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ABSTRACT 

We develop models for light scattering appropriate for glossy and matte paints. Volume scattering is 
treated in the single scattering regime and the diffusive scattering regime.  In the single scattering regime, 
scattering is treated in the Rayleigh-Gans approximation, using a Henyey-Greenstein phase function. 
Interaction of the light with the smooth or rough interface is treated in the facet approximation. The theory for 
transmissive light scattering by a rough interface in the facet approximation is presented. To treat volume 
scattering under a rough interface, a Monte Carlo approach is used, where light is allowed to interact with the 
surface twice, once upon entering the material and once upon exiting. We compare the polarization and 
intensity predicted by the models with experimental data from glossy and matte paint samples.  The results 
indicate that the new models are an improvement over the Maxwell-Beard model. 
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1.  INTRODUCTION 

The development of accurate surface light scattering models based upon first-principles calculations has a variety of 
applications, including the development of inspection tools for smooth surfaces,1 the sizing of reference particles,2,3 the 
interpretation of remote sensing data,4 and the modeling of the appearance of automotive coatings.5  Recent work by our 
group has indicated that a significant amount of information can be obtained by measuring light scattering 
polarization.6-12  While the intensity function is affected by details of the scatterer, such as the power spectral density of 
surface roughness or the size and shape of a defect, polarization is often a unique signature of the scattering mechanism.  
For example, polarized light scattering can distinguish rough surfaces from those that scatter by other sources, such as 
material inhomogeneity, subsurface defects, or particulate contaminants.   

Polarized light scattering measurements have attributed the scattering by rough camouflage paint coatings to 
reflection from the exposed rough interface.13  The coating had a colored appearance, suggesting that scattering must be 
at least partially arising from subsurface pigments. It is hard to imagine that dielectric functions of paint materials and 
the absence of thin dielectric coatings could yield sufficient spectral variation to provide the color of the material. 
Furthermore, the polarization properties fit the scattering by a rough surface only if the index of refraction of the 
material were allowed to be unphysically small. 

In this article, we investigate the scattering by bulk diffuse scatterers under smooth surfaces and in the presence of 
surface roughness.  The results indicate that much of the polarization signature observed by the scattering by the rough 
coating can be attributed to subsurface scattering, with the interaction with the rough surface taken into account.  The 
results are more consistent with the observed data. 

2. THEORY 

In this section, we outline the theory for diffuse scattering under an interface.  First, in Sec. 2.1, we describe the 
polarized phase function that we use for volume scattering.  Next, in Sec. 2.2, we use the phase function described in 
Sec. 2.1 to calculate the singly scattered light under a smooth interface.  In Sec. 2.3, we calculate the scattering in the 
total diffuse limit under a smooth interface.  In Sec. 2.4, we calculate the scattering in transmission by a rough surface in 
the facet approximation.  Finally, in Sec. 2.5, we calculate the scattering of a diffuse material under a rough interface, 
using a Monte Carlo implementation of the theory described in Secs. 2.1, 2.3, and 2.4. 
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In much of the following, we are concerned with the Mueller matrix probability dΩP  that a ray traveling from a 
direction defined by polar angle iθ  and azimuthal angle φi = π will scatter into a solid angle dΩ  about a direction 

defined by polar angle jθ  and azimuthal angle jφ , where j is r for reflective scatter and t for transmissive scatter.  The 

Mueller matrix bidirectional scatter distribution function (BSDF) is commonly used to characterize the scatter 
distribution14,15 and is defined as  

 / cos jθ=f P . (1) 

The BSDF is often referred to as the bidirectional reflectance distribution function (BRDF) for reflective scatter, and the 
bidirectional transmittance distribution function (BTDF) for transmissive scatter. 

