head from ii n to z 
I 

ti during time interval tn to 

tn + ~iAtn+l' after which the head-dependent function is replaced by a known 

function. 

j~iAtn+lcai~ai - hijon+ldt' + cn:+Q(Hai - zti]on+ldt' 
i 

Atn+l iAtn+l Atn+l 
= I CaiHaian+ldt' - Caihion+ldt' - 

I 
'aiztian+ldt' 

0 'iAtn+l 

Atn+l 
= C ai I I 

H ai,non +H ai,n+lon+l on+1 1 
dt' 

0 

- 'ai 
J 0 

i,non + 'ti 
-E; l+c( 

1 i,n f$, dt' 

Atn+l 

- 'aiZti I 'iAtn+l 
%+ldt' 

r h -I 

= %:Atn+lCaipai,n - hi,n +2H [ ai,n+l - 'ti 

+ ;[I - mZJAtn+ILcai[Hai,n - 'ti + 2[Hai,*+l - 'ti)]' (121) 

where equation 

3. Head rises 

h 

(107) was used to eliminate h i,n+l' 

above z ti within the time element. This function must allow 
h 

for linear variation of head from zti to hi xl+l during the time interval 
, 

tn + ~iAtn+l to tn+l, before which the head dependent function is replaced 

by a known function. 
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iAtn+l 
C ai )"n+ldt' + ttzl+zai[Hai - hi]On+ld" 

i 

At 

I n+l iAt n+l At 

I 

n+l 
= CaiHaian+ldt' - Caiztian+ldt' - Caihion+ldt' 

0 'iAtn+l 

Atn+l 'iAtn+l 
= C ai I ai,nOn +H ai,n+lcn+l On+1 I 

dt' - 'aiZti 
I 

an+ldt' 
0 0 

Atn+l 

- 'ai I I 'iAtn+l 
'ti - cihi,n+l]i+ + hi,n+lOn+l i 1 an+ldt' 

= Sjatn+lCai[Hai n - 'ti + 2(Hai,n+l - 'ti]] , 

+ :[I - di)Atn+lCai[Hai,n - 'ti + 21H,i,n+l - hi,n+l]]' (122) 

h 

where equation (107) was used to eliminate hi n, and 4; is defined by 
equation (111). , 

4. Head below zti throughout the time element. 

Atn+l 

I 
C ai I 

Hai - zti Dn+ldt' 
1 

0 

Atn+l 
= C ai I K 

H ai,n - 'ti)On + (Hai,n+l - Zti)'Jn+l]Gn+ldt' 
0 

= iAtn+lCai Hai n - zti 
[ 

+2H 
, c ai,n+l - 'ti 11 * 

(123) 

As for the point head-dependent sink functions, the terms that add into 
equation (71) are obtained by multiplying the above results by -2/Atn+l and 
converting to residual form using equation (57). The results are: 
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2. 

3. 

4. 

The 

- $Cai Hai n - ;li n 
[ 

-t2H 
I 

-ii , , ai,n+l i,n+l 11 
= CaiGi - ;Cai n+L - ii n . t 9 11 

0 
(124) 

(125) 

- $4fcai[Hai n - ;li n 
+2H - z , , ( ai,n+l ti II 

- $(l - bZ)Cai[Hai,n - 'ti + 2(Hai,n+l - 'ti)]' 

- $Q;Cai[Hai n - 'ti z , + 2 Hai n+l - ( , ti 13 

- !i[' - #jlCai[Hai,n - 'ti + 2[Hai n+l - 'i n+l]l , , 

= (" - ~ijCai~i - $4;'ai[Haisn - 'ti + 2(Hai,n+l - 'ti)] 

- $(L - 'i)Caibai,n - 'ti + 2bai,n+l - 'i,n)]' (126) 

- $Cai Hai n - zti 
[ 9 + 2 Hai n+l - 'ti E * (127) , II 

terms in the above four cases are incorporated into equation (71) and 
the predictor-corrector method is employed in exactly the same manner as for 
the point head-dependent sink functions. 

