Laboratory and Numerical Modeling Results on Hydrate-Bearing Sediments

Franco Francisca (postdoctoral researcher) Tae Sup Yun (Ph.D. student) Joo-Yong Lee (graduate student) Ana I. Martin (graduate student)

J. Carlos Santamarina (Civil & Env. Engineering) C. Ruppel (Earth & Atmospheric Sciences) />

OUTLINE

- THF (Tetrahydrofuran) Hydrate
- JIP Experimental Matri
- Samples and Laboratory Equipment
- Properties
 - Mechanical Properties: darge and small strain
 - Thermal Properties
 - Electrical Properties
- Lensing
- Process Monitoring (Phase Transformation)
- Core Recovery Numerical Modeling

Hydrate Structures All 3 occur in Gulf of Mexico, with I and II more common

(after Sassen)

Methane Hydrate

Structure I

THF Hydrate Structure II

Phase Diagrams

METHANE

Methane vs. THF Hydrate

"We completely understand our system"

Hydrate Properties: Methane vs. THF

Defining Characteristics

Mechanical (high/intermediate strains)

Thermal

Mechanical (low strains)

Electrical

Distribution

Georgia Tech JIP Characterization Matrix

Grain Size (microns)

Hydrate Concentration (%) - Target values EFFECTIVE Confining ure (MPa) Longitudinal and lateral astic-Plast rom Monr Condomb intercept) sile strength (k Shear 🔊 Compres Failure/stability envelopes (MoKr Bulk moduli (stati Triaxial compaction coef Young's modulus Volume-Pressure compaction **Thermal Conductivity** Volume change during phase transformation P-wave velocities S-wave velocities Bulk moduli (dynamic) Electrical Resistivity Real permittivity 200 MHz - 1.3 GHz (oedometer at low confinement) Hydrate distribution (optical/visual--destructive of sample) Pore filling vs. grain boundaries

Mechanical Properties

Representative Soils

Properties: Ordering by both grain size and specific surface

Oedometer cell and peripheral equipment

Mechanical Properties Isotropic Loading

(bulk modulus B) Effective isotropic pressure [MPa] 0.40 0.00 0.60 0.80 1.00 1.20 0.0 SAND .05 Volumetric strai 0.10 CLAY 0.15 $\Delta \sigma$ 0.20 0.25

Constrains bulk moduli of soils after hydrate has formed & dissociated (100%)

Georgi

Mechanical Properties Zero-Lateral Strain Loading

(constrained modulus M)

Differences in non-recoverable strain after formation/dissociation of hydrate

Mechanical Properties Stress-Strain Path

(Young's modulus E)

Undrained, elastoplastic deformation

Mechanical Properties Poisson Ratio

Poisson ratio greater than 0.5, as is common in dilatant soil

Mechanical Properties Young's Modulus (E)

Once hydrate has formed, high-strain elastic properties remain constant

Mechanical Properties Mohr-Coulomb failure criterion

Т

Hydrate affects cohesion and frictional properties

Mechanical Properties

Small strain: deformation can be related to seismic properties and monitored by seismic wayes

Bypical Stear Waveform

Mechanical Properties Loading and Unloading Cycles

Hydrate-bearing sediment behaves like a cemented soil

Georgia Tech

Thermal Properties Thermal conductivity (baseline)

Thermal Properties Thermal conductivity (with hydrate)

Complex impact of hydrate formation on bulk thermal conductivity

Electrical Properties Real Permittivity Water-THF mixtures at 200MHz

Permittivity is a measure of the degree of polarizability of pore-filling fluid

Georgi

Electrical Properties Real Permittivity

0

Georgia

Electrical Properties Real Permittivity

Hydrate formation sharply decreases dielectric permittivity

Georgia

Electrical Properties Conductivity

Hydrate formation lowers electrical conductivity to below detection limit

Phase Transformation Studies

DELETED SLIDES (LENSING)

Francisca, Santamarina, and Ruppel (submitted, 2003)

JIP 9/03

Georgia

LPC

DELETED SLIDES

SUMMARY

- Shown < 20% of results acquired to date
- Significant analysis required to place results in context

Processes

- Hydrate formation initiates at particle surfaces
- Loading-unloading cycles reveal cementation behavior
- P- and S-waves monitor phase transformation is lab and possibly during core recovery
- Lensing under specific taboratory conditions

Properties

- Mechanical: Hydrate-bearing sediments behave like cemented soils (strength parameters, moduli, P- and S-wave) and warate impact is similar at both large and small strains
- Electrical: Hydrate radically lowers both real permittivity and conductivity
- Thermal: Hydrate increases pressure-dependence of conductivity