2.1. Polarimetric phase function for single volume scattering  

The angular dependence of volume scattering16 is often characterized in terms of a phase function ( )p θ , which 

describes the probability density that an interaction with the material will result in a ray scattering an angle θ. The phase 
function, which is normalized to unit probability, is a scalar description of the scattering process and must be adapted to 
enable its use in a polarimetric context.  It is common to employ a generalized phase function to describe the scattering 
by an arbitrary scatterer, whose properties are not known well enough to provide an a priori phase function.  By far the 
most common phase function in the literature is that proposed by Henyey and Greenstein17 to describe scattering by 
interstellar dust: 
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The parameter g is the average of the cosine of the scattering angle.  For 0g = , the phase function describes an 

isotropic scatterer, and as g increases, the phase function becomes more strongly peaked in the forward direction. To 
adapt this function to a polarimetric context, we treat the phase function as a Rayleigh-Gans form factor. We begin by 

defining a basis set for describing the polarization.  If the incident direction is propagating along a unit vector 1k̂ , and 

the scattering direction is along a unit vector 2k̂ , then an appropriate basis set in which to describe the scattering matrix 

is given by the four vectors 

 1 1 2 1 2
ˆ ˆ ˆ ˆˆ /= × ×σ k k k k , 1 1 1

ˆˆ ˆ= ×π k σ , 2 1ˆ ˆ=σ σ , and 2 2 2
ˆˆ ˆ= ×π k σ , (3) 

where the vectors with subscript 1 and 2 are used for the incident and scattered light, respectively. We intend to create a 
phase function whose probability for scattering with unpolarized incident light is given by Eq. (2) and whose 
polarization properties match that expected from the Rayleigh-Gans approximation. The dyadic relating the incident 
amplitude to the scattered amplitude is thus assumed to be proportional to the projection dyadic 

 2 2 2 2ˆ ˆ ˆ ˆ= +p σ σ π π�
. (4) 

The Jones matrix for scattering can be found by applying the basis vectors in Eq. (3) to the dyadic given in Eq. (4): 

 2 1 2 1
vol

2 1 2 1

ˆ ˆ ˆ ˆ 1 0

ˆ ˆ ˆ ˆ 0 cosθ
⋅ ⋅ ⋅ ⋅   = =   ⋅ ⋅ ⋅ ⋅   

σ p σ σ p ππ p σ π p πJ
� �

� � . (5) 

We choose to normalize the Rayleigh scattering amplitude so that the probability for scattering unpolarized incident 
light is unity.  Therefore, the scattering Mueller matrix is proportional to  

 vol
2

2 ( )

(1 cos )θ+
M J

, (6) 

where the function ( )M J  represents the Mueller matrix equivalent of a Jones vector J, given in standard texts on the 

subject.14,16  We can then adapt the Henyey-Greenstein phase function to polarimetric applications by multiplying 
Eq. (2) by Eq. (6): 
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We should note here that there is some arbitrariness adopted in our derivation of Eq. (7).  We could have foregone the 
normalization given in Eq. (6), which would have made the choice of g = 0 correspond to the Rayleigh scattering 
function. We chose instead to keep the meaning of the phase function as a description of a probability distribution.  
Since the Henyey-Greenstein function is only an empirical parameterization of the phase function, the choice here is 
one of personal taste. 

2.2. Single volume scattering beneath a flat interface 

We now develop a theory for reflective scattering of light by a volume diffuser beneath a smooth interface. There 
are two limits that we consider: the single scattering limit and the diffuse scattering limit. In the next section, we will 
consider the diffuse scattering limit.  In the single scattering limit, discussed in this section, we only consider a single 
interaction with the volume diffuser. That is, rays are allowed to be incident upon the material, refract into the material, 
scatter once using the phase function given in Sec. 2.1, and refract out of the material.  All rays which scatter more than 
once in the volume are ignored. 