Areal head-dependent discharge (evapotranspiration) 

Another areally distributed function allows for discharge-only 
processes such as evapotranspiration (figure 12). The rate of discharge 
from the aquifer is assumed to reach a maximum when the water table (or head 
in the aquifer) reaches the top of the aquifer, which is land surface. The 
minimum rate of zero is reached when the head declines to some lower 
threshold elevation (Prickett and Lonnquist, 1971, p. 37-38). This 
discharge function occupies the same position in equation (1) as Sa (see 
equation (116)) and is stated in the form 

Re ze - zt 
I 

, h 2: zt 
Se= Reze -h 

v 
1 

, ze<h<zt, (128) 

0 , hl; z e 
where R e linearly relates the discharge rate to the head difference, ze is 
the elevation below which the function vanishes, zt is the elevation of the 
top of the aquifer, and zt > ze. 
Lonnquist, 1971, p. 37) 

An expression for Re is (Prickett and 
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where 

v 
Re =;;", 

e 

de = Zt - z e' 

(129) 

(130) 

and v e is the absolute value of the maximum unit discharge rate 

[length/time] due to evapotranspiration from the aquifer. 

Spatial integration of equation (128) is performed by using the same 
process used for equations (118) and (119). Therefore, 

c ei 

I 1 

Zei - Zti ) ;li 1 zti 
1 

Q = 
ei c ei zei - ;li 

1 
, Zei < gi < Zti, 

h 
(131) 

where 
(132) 

and Q,i is volumetric discharge at node i [length3/time]. 

Time integration yields nine separate cases (figure 13) involving the 
h h 

positions of hi n and hi n+l relative to zei and zti, and the time element 
I , 

is divided into either one, two, or three subintervals depending on the case 
applying. Changeover points in time are designated d,, and dei to conform 
with the changeover elevations z ti and z ei' so that 

Land surface 

A 
- zt = upper controlling 

elevation 

Ground-water 
discharge 

Water table h = water table 
v elevation 

de=zt-ze 

I 

‘e = lower controlling 
elevation 

a 

Datum 

Figure 12. Cross section showing configuration of the water table and 
controlling elevations for evapotranspiration type of head-dependent 
discharge. 
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Case 1. Case 4. Case 7. 

h I T ‘i n+l 9 

‘i,n+ 1 ‘in 7 
‘ti 

4n I 1 

“i n+l 
‘ti 

3 
6 n+l A 

Il. ‘ei 7 l,n 
‘ei 

‘in 7 

‘i n+l II 

‘i n+l > 

Case 2. 

Datum ,-,,-,- Datum ’ ‘in f 

Case 5. Case 8. 

‘in 9 T 

Case 3. 

Datum Datum 

Case 6. Case 9. 

‘ei 

~i,n+l T- ‘ti 

‘ei 

‘in > 4, - 7 

Datum -- Datum 

Zti = upper controlling elevation at node i 

Zei = lower controlling elevation at node i 

pi r (r=n,n+l) = hydraulic head at node i and at time level r 3 

Figure 13. Nine possible cases involving change in head over time-element 
n+l during which there is area1 head-dependent discharge. 
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0 
and 

The cases are as follows. 

4 
=ti - 'i.n 

ti Es ;1 - ii n' i,n+l , 

4 ei a h h 

1. Head above zti throughout the time element. 

Atn+l 

I 
' 'ei ei c 

- z&+ldt# - $Atn+lCeipei - zti]. 

0 

2. Head drops below zti but stays above zei within the time element. 

I 

'tiAtn+l 

' 'ei ei I - 'ti)On+ldt + 
0 

I',: Cei(zei - hi]on+ldt' 

ti n+l 

4 .At r ti n+l 

- cei Zei c - Zti 11 an+ldt' 
0 

Atn+l 

+ 'ei 
I 

btiAtn+l 
[ [ 

(I 
Z 

ei - Zti - dti;Li ,111 -n# , ti - 'i,n+lDn+l On+ldt' 1 

(133) 

(134) 

(135) 

‘I 

= ?~kiAtn+lcei(Zei - Zti] + ~11 - C;l]*tn+lCei [Zei - Zti + 2 [Zei - pi ,n+l)] , (‘36) 

where dki is given by equation (111) with dti replacing 4,. 

