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Outline

• Introduction and Motivation
— Why worry or  care about disorder?
— How can we include disorder  in the theor ies?
— What can we do exper imentally?

• UCu5-xPdx (CeRhRuSi2)
— a disordered system
— disorder  is par tially tunable
— Main results are the same

• U3Ni3Sn4 C/T magnetic field dependence

• Conclusions



Disorder  and hybr idization

non-Fermi 
liquids
UPdCu4

Anderson 
lattices

Yb1-xLuxAl3

Spin glasses
URh2Ge2

(anti-) 
fer romagnets

UCu5

H
ybridization →→ →→

Interaction disorder  →→→→

NFL?

MAGNETIC GROUND STATES

U3Ni3Sn4

Teaser: Can molecular 
systems be included?
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What happens when interactions are 
equal and drive a zero temperature 

transition?

What if there is a distribution of 
interaction strengths?



NFL behavior  in UCu5-xPdx
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NFL behavior exists 
near phase boundaries

resistivity as T goes to 
0 K has a weaker 
power law than T2

Susceptibility and heat capacity
have logarithmic divergences as 
T goes to 0 K.

Vollmer et al., PRB, 2000. Bernal et al. PRL, 1995. R. Chau, Ph.D. dissertation UCSD, 1998.





Unanswered questions

• Is disorder  a necessary component?
— first NFL’s were all substituted
— many new “ ordered”  ones coming online
— even “ ordered”  ones may have issues (eg. CeCu2Si2)

• Does disorder  even matter?
— well, how much are we talking about?

• Is this a new state of matter?



Three Possible Types of NFL Models
(There are others: multichannel Kondo, etc…)
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Disorder+Competition (Griffiths)
NFL behavior due to proximity to a metal-insulator 
transition fixed point (Anderson localization,Miranda 
et al.) or to a magnetic/nonmagnetic fixed point 
(RKKY, Castro Neto et al.), each in presence of 
disorder and anisotropy.

Kondo Disorder Model
Disorder causes distribution of TK’s within a strict 
single-impurity model.  Moments with TK< T are 
unquenched and give rise to NFL behavior.

Bernal et al. ‘95
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Quantum Critical Point
NFL is generated from critical fluctuations above a 
zero-temperature critical point (Millis et al. ‘93) 
(Rappoport et al., 2001).



Effects of lattice disorder  (Kondo lattice disorder  
model, or  KLDM)

• Two types of lattice disorder : discrete and continuous
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Harrison and Straub



NFL must have continuous disorder  in KLDM!
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• For  KLDM to work, must 
have weight in P(TK) at very 
low TK.

• Site interchange will never  
provide this weight by itself!
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NFL behavior  in UCu5-xPdx

• A distr ibution of TK’s can descr ibe all these data!

• Warning: this is pedantic: KDM has many problems!

Vollmer et al., PRB, 2000. Bernal et al. PRL, 1995. R. Chau, Ph.D. dissertation UCSD, 1998.



Inter ference of photoelectron waves

• Inter ference of outgoing and 
incoming part of 
photoelectron modulates 
absorption coefficient:

• Big advantage: Atomic-
species specific.

• Disadvantages: very short 
range (<~5-6 Å), sensitive to 
multiple scatter ing, 
over lapping edges...
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“ I was brought up to look at the atom as 
a nice hard fellow, red or grey in colour 

according  to taste.”  

- Lord Rutherford



Extended x-ray absorption fine-structure 
(EXAFS)
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• sample absorption is given by

µ t = loge(I1/I0)

• EXAFS χ(k)=[µ(k)-µ0(k)]/µ0(k)
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• U (4a) environment is identical to Pd (4c) 
environment, except  U/Pd are switched.  
Nearest-neighbors are Cu (16e) at ~2.93 Å

• Cu environment differs due to tetrahedrons.  
Nearest-neighbors are Cu at 2.49 Å

• Determine amount of site interchange by 
number of  Pd´-Cu pairs at 2.49 Å

• Definition: Pd´ denotes a Pd on a 16e site, Cu´ 
denotes a Cu on a 4c site.

