USE OF CPT/CPTU FOR SULUTION OF PRACTICAL PROBLEMS

Indirect design method:

- Interprete CPT/CPTU results to arrive at soil design parameters
- Classical foundation analysis

Direct design method:

 Use CPT/CPTU results directly without intermediate step of soil parameters

DIRECT APPLICATIONS OF CPT/CPTU RESULTS

Correlations to SPT (standard penetration tests)

Axial capacity of piles

NG

- Bearing capacity and settlement of shallow foundations
- Ground improvement quality control
- Liquefaction potential evaluation

CPT/SPT CORRELATIONS

Depends on several factors:

- Energy level delivered to SPT use N₆₀
- Grain size distribution (D₅₀)
- Fines content (FC)
- Overburden stress + other factors

Comment:

Single most important factor influencing N value is energy delivered to SPT sampler, expressed as rod energy ratio. Energy ratio of 60% is generally accepted to represent average SPT energy. Results should be corrected to N_{eo}.

CPT/SPT CORRELATIONS

Depends on several factors:

- Energy level delivered to SPT use N₆₀
- Grain size distribution (D₅₀)
- Fines content (FC)
- Overburden stress + other factors

Correlations most used: Robertson et al. 1983 Kulhawy and Mayne, 1990

CPT/SPT CORRELATIONS In lack of soil grain size data, use Robertson (1990) soil classification chart to define soil behaviour type index: $\frac{f_c = ((3.47 - \log Q_c)^2 + (\log F_r + 1.22)^2)^{0.5}}{Q_t = \frac{q_{-r} - \sigma_{-v.0}}{\sigma_{-v.0}}, F_T = \frac{f_{-r}}{\sigma_{-v.0}}, (q_c / p_a) / N_{.60} = 8.5(1 - I_c / 4.6)$ Pa = atm. Press. = 100 kPa N₅₀: SPT value corresponding to energy ratio of 60%

	יד	YPE
Soil behaviour type Index I _c	Zone	Soil behaviour type
I _c < 1.31	7	Gravilly sand
1.31 < I _c < 1.205	6	Sands - clean sand to silty sand
$2.05 < I_c < 2.60$	5	Sand mixturees - silty sands to sandy silt
$2.60 < I_c < 2.95$	4	Silt mixtures - clayey silts to silty clay
2.95 < I < 3.60	3	Clays
I. < 3.06	2	Organic soils - peat
		L ((247.10) ² .(1F.1.20)

CPT/SPT correlations

If grain size distribution data are available

- Use (q_c/p_a)/N₆₀ from Robertson et al.,1983 (Fig.6.1)(D₅₀)
- and/or (q_c/p_a)/N from Fig. 6.3 (Fines content)
- If grain size distribution data are <u>not</u> available
 - Use soil behaviour index , I_C (= f(Q_pF_r) (q_c/p_a)/ N_{60} =8.5(1 - I_c /4.6)

PILE BEARING CAPACITY

Several studies

- Robertson et al., 1988; 8 cases
- Briaud, 1988; 78 pile load tests
- Tand and Funegård, 1989; 13 cases
- Sharp et al.,1988; 28 cases
- NGI, 1998

All show CPT methods better than other methods

AXIAL PILE CAPACITY

 $Q_{ult} = f_p A_s + q_p A_p$ (side friction plus tip resistance)

Bustamante and Gianeselli (1982)

 $f_p = q_c/\alpha$

 $\mathbf{q}_{\mathbf{p}} = \mathbf{k}_{\mathbf{c}} \cdot \mathbf{q}_{\mathbf{ca}}$

 α and $k_{\rm c}$ empirical constants for different pile and soil types

Based on a very large number of case histories (197) in France tables have been made with α and k_c factors according to soil type and to type of pile

	Factors k.			Fact	ors k _c	
Nature of soil	q _c (Mpa)	Group I	Group II			
Soft clay and mud	< 1	0.4	0.5			
Moderately compact clay	1 to 5	0.35	0.45	$q_p = 1$		
Silt and loose sand	≤ 5	0.4	0.5	· · ·		
Compact to stiff clay and compact silt	>5	0.45	0.55			
Soft chalc	≤ 5	0.2	0.3			
Moderately compact sand and gravel	5 to 12	0.4	0.5			
Weathered to fragmented chalk	> 5	0.2	0.4			
Compact to very compact sand and gravel	> 12	0.3	0.4			
up I: plain bored pil low pressure); case barrettes.	es; mud ed bored	bored pile piles; hol	es; micro pi low auger b	les (grouted oored piles;		
	a lla a subala	ivon nroca	st piles: pr	estressed tu		