3. Head rises from between zei and zti to above zti within the time 
element. 

LtiAtn+lCei[zei - ii)on+ldt' + c: Cei(zei - zti]an+ldt' 

ti n+l 
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= C ei z ei -ii i,nOn - zti 
-; 

1 
1. +;, 

i,n ~ti i,n On+1 1 1 On+1 dt' l 
At n+l 

+ cei 
c 
2 ei - 'ti an+ldt' 

'tiAtn+l 

= ;&Atn+lCei + 2 Zei [ - Zti )] + :[l - ~~i]Atn+lCeilzei - Zti). (137) 

4. Head stays between zei and zti throughout the time element. 

l'"iei[zei - +,+ldt' = Ceicn+'[[zei '- hi,n)~n + [zei -;i,n+l]cn+l]c.7n+ldt' 

= ;Atn+lCei zei - ;li n 
h 

9 'pi - hi n+l * ' II 
(138) 0 

5. Head drops from between zeiand zti to below zei within the time element. 

'eiAtn+l 

I, 'eiIZei - 'i.jOn+ldt' 

= C ei Z ei -;I i,nan - Z ' ei - i 
1 i,n de, 

+ ;I i,n I 1 an+l an+ldt' 

(139) 
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6. Head rises above zei but stays below zt within the time element. 

rl ‘eiIZei - ‘Jcn+ldt’ = ‘eir: [‘e-i - [‘ei - 4eihi,,l]& 
ei n+l ei n+l 

-ii i,n+lOn+l an+l 1 dt' = $[l - dLi]Atn+lCei[zei - it 
1 i,n+l ' (140) 

where d;fi is given by equation (111) with dei replacing di. 

7. Head stays below zei throughout the time element. The discharge 

function vanishes within the entire time element. 

8. Head drops from above zti to below zei within the time element. This 

function must allow for constant discharge during timespan tn to t n 

+ $tiAtn+l and head-dependent discharge during timespan t n+' tiAtn+l to tn 

+ 'eiAtn+l' and must vanish during timespan tn + deiAtn+l to tn+l. The 

head-dependent discharge can be expressed as a function of #ei, dti, zei, 

and z ti by eliminating hi n 
h 

and h 
, 

i n+l using equations (133) and (134). 
, 

First h i n+l is eliminated by solving equation (134) for hi n+l, then h 
, 9 i,n 

is eliminated by combining equations (133) and (134) to get 

;li n = 4 eifti - 4 tiZei 
, ei - 4ti 

(141) 

Thus, 

I 

'tiAtn+l 'eiAtn+l 

c ei t 
Zei - Zti 

0 
)on+ldt' + I, At Cei(zei - 'ijOn+ldt' 

ti n+l 

'tiAtn+l 
= c ei c 

Zei - Zti 
,I 

an+ldt' + Cei Z ei -ii i,nan - Z l ei 
0 

. iei + 'i,n On+1 on+ldt' 1 1 
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,I 

dtiAtn+l 
= c ei I 

Zei - Zti gn+ldt' + Cei 

0 

[zei - ;l,n]j:"::"lk - e]on+ldt' 

ti n+l 

'tiAtn+l 4eiAtn+l 4 
= c ei c 

Zei - Zti 
II 

On+ldt' + 'ei 'ei I 
- bn-t-l 

- 'ti 
0 II 

ei [ 1 4 
4ti4tn+l ei 

- 4ti an+ldt' 

3 1 + 4~i *tn+lCeilzei - Zti). (142) 

9. Head rises from below zei to above zti within the time element. This 

case is analogous to case 8, except that the head changes in the opposite 
direction. Hence, the resulting equations are 

r:"::"'Cei[zei - ;i]gn+ldt' + r;l Ceipei - zti)on+ldt' 

ei n+l ti' n+l 

'tiAtn+l 4 
Atn+l 

ei - u n+l = c ei I 
Zei - Zti ,I I I 4 _ - 4ti an+ldt' + 'ei 'ei - 'ti ( II 

an+ldt' 

4eiAtn+l e1 'tiAtn+l 

(4,i + 24ti)[4ti - 4ei] + 3[1 + 4ti)[' - *tn+lCei~ei - Zti). (143) 

Multiplication of the above discharge functions by -2/Atn+l and 

conversion to residual form using equation (57) yields the terms that add 
into equation (71). The results are: 

1. - ceizei- Zti. 
I 1 

2. - 4;iceipei - 't-i ] - $b - 4;i)cei[zej. - 'ti + 2[zei - 'i,n+l)] 

= 
( 
1 - 4ti CeiZi 

1 - 4;iCei(zei - ‘t- ) - $11 - 4;ijcei [“,i - ‘ti 

(144) 

ei 
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3. - ~4:iCei[Zei - ‘i,n + 2 (Zei - ‘ti]] - [l - 4:ijCei(zei - ‘ti] , (146) 

4. i,n+l 11 

6. - 

= 
( 
l- 4LiC -6. 