3.06 Å

2.93 Å

2.93 Å

2.49 ÅLocal Copper environment

Local U and Pd environment

UCu4Pd average and local structurenominal



A “ zero-disorder”  example: YbCu4X
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J. L. Lawrence et al., PRB 
63, 054427 (2000).



XAFS data on UCu5-xPdx
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• Fit to all single-scatter ing paths out to 
the 16 Pd-Cu’s at ~4.59 Å.

• Including all site interchange, fits use 
15 paths.

• Like bond lengths constrained 
together.

• Like bond length Debye-Wallers 
constrained together  (σσσσA

2=(µµµµB/µµµµA)σσσσB
2.

• Amplitude ratio’s constrained.
Two possible descr iptions:
s, x: s = NPd(16e)/NPd(Total)
f4c

Pd, f16e
Cu: f4c

Pd is fraction of 4c sites 
with Pd, etc.

e.g. Pd´-Cu @ 2.5 Å has 6S0
2s f16e

Cu

neighbors

Pd K-edge fit results
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C. H. Booth et al., PRL 81, 3960 (1998); E. D. Bauer et al., PRB 65, 245114 (2002).



No measurable continuous U-Cu disorder !
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NFL from Kondo disorder
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• NFL “ limit”  for  KLDM is 
generous: we estimate the best fit 
with 0.0034 Å2.

• Only the x=0.3 sample is 
anomalous… oxidation?

• Cu K edge fits indicate a nearest 
neighbor  Cu-Cu distance of ~2.48 
Å

• Pd K edge fits indicate a Pd´-Cu 
distance of ~2.55 Å

• Together  no σσσσstatic
2 for  U-Cu, the 

Cu displacements near  a Pd´ must 
be near ly perpendicular  to the U-
Cu pairs.

2.93 Å

2.49 Å



Disorder : Is it enough?

• KDM: NFL is not from disorder  in Vfd. This probably can’ t generate 
enough disorder  in N(0) either  (Miranda).

• RKKY clusters? ~0.5% of uranium environments have a Vfd that is equal 
to or  less than that in UCu5 .

• Anderson localization? only 0.0025% of UCu5-like uraniums have a 
similar  neighbor .
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Effects of annealing

A. Weber et al., PRB 63, 205116 (2001).

• Annealing suppresses spin glass transition, removes linear  resistivity but 
logar ithmic C/T remains ?!?!?

• Quick point: Entropy under  this logar ithmic divergence is close to R log 2
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Both site interchange and bond length distr ibutions 
affected by annealing
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• Measure (discrete) site 
interchange with Pd K edge 
XAFS

• Measure (continuous) U-X bond 
length disorder  with temperature 
dependence of distr ibution widths 
(Debye-Waller  factors).

• Complication: U-Cu and U-Pd 
pairs strongly over lap, so need to 
be able to include degree of site 
interchange as a constraint to the 
U L I I I-edge fits.

• Solution: Fit to a site interchange 
model.



Effects of annealing

• Structurally, two things happen:
— site interchange is reduced, but not 

after  more than 1 day of annealing
— U-Cu bond length distr ibution 

width decreases, even after  14 days 
of annealing 

• Main points:
— s decreases, but is still fair ly large
— U-Cu orders, but it is already very 

close to fully ordered (∆σ∆σ∆σ∆σ ~ -0.02 Å)
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Effects of annealing

• f4c
Pd of unannealed samples very 

consistent with changes in lattice 
parameter: x vs. f4c

Pd is linear , except 
with a change in slope at x ~ 0.85

• Annealing increases f4c
Pd, similar ly to 

change in d
• I t is possible to parameter ize changes in 

heat capacity as ar ising only from 
changes in s and σσσσU-Cu
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• ANSWER(?):  NFL state is somehow “ pre-
loaded” , possibly as a consequence of 
disorder .



What the heck is W0?