We begin by defining unit vectors which are convenient for describing the electric field for various rays.  For any 

ray propagating in the direction of unit vector k̂ , we define polarization vectors 

 ˆ ˆˆ ˆ ˆ/= × ×s k n k n  and  ˆˆ ˆ= ×p k s , (8) 

where n̂  is the surface normal, which in this section is the same as the unit vector in the z direction, ẑ .  An index is 
affixed to these vectors to indicate those associated with the incident direction (i) or the reflected (scattered) direction 
(r).  A prime is affixed to these unit vectors if they represent propagation inside the material.  That is, by Snell’s law,  

 ˆ ˆˆ ˆn ′× = ×k n k n , (9) 

where n is the index of refraction of the material. The dyadic relating the incident amplitude to the transmitted 
amplitude of the incident ray entering the material is given by 

 i is i i ip i iˆ ˆ ˆ ˆ( )t t′ ′= +t s s p p
�

, (10) 

where the amplitude transmission coefficients are ist  and ipt  evaluated at the incident direction for s and p polarized 

light, respectively. The equivalent dyadic for a ray transmitting out of the material is 

 r
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where the amplitude transmission coefficients, rst  and rpt , are evaluated in the scattering direction for light incident 

from the air.  The net scattering dyadic is thus given by combining Eqs. (4), (10), and (11): 

 r
vol rs r r rp r r 2 2 2 2 is i i ip i i

r

cos
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )

cos

n
t t t t

θ
θ

′ ′ ′ ′ ′= + ⋅ + ⋅ +q s s p p σ σ π π s s p p
�

. (12) 

The Jones matrix associated with Eq. (12) is  
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θ
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 ⋅ ⋅ ⋅ ⋅ ′ = =     ⋅ ⋅ ⋅ ⋅   
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where  

 vol
ss is rs rcosq t t φ= , 
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 vol
sp is rp r rcos sinq t t θ φ′= − , 

 vol
ps ip rs i rcos sinq t t θ φ′= , 

 vol
pp ip rp i r r i r(cos cos cos sin sin )q t t θ θ φ θ θ′ ′ ′ ′= + . 

The Mueller matrix ray energy equivalent of Eq. (12) is 

 
vol vol2
ss psi r i r

vol vol vol
sp ppi r i r

cos cos cos cos
( )

cos cos cos cos

q qn n

q qn

θ θ θ θ
θ θ θ θ

 ′ ′ ′
=   ′  

M J M , (14) 

where we have included factors which account for the amplitude/ray energy relationship.  The factor relating a solid 
angle inside the material rd ′Ω  to that outside the material rdΩ  is given by  

 r r r rr r r
2

r r r rr r r

/ /d sin cos
/ /d sin cosn

θ θ φ θθ θ
θ φ φ φθ θ

′ ′∂ ∂ ∂ ∂′ ′Ω = =
′ ′ ′∂ ∂ ∂ ∂Ω

. (15) 

Suppose that the material has a scattering mean free path l.  Then the probability that a ray will scatter at a distance 
between ξ and dξ ξ+  in the material will be 

 1

1
( )d exp( / )dp l

l
ξ ξ ξ ξ= − . (16) 

The probability that the ray will travel a distance at least ξ is given by 

 2 1( ) ( )d exp( / )p p l
ξ

ξ ξ ξ ξ
∞

′ ′= = −∫ . (17) 

Therefore, the probability that a ray incident inside the material at an angle iθ ′  scatters at a depth z into an angle rθ ′ , 

and makes it back to the surface is given by 

 3 1 2 i r
i

1
( )d ( ) ( )d exp[ /( cos )]exp[ /( cos )]d

cos
p z z p z p z z z l z l z

l
θ θ

θ
′ ′= = − −

′
. (18) 

If we consider all scattering depths, the probability of a ray scattering once and returning to the surface is given by 

 r
4 30

i r

cos
( )d

cos cos
p p z z

θ
θ θ

∞ ′
= =

′ ′+∫ . (19) 

The net Mueller matrix BRDF is found by combining Eqs. (1), (6), (14), (15), and (19):  
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vol vol vol 2
sp ppr r i r
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f M
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 (20) 

An implementation of the theory described in this section can be found in the SCATMECH library18 of scattering codes, as 
FIRST_DIFFUSE_BRDF_MODEL.  