I el 1 - s[' - 4~ilCeiIZei - ‘i,n]’ 

7. No formulation. 

8. - $['ti['ei + 'ti) + 4zi]Cei(zei - 'ti)' 

(147) 

(148) 

(149) 

(150) 

9. - ~, k de, + 24ti] [4ti - 4ei) + 3(1 + 4ti) (l - 4ti)] ‘eilZei - ‘ti) ’ (151) 

Procedures for use of the above nine cases in equation (71) and 
solution using the predictor-corrector method are analogous to those used 
for the previous two types of head-dependent functions. For the predictor, 

if hi n 2 zti, then equation (144) is used in equation (76) (case 1); if zei 
, A h 

< h. 
l,n ' 'ti' then equation (147) is used (case 4); and if hi n I zti, then , 

no terms are used (case 7). Estimates of 4ei and 4ti to use in equations 

(144) through (151) are obtained using equations (133) and (134), with 2 
h 

substituted for hi n+l. The corrector is employed by adding one of 
* 

equations (144) through (151) into corrector equation (80), as appropriate 

based on checking < 
h 

and h i,n against z ei and z ti' and solving for 6. 

s Line head-dependent leakage combined with aquifer dewatering 

The final type of head-dependent function is a line source or sink of 
the general form of the boundary condition given by equation (4), except in 
the present case the function yields a maximum flux when the head in the 
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River 

Figure 14a. Block diagram of a river idealized as a line'source or sink 
along spatial element sides. 

aquifer declines to a specified elevation. This function is most often used 
to simulate a river that is narrow enough to be replaced by a line (figure 
14a). As for the case of a wide river, the maximum leakage rate from the 
river to the aquifer is attained when the head in the aquifer declines to 
the bottom of the riverbed sediments (assumed to have low permeability) 
(figure 14b). 

The line source or sink function is written in the form of a flow 
across an internal or external boundary, or 

qn = 
- h 

1 
, h > zr 

- zr 
I 

, h I zr ' (152) 

where Q r [length/time] is a parameter that is a function of the hydraulic 

conductivity of sediments through which leakage occurs, Hr is the 

controlling head (for rivers, the river-stage elevation), and zr is the 

elevation at which the discharge to the aquifer is a maximum (for rivers, 
the elevation of the bottom of the riverbed sediments). For riverbed 
sediments, a r is given by 

KrWr Q =- 
r b ' (153) 

r 
where K r is the hydraulic conductivity of t'he riverbed sediments, Wr is the 

width of the river, and b is the thickness of the riverbed sediments. r 

Equation (152) is incorporated into th'e spatial finite-element 
equations in the same manner as equation (4) (see equation (32)). That is, 
the total discharge across the line source 'or sink in the patch of elements 
for node i is 

Q 
Hri - ;li 

= 1 
ri Hri - zri , ;li I zri ' 

1 

(154) 
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land surface 

Hr = river stage 

b, = thickness of riverbed 
sediments 

'r = base of riverbed 
sediments 

Assumed position of 
line source or sink 

h = water-table elevation 

Figure 14b. Cross section showing a configuration of the water-table 
elevation under a river that is idealized as a line or source sink. 

where 
C 

ij ' ' 
(155) 

Q ri is the volumetric discharge at node i [lengths/time] from leakage 
involving the line sources or sinks, and L. lj ' is defined the same as for 
equation (32) (figure 14~). 

H rk 

‘rk 

Hri (i=k,m) = river-stage elevation 
at node i 

zri (i=k,m) = base of riverbed 
sediments at node i 

wr = width of river in 
element e 

Lkrn = length of side k-m 
of element e 

Figure 14~. Nomenclature for side k-m of element e that forms a line 
head-dependent source or sink. 
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Equation (154) is exactly the same as equation (118) expressing area1 
head-dependent leakage, except that Hri replaces Hai, Cri replaces Cai, and 

Z ri replaces z ti' Therefore, the expressions and the predictor-corrector 

solution procedure derived for areal, head-dependent leakage apply to the 
present case as well. 