Nature of soil	q _c (Mpa)	Category					
		T	Maxin		$I \text{ of } f_p$ (1	Mpa)	
		A	В	A	В	A	В
Soft clay and mud	< 1	0.015	0.015	0.015	0.015	0.035	
Moderately compact	1 to 5	0.035	0.35	0.035	0.035	0.08	0.12
clay		(0.08)	(0.08)	(0.08)			
Silt and loose sand	≤ 5	0.035	0.035	0.035	0.035	0.08	-
Compact to stiff clay	> 5	0.035	0.035	0.035	0.035	0.08	0.20
and compact clay		(0.08)	(0.08)	(0.08)			
Soft chalk	≤ 5	0.035	0.035	0.035	0.035	0.08	-
Moderately compact	5 to 12	0.08	0.035	0.035	0.08	0.12	0.20
sand and gravel		(0.12)	(0.08)	(0.12)			

Pile bearing capacity from CPTU data

- It is recommended to use several methods and to adopt the lowest value for evaluation of pile bearing capacity
 - Bustamante and Gianeselly(1982) (French method)
 - de Ruiter and Beeringen (1979) (European method)
 Imperial College Method (1996)(mainly sand)
 - Almeida et al (1996) (clay only--- uses q_i)
- If local experience exist, may use only method that has shown to give the best prediction

Ground improvement quality control

- Purpose of deep compaction is often to fulfill one of the following:
- Increase bearing capacity (i.e. shear strength)
 Reduce settlements (i.e.increase modulus)
- Increase resistance to liquefaction (i.e. density)
- Cone resistance in cohesionless soils is governed by factors including soil density, in situ stresses, stress history and soil compressiblity
- Changes in cone resistance can therefore be used to document effectiveness of compaction

Deep compaction

- vibrocompaction
- vibro-replacement
- dynamic compaction
- compaction piles
- deep blasting

CPT is found to be best method to monitor and document effect of deep compaction

Important to consider time effect

Ground improvement quality control

For large projects:

- Develop experience with increase in cone resistance with time after compaction took place.
- Use this experience to make criteria for acceptance or rejection based on CPT/CPTUs carried out just after compaction took place
- Where resistance to liquefaction is major issue, measurement of shear wave velocity will provide additional data
- CPTU data can be used to evaluate if compaction will be
 efficient or not (ref. soil behaviour chart)

Liquefaction resistance

- Major concern for structures constructed with or on sand and sandy silt.
- Cyclic loads from : earthquakes, wave loading, machine foundations and other
- To evaluate potential for soil liquefaction important to determine soil stratigraphy and *in situ* soil state
- CPT/CPTU ideal because of its repeatablity, reliability, continuous data and cost effectiveness

Evaluation of liquefaction potential

- CPT/CPTU provide valuable data
 - detect even thin sand layers that could liquefy
 - pore pressure data tells us about groundwater conditions and additional information to estimate grain size and fines content (together w/sleeve friction)
 - cone resistance gives input to in situ state of sandy soils
- SCPTU can give valuable additional data
 - soil type
 - state of soil in situ

Liquefaction control from CPT/CPTU

Different approaches :

1. a) Estimate D_r from q_c , σ_{vo} ', D_r relationship

and/or direct simple shear tests in laboratory on samples reconstituted to estimated D_r and relevant cyclic stress level $(\tau_{cy}', \sigma_{vo}')$

b) Perform cyclic triaxial

2. Estimate directly from CPT/CPTU results using empirical methods developed in North America and Japan

Liquefaction potential directly from CPT/CPTU results

1. Correct $q_{\rm c}$ for overburden stress effect $Q_{\rm c}$ = C*q_{\rm c}

2. Estimate average cyclic stress ratio (due to wave loading or earthquake or other source) $\tau_{cy}/~\sigma_{vo}{'}$

3. Establish D_{50} by grain size analysis on obtained sample -or estimate from CPT/CPTU results using soil classification charts

4. Check liquefaction by $\tau_{cy}^{}/\,\sigma_{vo}^{},\,Q_c^{}\,,\,D_{50}^{}$ diagram

Liquefaction potential directly from CPT/CPTU results

Comparison of q_c with estimated (q_c)_{cr} value in 1983 Nihonkaichuba earthquake (from Shibata and Teparaksa, 1988)

Bearing capacity of shallow foundations on sand Meyerhof (1956) : q_{uit} = q_{c,av}(B/C)(1+D/B) B = footing width (ft); D = Embedment depth (ft)

q_{c,av} = average over depth = B

Tand et al.(1995) : $q_{ult} = R_k^* q_c^* + \sigma_{v0}$ $R_k = 0.1 - 0.2$ (see chart)

Eslamizaad and Robertson(1996) : q_{ult} = K*q_{c,av} (see chart)

	Settlements of shallow foundations on sand
	Schmertmann (1970,1978)
	$s = C_1^* C_2^* \Delta p^* \Sigma (I_z / E_s) \Delta z$
	C1 = correction for depth of embedment
	C ₂ = creep (time) correction
	∆p = net extra foundation stress
	l _z = strain influence factor
	$E_s = Equivalent Young's modulus = \alpha^*q_c$
	α = 2.5 square footing ; α = 3.5 long footing
NGI	Δz = thickness of sublayer