2.3. Totally diffuse scattering beneath a flat interface 

In the limit of completely diffusive scatter, we assume that the BRDF of the underlying material is totally 
depolarizing and is a constant given by / πρ , where ρ is the reflectance of the material.  The Mueller matrix probability 

of an incident ray scattering into a direction rθ ′  and into solid angle rd ′Ω  is then given by 
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 r r( / π )cos dρ θ ′ ′ΩD  (21) 

where D  is the unit depolarizing Mueller matrix. The fraction of the diffusely scattered light which is reflected by the 
exposed interface is the weighted average reflectance of the top surface: 

 
2 2

p r s r r r

1 1
( ) + ( )  cos d

2π 2
R r rθ θ θ ′ ′ ′ ′= Ω  ∫ . (22) 

where r( )jr θ ′  (j = s, p) is the internal reflection coefficient. The total intensity incident upon the diffuse material is that 

incident upon it directly, plus that which is diffusely reflected by the material but reflected back into it by the exposed 
interface.  Therefore, the amount of light incident upon the material relative to that directly incident upon it is given by  

 2 3 1
1 ( ) ( )

1
R R R

R
ρ ρ ρ

ρ
+ + + + =

−
⋯ . (23) 

The Mueller matrix transmittance for light transmitting into the material is given by 

 isi

ipi

0cos
0cos

tn
t

θ
θ

 ′
 
 

M . (24) 

The Mueller matrix transmittance for light exiting through the exposed interface is given by 

 rsr

rpr

0cos
0cos

tn
t

θ
θ

 ′
 
 

M . (25) 

In Eq. (25), we have made use of the reciprocity of the transmittance. As in Sec. 2.2, the transmission coefficients in 
Eqs. (24) and (25) are those for light incident from the air, evaluated at the incident and reflected directions, 
respectively. The net Mueller matrix probability for an incident ray scattering into directionrθ  about solid angle rdΩ  is 

found by combining Eqs. (21), (23), (24), and (25): 

 

rs isr i
diff r r

rp ipr i

rs is i
r r

rp ip i

0 0cos 1 cos
( / π ) cos d

0 0cos 1 cos

0 0 ( / π ) cos
cos d

0 0 1 cos

t tn n
t tR

t t

t t R

θ θρ θ
θ ρ θ

ρ θθ
ρ θ

   ′ ′′ ′= Ω   −   

    ′′= Ω    −   

P M D M

M DM

. (26) 

That is, the Mueller matrix BRDF is given by  

 r i
diff diff

r i

( / π ) cos cos

(1 ) cos cosR

ρ θ θ
ρ θ θ

′ ′
=

−
f M . (27) 

where the matrix diffM  has four non-zero elements: 

 

2 2 2 2
diff,00 rs rp is ip

2 2 2 2
diff,01 rs rp is ip

2 2 2 2
diff,10 rs rp is ip

2 2 2 2
diff,11 rs rp is ip

(| | | | )(| | | | ) / 4

(| | | | )(| | | | ) / 4

(| | | | )(| | | | ) / 4

(| | | | )(| | | | ) / 4

M t t t t

M t t t t

M t t t t

M t t t t

= + +

= + −

= − +

= − −

 (28) 

We have verified that for an infinite, non-absorbing substrate, i.e., for 1ρ = , that the system has unit total integrated 

reflectance. An implementation of the theory described in this section can be found in the SCATMECH library18 of 
scattering codes, as DIFFUSE_SUBSURFACE_BRDF_MODEL. 
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2.4. Rough surface scattering in transmission 

Reflection scattering by a rough surface in the facet approximation is well known and discussed in depth in the 
literature.13,19,20  There exists, however, very little discussion on facet scattering in transmission, and that which exists 
lacks theoretical basis.21 In this section, we develop a theory for transmissive scattering by a rough surface using the 
facet approximation. We begin by assuming that the rough surface is isotropically rough and can be treated as a locally 
flat surface, with a local surface normal given in spherical coordinates by a polar angle nθ  and azimuthal angle nφ .  