Leakage of water stored elastically in a con&ning unit (transient leakage) 

Equation (1) can be rewritten in a general form that includes leakage 
to or from a confining unit as follows (Cooley, 1974, p. 3-9): 

T ah 
XY ay 

Tyx 2 + Tyy g] 

I?I K' ah' ah 
zz az I z=z + w -I- P = sa, , (156) 

C 

where K' zz is the vertical hydraulic conductivity of the confining unit, h' 

is the head in the confining unit, and zc is the elevation of the base of 

the confining unit (if the confining unit overlies the aquifer) or the 
elevation of the top of the confining unit (if the confining unit underlies 
the aquifer). 

If the confining unit has no elastic ,storage capacity and flow in the 
confining unit is almost vertical, then the leakage rate is 

31 K' ah' 
zz az I z=z := R(H-h), 

C 
(157) 

and equation (1) results. However, if the confining unit has elastic 
storage capacity, then the leakage rate mu,st be computed using an unsteady- 
state equation for flow in the confining unit. The formulation of this 
problem was developed by Hantush (1960), and expanded by Neuman and 
Witherspoon (1969) and Herrera and his coworkers (Herrera, 1970, 1974; 
Herrera and Rodarte, 1973; Herrera and Yates, 1977). The following approach 
is an expansion of their approaches to apply to the finite-element method. 
For notational simplicity, the confining unit is assumed to overlie the 
aquifer, because the final function describing leakage to or from the 
aquifer is the same whether the confining unit overlies or underlies the 
aquifer. In this case, zc = zt, the elevation of the base of the confining 
unit. 

Flow in the confining unit is assumed to be almost vertical, which is a 

reasonable approximation when KLz/K < lo-" xx (Neuman and Witherspoon, 1969, 

p. 804). With this assumption, flow in the confining unit at some location 
(x,y) can be described by the following initial value problem: 

2 
K' ah' 

” az2 
s, ah' 

s at (158) 
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subject to 
h' = h(t), z = zt, t 1 0, 

h' = H(t), z = zt + b', t 1 0, 

h' = H;(z), zt I z 5 zt + b', t = 0, 

(159) 

where S' s is specific storage of the confining unit [length-l], b' is the 

thickness of the confining unit, h is head in the aquifer, H is head at the 
distal side,of the confining unit (assumed to be a known function of time), 
Hk(z) is the initial steady-state distribution of head in the confining 

unit, H;3pt] = h(O), and Hkpt f b') = H(0). 

To initiate development of the leakage function to be inserted into the 
finite-element equations, spatial finite-element discretization is applied 
to the general leakage rate in the same manner as it was to R(H-h) to yield 

where, to conform with R, Kbz is assumed to be constant in element e. 

ah! 
dxdy = &K;$A" 2 , 

z=z t z=z t 
(160) 

Equation (160) expresses the total leakage rate across the patch of elements 
for node i in terms of the hydraulic gradient at node i. Thus, the equation 
for flow in the confining unit at node i must yield equation (160) when used 
to obtain the leakage rate. This flow equation is derived as follows. 
Integration of equation (158) from zt to z I zt + b' and solution for the 

leakage rate across the base of the confining unit yields 

KhZ F 
I 

= KHz E - S; 
s 

z ah' 
atdz, 

z=z t Zt 

(161) 

which, when substituted into the integral in equation (160), yields an 
expression for the approximate leakage across the patch of elements for node 
i in the form of 

ah! 
& KteAed 

I 
= & K;;AeE z ah' _ 

3ei zz az 
& S;e~e atdz, z=z 

t i i 
Z* 

(162) 

where S' e 

S 
is the specific storage of the confining unit in element e. 

Differentiation of equation (162) with respect to z yields the equation for 
flow in the confining unit at node i as 

ah! 
= z.S;eAe$. 