• KDM by itself does not work!
— linear  resistivity goes away on annealing (Weber  et al., PRB 63, 205116 (2001)

— µµµµSR indicates glassy spin dynamics (MacLaughlin et al., PRL 245114)
— Shor t range (< unit cell) magnetic correlations exist (Aronson et al., PRL 87, 197205 

(2001)

— Distr ibution of moments at high fields (>51 kOe) inconsistent with KDM (Buttgen et al., 
62, 11545 (2000)

• Disorder  can generate width in N(0) (not enough says Miranda, but could 
be says Cox)

• Is W0 due to a QCP? Idea is similar  to proposed by Grempel and 
Rozenberg PRB 60, 4702 (1999), and to Rappoport et al., PRB 64, 140402 
(2001).

• Is cluster ing important?
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Data summary



FL NFL

Susceptibility χχχχ(T) ∝∝∝∝ constant -log(T)
Specific heat C(T)/T ∝∝∝∝ γγγγ -log(T)
Electr ical resistivity ρρρρ(T)  ∝∝∝∝ T2  T

G. R. Stewart, RMP, (2001)

C. Y. Liu et al., PRB 61, 432 (2000)

Non-Fermi liquid (NFL)  and Ce(Ru1-xRhx)2Si2

Ce

Ru/Rh

Si



XAFS Study near  Ce atom  in CeRuRhSi2

Ce L 3-edge
T = 20K

Fitting parameters:
S0² total data point  var iables  fitting freedom  r -factor  reduced-χχχχ²

0.85(10)                23                  14                  9              0.0054         3.26

Si Ru/Rh

Ce

Bonding length (Å):
Ce-Si:        3.218(6)
Ce-Ru/Rh: 3.254(3)
Ce-Ce:       4.150(10)

Ce

Ru/Rh

Si



PDF Analysis of CeRuRhSi2

Total disorder  factors:
u11 (Ce)         u11(Ru/Rh)        u11 (Si)       

0.000359(7)      0.0030(11)        0.0029(3)

Ce

Ru/Rh

Si

T = 20 K

Small total disorder  factors 
suggest that static disorder
is negligible!!!



Summary of structural disorder  in CeRuRhSi2

σσσσ² (Å²) σσσσ²(static) (Å²) bonding length (Å)
Ce-Si         0.0033(6) 0.0003(4)       3.215(6),  3.187
Ce-Ru/Rh 0.0014(3)  -0.0004(2) 3.254(3),  3.257
Ce-Ce        0.0011(9)   0.0003(14)     4.15(1),    4.161
Ru-Si         0.0011(3)   -0.0003          2.373(3),  2.399
Ru-Ru/Rh 0.0011(2)   -0.0001          2.934(3),  2.888
Ru-Ce        0.0022(2)   -0.0003          3.231(4),  3.257
Rh-Si         0.0015(3) 0.0004(3)      2.390(4),   2.399
Rh-Ru/Rh 0.0012(1) -0.0003(2)      2.911(3),   2.888
Rh-Ce        0.0025(3) -0.0002(2)      3.236(4),   3.257

u(11) (Å²)
Ce             0.00036(1)
Ru/Rh       0.0030(11)
Si              0.0029(3)

XAFS:
Short-range

PDF:
Intermediate-range

T = 20 K



U3Ni3Sn4

Last words



Is U3Ni3Sn4 best descr ibed as near  an AF QCP?

• U3Ni3Sn4 is an undoped, ambient pressure non-Fermi liquid.
• Evidence of an AF cr itical point at –0.04 GPa (Estrela et al., 

(2001)). 
• A “ Her tz and Millis”  Quantum Cr itical Point?

C/T ≈≈≈≈ γγγγ – A T0.5 (����)      χ∝χ∝χ∝χ∝T-0.3 (?, 0.5) ∆ρ∝∆ρ∝∆ρ∝∆ρ∝T1.8 (?, 0.5)

• Cubic, bcc, I  –43d,  a0=9.3524 Å

• residual resistivity 7 µΩµΩµΩµΩ cm

• single crystal XRD good

• No temperature-dependent structural 
studies exist

• Disorder  models have been shown to 
be capable of providing NFL behavior



No static offsets necessary

ΘΘΘΘcD(K)σσσσoffset
2(Å2)Atom pair

159(4)-0.0007(3)U-U

241(1)-0.0006(3)U-Sn

252(5)-0.0009(4)U-Ni

No evidence of site interchange either…



Field-dependence of heat capacity

• Zero applied field, C/T~T0.5, 
indicative of NFL behavior

• Fermi liquid behavior  appears to be 
recovered in relatively small applied 
fields

