Table of contents for Mathematical models of granular matter / Gianfranco Capriz, Pasquale Giovine, Paolo Maria Mariano, (eds.) ; with contributions by A. Barrat ... [et al.].


Bibliographic record and links to related information available from the Library of Congress catalog
Note: Electronic data is machine generated. May be incomplete or contain other coding.


Counter
From Granular Matter to Generalized Continuum
J.D. Goddard .................................................... 1
1 Introduction ..............................................   1
1.1 Mathematical Preliminaries ................................ 3
1.2  Balances .................................................  4
2 Micromechanics ........................................... 5
2.1  Granular Microstructure and Rotation .......................  5
2.2 Graph Theory for Extrinsic Modes .......................... 7
2.3 Extrinsic Power........................................ ...12
3 Energy-Based Homogenization ................................ 13
3.1 Intrinsic Moments and Continuum Fields. .................... 15
4 Conclusions ...................................... ... 17
Appendix: Simplex and Edge-Complex Gradients .................... 17
References .......................................             20
Generalized Kinetic Maxwell Type Models
of Granular Gases
A. V. Bobylev, C. Cercignani, and I.M. Gamba .................... 23
1  Introduction................. ............................  23
2 Maxwell Models of the Boltzmann Equation ...................... 26
3 Isotropic Maxwell Model in the Fourier Representation. ............ 28
4 Models with Multiple Interactions ............................ 30
4.1 Statement of the General Problem ........................... 31
5 The General Problem in Fourier Representation ................... 33
5.1 Existence and Uniqueness of Solutions ....................... 33
5.2 Large Time Asymptotics ................................ 34
5.3 Existence of Self-Similar Solutions .......................... 41
5.4  Properties of Self-Similar Solutions .......................... 42
6 Main Results for Maxwell Models with Multiple Interactions ........ 45
6.1 Self-Similar Asymptotics ................ ................ 45
6.2 Distribution Functions, Moments and Power-Like Tails......... 47
6.3 Applications to the Conservative or Dissipative
Boltzmann Equation ....................................... 51
References ........................................               56
Hydrodynamics from the Dissipative Boltzmann Equation
Giuseppe Toscani ........................................... 59
1 Introduction..................................... 59
2 Modeling Dissipative Boltzmann Equation ....................... 62
3 Hydrodynamic Limit and the Euler Equations .................... 65
4 Hydrodynamics from Homogeneous Cooling States ................ 67
5 Conclusions ......................................   ......... 71
References  ......................................................  72
Bodies with Kinetic Substructure
Gianfranco Capriz ..............    ............................. 77
1 Kinetics................................... 77
2 A Shadow Speck of Matter ................................. 79
3 Straining and Allied Notions .................................. 81
4 Balance Laws ........................................... 84
5 Balance of Kinetic Energy ........ ............................. 86
6 The First Principle ....................................... 89
References ..........................  ....................... 90
From Extended Thermodynamics to Granular Materials
Tommaso Ruggeri ........................................... 91
1 Introduction............................... 91
2 Boltzmann Equation and Moments .............................. 92
2.1 The Closure of Extended Thermodynamics ................... 93
2.2 Macroscopic Approach of ET in the 13 Fields ................. 93
3 Extended Thermodynamics of Moments ......................... 94
4  Maximization  of Entropy .........................  ..........  97
5 Maximum Characteristic Velocity in Classical Theory .............. 98
6 Nesting Theories and Principal Subsystems ....................... 99
6.1 Example of 13-Moments Principal Subsystems ................ 99
6.2 Lower Bound Estimate and Characteristic Velocities
for Large n ......................................... 100
7 Qualitative Analysis ...........................................102
7.1 Shizuta-Kawashima Condition .......................... 103
7.2 Global Existence of Smooth Solutions ........................ 103
8 Comparison with Experiments: Sound Waves and Light Scattering .. 104
References  ...................................... ................  105
Influence of Contact Modelling on the Macroscopic Plastic
Response of Granular Soils Under Cyclic Loading
R. Garcia-Rojo, S. McNamara, and H.J. Herrmann .................. 109
1 Introduction ................... ...............................109
2 Discrete Element Methods .................  ................   111
2.1 Boundary Conditions: Biaxial Test .......................... 112
2.2 Molecular Dynamics .....................................113
2.3 The Normal-Dashpot Model ............................      114
2.4 Contact Dynamics ........................................ 115
3 Results ........................................116
3.1 Comparing MD and CD ...................................117
3.2 Comparing Different Visco-Elastic Laws ................... ... 118
4 Conclusions ................................................. 123
References ................      ................................123
Fluctuations in Granular Gases
A. Barrat, A. Puglisi, E. Trizac, P. Visco, and F. van Wijland ........ 125
1  Introduction  ................ ................... ............125
2 A Brief Introduction to Granular Gases .......................... 127
2.1 Boundary Driven Gases .................................... 128
2.2 Randomly Driven Gases ................................... 129
3 Total Energy Fluctuations in Vibrated
and Driven Granular Gases ................  .................. 131
3.1 The Inhomogeneous Boundary Driven Gas ................... 131
3.2 The Homogeneously Driven Case ........................... 135
4 A Large Deviation Theory for the Injected Power Fluctuations
in the Homogeneous Driven Granular Gas ........................ 138
4.1 The Cumulants ..........................................141
4.2 The Solvable Infinite Dimension Limit ....................... 145
5 Fluctuations of Injected Power at Finite Times: Two Examples ..... 146
5.1 The Homogeneous Driven Gas of Inelastic Hard Disks ......... 146
5.2 The Boundary Driven Gas of Inelastic Hard Disks ............. 153
6 The Dynamics of a Tracer Particle as a Non-Equilibrium
Markov Process ..............................................157
6.1 Detailed Balance ............................................158
6.2  Action  Functionals  ....................................... . 160
7 Conclusions ................................................. 161
References ....................................................... 162
An Extended Continuum Theory for Granular Media
Pasquale Giovine ...............................................167
1 Introduction ................................................... 167
2 A First Model ................... ............................ 169
3 Rotations ..................................................... 171
4 Balance of Interactions for Material Bodies
with Affine Microstructure  ..................................... 173
5  O bservers  .....................................  . .............175
6 Dilatant Granular Materials with Rotating Grains ................. 177
7 Inertia Forces and Balance of Granular Energy .................... 179
8 Constitutive Restrictions in the Thermoelastic Case ............... 182
9 Suspension of Rigid Granules in a Fluid Matrix ................... 185
Appendix: Kinetic Energy Coefficients .......................... 187
References  ................  ...................................  190
Slow Motion in Granular Matter
Paolo Maria Mariano ............................................193
1 Introduction .............................................193
2 Representation of the Granularity ............................... 194
3 Balance of Interactions: RJ3 x SO(3) Invariance ................... 200
4 Evolution of the Local Numerosity of Granules .................... 204
5 A Single Granule Coinciding with the Generic Material Element .... 207
References .........  .   ..................................... 209



Library of Congress subject headings for this publication: Granular materials Mathematical models