1 
(163) 

The leakage rate given by equation (160) is calculated using the head 
in the confining unit, hf, which is obtained by analytically solving 

equation (163). Appropriate boundary and initial conditions are given by h 
equations (159) written for node i using approximate 
in place of exact head hi. That is, 

head in the aquifer hi 
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hf = hi(t), z = zti, t 1 0, 

hi = Hi(t), z = zti + b!, t 1 0, 1 

hf = H&(z), zti I z 5 zti + bf, t = 0, 

(164) 
a 

where b' i is a weighted average thickness of the confining unit for all 

elements in the patch for node i that is derived further on. The solution 
to this initial value problem was obtained by Carslaw and Jaeger (1959, 
p. 102-104) and can be written in the form 

hj(z,t) = 2mil 2 

where 

and 

+ 
Hi(t) - k(t) 

bf I 
z - Zti) + i+t), 

tlmi(t) = (-l)m Hi(t) - hi(t) 

(165) 

(166) 

F K,;Ae 
i 

Yi = -- 
bi2 g. S;“Ae 

(167) 

1 

The leakage rate at time t, Kkzah;/az 
I z=z ' is computed from equations 

t 
(165) and (166). When this is substituted into equation (160), the leakage 
rate across the patch of elements for node i is obtained as 

& KteAe- 
ahi 

3ei zz az I Z=Z~ = 6 F K~~Aem~l(-l)m 
I 

tdHi(r) -(m7r)2-yi(t-7) 
d7 e dr 

ii 0 

I 
t h 

- $ g K;zAemgl 
dhi(T) -(m*)2-yi(t-T) 

dr e dr 
ii 0 

+ & g K;;Ae Hi(t) - k(t) . 
ii I (168) 
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As SLe + 0, equation (168) should approach the leakage term based on 

equation (27). That is, 

$ g K;;;Ae 
ii 

- iii) = $z;~A~[H~ - hi]. (169) 

Therefore, the weighted average thickness bi should be defined by 

g-K;;Ae 

bi= r (170) 
g.ReAe 

1 

to make equations (168) and (27) consistent. Because Re is K;1: divided by 

the confining-unit thickness for element e, 
of confining-unit thicknesses. 

bf is a weighted harmonic mean 

The leakage functions to be inserted into the finite-element equations 
are developed from equation (168). To yield a useful form for the leakage 
functions, the integrals must be evaluated and the infinite series must be 
approximated. The integrals can be approximated by using the procedure of 
Cooley (1972), in which the integrals for time level t = tn+l are evaluated 

in terms of integrals for time level t = tn, which have already been 

evaluated. Thus, the necessity for storing the heads for all previous time 
levels is avoided. The procedure is applied to the second integral in 
equation (168), for example, as follows: 

J 

t 
ml dhi(T) -(m?r)2-yi(tn+l-r) 

dr 
0 dr e 

t h 
ndhi(r) -(mn)2-yi tn'ld;i(T) -(m7r)2yi(tn+l-T] 

= J Cd7 e ) J 
dr + d7 e dr 

tn 

2 
-(mr) yiAt n+l 

J 

tndii(r) 
=e 

;(mr12Ti[tn-r)dr 

0 dr 
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‘;I 
+ i.n+l 

- ;li n 

Atn+l .I 

t 
n+L 

e(ms)2'i(tn+l-')dr 

t n 

=e 
ndhi(.) -(mlr)2-yi tn-r 

dr e 
t 1 dr 

0 

; 
+ i.n+l - 'i.n 1 

Atn+l (mr2)?i I - 

l-,:(m~)2TiAtn+l 
(171) 

By multiplying equation (171) by 2 (for convenience in later manipulations) 
and defining t 

I 2 
I 

"dii(r) -(mlr)2yi t,-7 
= 

mi,n 0 dr e 
c 1 dr, (172) 

a recursive relation for evaluating the integral is obtained as 

2 -(mlr> YiAt n+l ;I 2 
I ,mi,n+l = e I mi,n + i,n+l - 'i,n 2 

Atn+l - 

-(mn) yiAt n+l 
2 I 

l-e 
bn> -7. 