The local slope is given in the x and y directions by n ntan cosxζ θ φ=  and n ntan sinyζ θ φ= , respectively.   The surface 

statistics can be described by a slope distribution function ( )P ζ , where 2 2
x yζ ζ ζ= + .   This function is defined such 

that the probability of xζ  being between xζ  and dx xζ ζ+ , and yζ  being between yζ  and dy yζ ζ+ , choosing a point 

uniformly on the mean surface plane, is  

 ( )d dx yP ζ ζ ζ . (29) 

A ray which is incident upon this rough surface with a direction given by unit vector ik̂  and which transmits into a 

direction given by unit vector tk̂  is assumed to have struck a single interface oriented with a unit surface normal n̂ , 

such that the rays are related by the Snell’s law: 

 i t
ˆ ˆˆ ˆn× = ×k n k n . (30) 

where n is the index of refraction of the substrate material. Given ik̂ , tk̂ , and n, we find that 

 i t t t t t iˆ ˆ ˆ ˆ(sin cos sin ) / sin sin / ( cos cos ) /n D n D n Dθ φ θ φ θ θ θ= ± − ± −n x y z∓  (31) 

are solutions to Eq. (30), where  

 2
i t i t t1 2 cos cos 2 sin sin cosD n n nθ θ θ θ φ= − − + . (32) 

We choose the signs in Eq. (31) so that the z component of ̂n  is positive.  The local angle of incidence onto the facet is  

 i i
ˆ ˆarccos( )ι = ⋅k n , (33) 

and the local angle of transmittance is  

 t t
ˆ ˆarccos( )ι = ⋅k n . (34) 

The slope of this facet is 

 2 2 1/2[( / ) ( / ) ]x z y zn n n nζ = + . (35) 

The angles given in Eqs. (33) and (34) must lie between 0 and π/2 in order for the analysis to be valid.  That is, there are 
combinations of incident and transmitted directions for which no facet can exist with positive slope that refracts one into 
the other. 

The probability given in Eq. (29) is for points sampled uniformly on the xy plane.  If one considers the slope 
distribution for points sampled uniformly on a plane perpendicular to the incident direction, that is, the probability for 
striking a facet of a specific slope, then one has 

 i n( ) ( )cos secP Pζ ζ ι θ′ ∝ . (36) 

To normalize this distribution function, we assume that the slope distribution is sufficiently narrow that i icos cosι θ≅ .  

Then  

 i i n( ) ( )cos sec secP Pζ ζ ι θ θ′ ≅ . (37) 



7 

The probability distribution ( )P ζ′  is the probability per unit differential slope d dx yζ ζ  that a ray will scatter into a 

direction tk̂ . We are interested, however, in the probability per unit solid angle t t t td sin d dθ θ φΩ = .  We make the 

necessary change of variables in two steps.   First, we change from slope coordinates to solid angle subtended by the 
surface normal using the factor 

 n n 3
n

n nn n

/ /d d 1
sec

/ /d sin
x xx y

y y

ζ θ ζ φζ ζ
θ

ζ θ ζ φθ
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂Ω

. (38) 

Next, the ratio of the differential solid angles subtended by the surface normal ndΩ  to that subtended by the scattering 

direction, tdΩ , is found to be 

 

n t n tn n

n t n tt t

2 2
t i t i t t i

2 2 3
t t i t i t i

/ /d sin
/ /d sin

( { [ (3 cos2 )cos ] cos sin 2 sin cos cos  

            cos (1 2 cos sin sin 2 sin )}) /[2 ( cos cos )]

n n

n n D n

θ θ φ θθ
θ φ φ φθ

θ θ φ θ θ θ θ
θ φ θ θ θ θ θ

∂ ∂ ∂ ∂Ω =
∂ ∂ ∂ ∂Ω

= − + + + +

− + − −

 (39) 

We let the transmission coefficients for light incident onto the surface at an angle iι  be st  and pt  for s- and p-polarized 

light, respectively.  The transmission dyadic is given by  

 facet t t t t t i s t i p i i i iˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )t t′ ′ ′ ′ ′ ′ ′ ′= + ⋅ + ⋅ +t s s p p s s p p s s p p
�

, (40) 

where 

 ˆ ˆˆ ˆ ˆ/j j j= × ×s k z k z ,  ˆˆ ˆj j j= ×p k s  

 ˆ ˆˆ ˆ ˆ/j j j′ = × ×s k n k n ,  ˆˆ ˆj j j′ ′= ×p k s  

(j = i, t) are unit polarization vectors in the global and local coordinates, respectively.  After a considerable amount of 
algebra, we find the Jones matrix associated with the dyadic facett

�
: 

 p 2 s 1 p 4 s 3
facet

p 3 s 4 p 1 s 21 2

( ) ( )1
( ) ( )

t a t a t a t a

t a t a t a t aF F

+ − 
=  − + 

J  (41) 

where 

 1 n i n i n t n n t

n i n i n n t

(cos sin cos cos cos )cos sin cos( )

(cos sin cos cos sin )cos sin

a θ θ φ θ θ θ θ φ φ
θ θ φ θ θ θ θ

= + − +
+

  

 2
2 n n t nsin sin( )sina φ φ φ θ= −  

 3 n n t t n n n t n[cos sin sin cos sin sin cos( )]sina θ φ θ θ φ θ φ φ θ= + −  

 4 n i n i n n n t(cos sin cos cos sin )sin sin( )a θ θ φ θ θ θ φ φ= + −  

 2 2 2 2 2 2
1 n i n i n n i n i n n2cos cos cos sin sin cos sin (cos cos sin )sinF φ θ θ θ θ θ θ φ θ φ θ= + + +  

2 2 2 2 2
2 n t n t n t n t n t t n n n t tsin sin sin ( ) (cos cos sin cos cos sin ) (cos sin sin cos sin sin )F θ θ φ φ φ θ θ φ θ θ θ φ θ θ φ θ= − + + + +  

The Mueller matrix transmittance is  

 t
facet facet

i

cos
( )

cos

n ι
ι

=M M J  (42) 
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The Mueller matrix BTDF is thus found by combining Eqs. (1), (37), (38), (39), and (42): 

 
4

t nn
facet facet

t i t

cos secd
( ) ( )

d cos cos

n
P

ι θ ζ
θ θ

Ω=
Ω

f M J  (43) 

An implementation of the theory described in this section can be found in the SCATMECH library18 of scattering codes, as 
FACET_BRDF_MODEL. 

2.5. Single and diffusive volume scattering beneath a rough surface 

Reflective scattering by a diffuse substrate beneath a rough surface requires combining the models described in the 
sections above.  Any ray which scatters in the diffuse substrate and is re-reflected must necessarily undergo at least 
three scattering events, two at the rough surface and one in the bulk.  For that reason, there must be an appropriate 
averaging over the propagation directions in the bulk.  This averaging can be performed in a variety of ways.  Here, we 
chose to perform the averaging by a Monte Carlo method, which we outline below. 

We begin by choosing a slope distribution function, and creating a random surface normal generator that reproduces 
the particular distribution when sampled uniformly on the xy plane. Due to the assumed isotropy of the surface, such a 
distribution is uniform in azimuthal angle nφ , and so one only needs to select angles nθ . We must create a second 

random surface normal generator which reproduces the distribution sampled uniformly by the incident rays propagating 
at an oblique angle.  For oblique incidence, this second distribution will not be uniform in nφ . If our external 

propagation direction is ̂k  (and this can be an incident or a scattered direction), we choose a surface normal n̂  from the 
distribution using the first random surface normal generator. We then determine the projection of the incident direction 

onto that surface normal, ˆ ˆ⋅k n , and, if the projection is positive, we choose a uniform random number in the range 
(0,1).  We continue to choose surface normals until the uniform random number is less than the projection.  The 
resulting surface normal will reproduces the distribution sampled uniformly by the incident rays. 