• (U3Ni3Sn4 behaves similar ly to 
CeCoIn5, another  system with a 
“ negative pressure”  cr itical point…)
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Compar ison to Gr ifftihs-McCoy… 
a Schottky anomaly?
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• High-field limit:

µµµµeff is average effective moment of AF 
clusters… successfully applied to 

La0.95Ce0.05RhIn5 (Kim et al, 2002)

• More generally:

∆∆∆∆ is the cluster  tunneling energy
ωωωω0 is the tunneling energy for  a single atom 
(cutoff)
q average moment within a cluster
γγγγ is an anisotropy parameter



Data summary

• UCu4Pd (Disordered NFL)
— Pd/Cu site interchange, tunable by annealing
— Very little bond-length disorder

• Not enough for  KLDM (that’s all in Vfd)
• Changes in annealing indicate there is at least a little, and it does 

affect the magnetic properties

• CeRhRuSi2 (Disordered NFL)
— Very little, if any, bond length disorder

• annealing has not, thus far , produced any change in any properties

• U3Ni3Sn4 (Ordered NFL)
— Very little, if any, structural disorder

• CeRhIn5, CeI r In5, Ce2RhIn8, Ce2I r In8 (Ordered NFL’s)
— Very little, if any structural disorder



Last words

• Nature is sneaky: lattice disorder  can hide!
• For  UCu4Pd, KLDM (Kondo lattice disorder  

model), with no disorder  in N(0) is not enough.
• Role of disorder  still very much unclear !

— Does disorder  even matter?  Yes, but it can’ t 
explain everything!

— definitely not conventional:  either  extremely 
sensitive or  it is a minor  player

• Cluster ing?  Magnetic droplets? Gr iffiths-
McCoy?
— Probably not exactly Griffiths-McCoy
— Could be… tough to see structurally

• Should doped and undoped systems be treated in 
the same way?
— I ’m leaning toward yes…

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

1

2

3

4

5

6

7

8

XAFS measure of 
U-Cu static disorder

KLDM fit to 
mag. suscept.

UCu
5

 

 

P(
V

)

V (eV)

 σ
stat

2=0.0 Å2 (x50)

 σ
stat

2=0.00020 Å2 

 σ
stat

2=0.00078 Å2 

 σ
stat

2=0.00137 Å2 

 σ
stat

2=0.00343 Å2 

0

5

10

15

20

25

30

0 1 2 3 4 5

T
(K

)

Pd concentration x

Cubic 
AuBe

5

Mixed Phase Hex
UPd

5

AFM

SG

NFL

T
N

T
K
/10

T
F

UCu
5-x

Pd
x

0.1 1
200

300

400

500

600

700

 

 

∆ 
C

/T
 (m

J 
m

ol
-1
 K

-2
)

T (K)

 Unannealed 
 7 day 
 14 day

 s=0.27, σ
KDM

2=0.00033 Å2

 s=0.19, σ
KDM

2=0.00033 Å2

 s=0.19, σ
KDM

2=0.00009 Å2

 s=0.19, σ
KDM

2=0.0 Å2



Last words (continued…)

• Competing interaction descr iptions seem most 
appropr iate.  Is RKKY or  Anderson localization 
the important competing interaction?
Structurally, system seems to cross to RKKY, but is 
close to the boundary!

• KDM could still work, if something else amplifies 
the effect of the disorder  (“ pre-loading” ).

• Even the “ canonical”  disordered NFL CeRhRuSi2
is remarkably well ordered

• Should the disordered and the “ well ordered”  
NFL’s be considered as a whole?

• U3Ni3Sn4 passes all the tests of a well ordered 
NFL

• In addition, FL/NFL development in field 
appears to not be the product of a Gr iffiths-
McCoy singular ity

• (U3Ni3Sn4 behaves similar ly to CeCoIn5, another  
system with a “ negative pressure”  cr itical 
point…)
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