1, (173) 
1 

where I mi,O = 0. Equation (173) permits evaluation of Imi n+l from Imi n 

and the heads at only the current (n+l) and previous (n) time levels. In an 

analogous manner, 
evaluated as 

2(-l)m times the first integral in equation (168) is 

J 
-(mn)2viAtn+l. 

mi,n+l = e J mi,n ' 

H -H 
+ i.n+l i.n 2om -(mm12ViAtn+l 

Atn+l 2 
l-e 

I , 
(mm> r- 1 

where 

J = 2(-l)m mi,n I 
t 
"dHi(7) -(mn)21F(tn-7] 

dr e d?. 
0 

(174) 

(175) 

Next, the infinite series in equation (168) are approximated by finite 
series so that a large number of terms given by equations (172) through 
(175) do not have to be computed and saved at each time level'. The 
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coefficients of the finite series are determined so that a small number of 
terms of the finite series can be used to give a good approximation of 
results obtained with the infinite series. The approximations are 

I 
t n+l h dhi(7) -(m7r)2r N1 

0 dr e I 
dr = m& A; 

and t 
n+ldHi(~) -(rn~)~~~(t~+~-~] N2 

t 

0 dr e dt = m& 
I 

Bm df, (177) 
0 

where Am, am, Bm, and /3, are coefficients to be determined, and Nl and N2 

are the numbers of terms in the two finite series. 

By repeating the derivation, leading to equation (171) using the 
approximations, it can be seen that equations (173) and (175) are 
approximated by 

; 
-amriAt 

mi,n+l = e 
n+l; it i.n+l 

mi,n + - hi.n ~i[l-eam7iAtn+l], 

Atn+l 
(178) 

where 

and 

'dr, ; I 
t A 

mi,n = Am ndhi(r) -am7i tn -4 
e c 

0 dr 

; 
-BmYiAtn+lA H 

J + i.n+l - Hi.n 
mi,n+l = e mi,n At n+l 

(179) 

-Bm7iAtn+l 
- e 1 , (180) 

where t 
i mi,n 

ndHi(7) eBm7i(tn-') =B' I dr. (18’1) m 
0 dr 

. The leakage rate computed using equations (178) and (180) is approximately 
equal to the exact leakage rate computed using equations (173) and (174) if 

2 2m$1 -&j 
-(mn) 7 At 

1 - e i (182) (mn> 
and 

2 2; om -(mm) 7 At l-e i 

mc1 (mr)2 
(183) 

To obtain the best approximations, equations (182) and (183) should 
hold exactly when Atn+l - 0 and when Atn+l + ~0. The first requirement helps 

59 



yield an accurate solution for small time elements and is automatically 
fulfilled because both pairs of series equal zero when Atn+l = 0. The 

second requirement ensures that the total yield from storage in the 
confining unit under a unit head change that is fixed indefinitely is 
preserved by the approximation (Herrera and Yates, 1977, p. 726-727). 
Herrera and Yates (1977, p. 727) found the accuracy of their approximate 
solutions to be highly sensitive to fulfillment of this requirement. By 
letting Atn+l + Q) in equations (182) and (183) and using the sums of the 

resulting infinite series (Herrera and Yates, 1977, p. 727), it can be seen 
that this requirement is fulfilled if 

(184) 
m 

and 
2; om + N2 Bil 

m=l (mn)2 rn% S,' (185) 

It remains to find coefficients AA, o B' m' m' and B, so that approxima- 

tions given by equations (182) and (183) are good with a small number of 
terms, Nl and N2. For notational convenience, dimensionless time element 

AtD is defined by AtD = -yiAtn, and the series are denoted as 

2 

Sl AtD = 2mgl+ 
-(mn) At 

I 1 
1 - e D 

(mn> 
(186) 0 

and 

where 

and 

1 , 

Al(z Am = (r 
m 

BIil Bm =-. 
Pm 

(187) 

(188) 

(189) 

(190) 

(191) 

a 
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Because both sets of series are functions of only AtD, the coefficients 

Am, Bm, am, and Pm can be uniquely obtained by fitting approximate, finite 

series MlptD) and M2[AtD] to infinite series Sl(AtD] and S2 AtD , 
I 1 

respectively, using a range of values for AtD sufficient to include most 
time-element sizes and values of yi. 

The coefficients were determined using 
Cooley and Naff, 1990, p. 61-64) applied to 
error functions 

nonlinear least squares (see 
the weighted sum of squared 

and 

't '1 AtD 

ssl = lzl - 

- Ml AtD * 

-1 
s1 (AtD) 

I- - 

ss,-J:w2 
(192) 

(193) 

subject to the constraints given by equations (184) and (185). The number 
of dimensionless times used in the fitting process, pt, was set equal to 25, 

and At = D 1 x lo-$ 2.5 x 10-6 5 x lO$ 1 x lo-5, 2.5 x 10-5, 

5 x 10-5,..., 1 x 102. The weights l/ISl(AtD)I and 1/1S2ptD)I are somewhat 

arbitrary, but were found to give good approximations for both small and 
large dimensionless time elements. Constraints were applied by specifying 

and 
1 

BN2 = - a - 

N2-1 
mZIBm * (195) 

Thus, the coefficients determined by nonlinear least squares are Nl values 

of Q m and Nl-1 values of Am for equation (192) and N2 values of pm and N2-1 

values of Bm for equation (193). 