We assume that the scattering occurs deep enough into the material that the facet that a ray enters the material is 
different than the facet the ray exits.  For a given incident and scattering direction, we choose two surface normals, one 
for the incident direction and one for the scattering direction.  By Snell’s law [Eq. (30)], these each uniquely determine 
the directions of propagation inside the material, and the Mueller matrix transmittance through the facets.   We then 
apply the scattering functions given by Eqs. (7) and (21) to determine the probability for single and multiple scattering 
into this direction.  We average the resulting scattering probability over an ensemble of pairs of surface normals.  
Generally, about 50 pairs of surface normals are required to obtain sufficient statistics to match that of the data, and 
about 5000 pairs of surface normals to obtain a smooth curve.  We also calculate the direct reflective scattering from the 
rough surface in the facet approximation, using the slope distribution function.13,19,20  This contribution is added to the 
total calculated scatter.   

3. EXPERIMENT 

Measurements were performed using the Goniometric Optical Scatter Instrument (GOSI) at NIST.22,23 GOSI is a 
laser-based angle-resolved scattering system having a high angular resolution, wide dynamic range, full polarimetric 
capabilities, and the ability to measure scattering in and out of the plane of incidence. Measurements were performed 
using a fixed incident angle (θi  = 60°), scanning the scattering angle in the plane of incidence and using either a HeNe 
laser (λ = 632.8 nm) or a HeCd laser (λ = 441.6 nm). While the instrument is capable of full Mueller matrix 
measurements, only measurements of the Stokes vector were performed, using 45° incident polarization, a configuration 
which yields a high degree of discrimination between scattering sources. For measurements carried out at 441.6 nm, an 
interference bandpass filter was used to remove most of the sample fluorescence from the signal. 

The intensity and polarization of the scattered light is characterized by the polarization-averaged bidirectional 
reflectance distribution function (BRDF), fr, the principal angle of the polarization, η (measured counterclockwise from 
s-polarization when looking into the direction of propagation), the degree of circular polarization, PC, and the total 
degree of polarization, P. These parameters can be obtained from the Stokes parameters.  While use of the linear Stokes 
parameters simplifies many calculations, presentation of data with the parameters η,  PC, and P often simplifies 
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interpretation.  In particular, η and PC parameterize the polarization state of the polarized part of the beam, while P 
characterizes the unpolarized part.  Furthermore, for many scattering mechanisms and experimental geometries, PC is 
close to zero, so that η alone distinguishes amongst dominant scattering mechanisms.   

All of the measurements were performed on nine different spots on the sample. The statistical sources of error are 
believed to dominate the uncertainty in these measurements.  Therefore, all experimental data are shown as marks 
whose length represent the standard deviation of the mean of the measurements or 68 % confidence levels.   
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Figure 1. (left) The BTDF, normalized to its peak value, for a variety of Gaussian slope distribution functions, 
calculated using the facet scattering model in transmission.  The standard deviation of the slope, σ, is indicated in the 
figure.  The incident angle was 60° and the index of refraction was 1.5. (right) The sine of the BTDF-weighted-mean 
of the scattering angle as a function of the sine of the incident angle for the facet scattering model in transmission. 

4. RESULTS AND DISCUSSION 

Figure 1(left) shows calculated BTDFs, normalized by their peak values, for scattering in transmission for a variety 
of slope distribution functions.  The material was assumed to have an index of refraction of n = 1.5, and the incident 
angle for the calculations was 60iθ = ° , which corresponds to a normally refracted angle of 35.3tθ = ° .  The facet 

distribution functions were all Gaussian in slope, with different slope standard deviations σ.  For the narrowest slope 
distribution, the angle at which the BTDF peaks occurs is at 36tθ = ° , close to the normal refraction angle. As the slope 

distribution widens, the BTDF widens and the peak shifts to larger angle, eventually approaching nearly the same angle 
as the incident angle.  This behavior is characteristic of scattering by surface facets in transmission.  As the distribution 
gets wider, those facets which present themselves most strongly to the incident beam dominate the distribution as 
observed by the incident beam, and these facets refract the angle the least.  In Fig. 1(right), we show the calculated sine 
of the mean refraction angle as a function of the sine of the incident angle, for different σ.  For narrow slope 
distributions, the results show a linear relationship with slope 1/n, as expected from Snell’s law.  As the distribution is 
widened, the results indicate that the mean scattering angle follows Snell’s law approximately, but with a substantially 
lower index of refraction.  