Good fits for both least squares problems were obtained with Nl = 3 and 

N2 = 2, and the resulting approximations are illustrated in figures 15 and 

16. Values of the coefficients determined are 

A1 = 0.26484, o3 - 49538, 

A2 = 0.060019, Bl = -0.25754, 

A3 = 0.0084740, B2 = 0.090873, 

a1 = 13.656, /I, = 10.764, 

o2 = 436.53, /I, = 19.805. 
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DIMENSIONLESS TIME: INTERVAL, A$ 

Figure 15. Relationship between series Sl(At,,) defined by equation (186) 
and its approximation Ml(AtD) defined by equation (188). 
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Figure 16. Relationship between series -S2(AtD) defined by equation (187) 
and its approximation -M2(AtD) defined by equation (189). 
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The final step leading to the leakage function to incorporate into the 
finite-element equations is to integrate the product of equation (168) and 
on+l over time element n+l by assuming that dhj/az 

I 
z=z varies linearly like 

t 

i, (which is consistent with the treatment of R(H - h)). Therefore (see 

equation (54)), 

- tAtn+l 
‘" 

z=z t 
(196) 

By using equations (168), (170), and (176) through (181), the leakage rates 
at time levels n and n+l in equation (196) are evaluated as, respectively, 

H - Hi,n + i,n+l 
Atn+lYi M* YiAtn+l I 1 

Nl -arnYi"tn+ln ;I -ii 
- mgl e I i.n+l 

mi,n - i'n Ml YiAtn+l c 1 + Hi n+l - 'i (198) 
Atn+lYi. , 

To obtain the leakage function to incorporate into the finite-element 
equations, equation (196) is multiplied by -*/At,+1 and equations (197) and 

(198) are substituted into it. For notational compactness of the resulting 
expression, the following quantities are defined. 

P hi,n - 

P Hi,n = 1 N2A 
mSJmi n' , 

n+l^ I mi,n' 

& ReAe 
i 1 NlA 

mSImi,n' (199) 

(200) 

.(201) 
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Therefore, the 

cRi = & ReAe. 
i 

final leakage function is 

H. - 
+ 2QHi r + 1 - + t 1 n !%Hi , n+l "f;: Hi.n n+.l 5 'hi,n 2Qhi,n 1 

h A 

3 h i.n+l - hi,n * 
+ ?hi,n+l Atn+l i,n - hi,n 1 I + $ Hi n+l - 'i n+l 3 , 11 

Q mi,n' 

M1(TiAtn+ll 
7i ' 

M2biAtn+lj 
7i ' 

'hi,n+l 
Atn+l + 'Ri 

H. 
'Hi,n + 2QHi,n 1 - $Hi n+l ' nit 

- Hi.n 
9 n+l 

1 
+ 5 'hi,n + 2Qhi,n - $Ri[Hi,n - 'i,n [ , I 1 

+ 2 Hi n+l - ii n , I] (206) 

(203) 

(204) 

(205) 

The leakage process described by equation (206) is time dependent, but 
linear. Therefore, equation (206) is added into equation (58), unless the 
predictor-corrector method is required to include other phenomena, in which 
case equation (206) is added into the appropriate predictor and corrector 
equations. The coefficient of 6i is added into l for every node i where 

leakage occurs, 
side. 

and the remaining terms are subtracted from the right-hand 

FINITE-ELEMENT FORMULA TION IN AXISYMMETRIC 
CYLINDRICAL COORDINATES 

GOVERNINGFLOWEQUATIONANDBOUNDARYCONDITIONS 
Axially symmetric ground-water flow in an aquifer is assumed to be 

governed by the following unsteady-state flow equation written in 
axisymmetric cylindrical coordinates (Bear, '1979, p. 116): 

(207) 
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