Figure 2(left) shows measurement results for the scattering by a glossy white paint, measured using λ = 632.8 nm, 
along with calculated results for totally diffuse scattering beneath a smooth interface (solid curve).  The index of 
refraction n was approximately 1.5 and the substrate diffuse reflectance ρ was set to 0.93 to obtain good results.  The 
theory predicts the principal angle of the polarization η to be ±90°.  In the near specular direction, the scattering is 
dominated by the roughness of the exposed interface, and the polarization in this region confirms this interpretation 
(dashed curve).  In the rest of the measured range, the calculated BRDF and the polarization state matches the 
measurements very well.  The shape of the BRDF, for example, shows a large flat region curving downward at large 
angles, which results from the angle dependence of the transmission coefficients.  The scattered light is highly 
depolarized, except at large angles, where the difference between transmission of s- and p-polarized light results in an 
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excess of p-polarized light and a rise in the degree of polarization.  There is also no measurable degree of circular 
polarization.  For most of the measured range, the direction of the polarization is poorly defined, due to the low degree 
of polarization. 
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Figure 2. (left) Light scattering parameters for a glossy white paint measured at λ = 632.8 nm. The model curves 
represent the subsurface diffuse scattering model (solid) and the facet scattering model (dashed) as described in the 
text. (right). Light scattering parameters for a glossy red pigmented paint measured at λ = 441.6 nm.  The model 
curves represent the facet scattering model (dotted), the single volume scattering model (dashed), and the 
combination model (solid) as described in the text. 

Figure 2(right) shows measurement results for a red pigmented paint coating, measured at λ = 442 nm, where the 
reflectance of the material is relatively low.  In this sample, it is expected that the signal will be dominated at large 
angles by single volume scattering in the pigmented layer.  Fig. 2(right) shows three theoretical curves for the parameter 
η.  The dotted curve corresponds to that predicted by the reflective facet scattering model and agrees well with the 
experimental data for a region near the specular direction.   The dashed curve corresponds to that predicted by the single 
volume scattering model under a smooth surface, which agrees fairly well with the experimental data for angles farther 
from the specular direction.  The agreement at very large angles is not perfect, however.  A third theoretical curve was 
hand-fitted with an incoherent combination of the reflective facet scattering model, the single volume scattering model, 
and the totally diffuse volume scattering model.  The agreement between the combination model and the experimental 
data is very good.  The results for the combination model are also shown for P and the BRDF, and reasonable 
qualitative agreement is observed.  The combination model is very similar to the model developed by Maxwell-Beard,4 
but differs in a number of features.  The Maxwell-Beard model does not fully describe the polarization state, does not 
include material refraction, and accounts for the multiply diffuse scatter with only a Lambertian term, without including 
the interface as described in Sec. 2.3.  The Maxwell-Beard model, however, includes a geometrical shadowing and 
obscuration factor, which we have chosen to ignore here. 

Figure 3 shows measurement results for scattering by a green chemical agent resistant coating (CARC).  This 
coating is very rough and exhibits no specular reflection peak. Data taken from a similar sample was interpreted in the 
past using a facet scattering model.  However, as mentioned in the Introduction, it is difficult to reconcile the color 
(spectral dependence) of the scatter with any dependence on the dielectric function of the material. The solid curve 
passing through the data represents a calculation of the scattering by a diffuse material under a rough interface, as 
described in Sec. 2.5.  The index of the binder material was assumed to be 1.5.  The facet distribution was set to be 
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exponential in slope with a rms slope of 2, the Henyey-Greenstein g-factor was set to be 0.3, and the subsurface diffuse 
reflectance ρ was set to be 0.05.  Despite the large rms slope, no shadowing was included in the calculation. There was 
no attempt to optimize these parameters, so they do not necessarily represent best fit parameters. The match of the 
parameter η to the measured values is very good.  This is particularly significant, since this parameter was used 
previously to justify the use of the reflective facet scattering model for a similar sample, albeit with an unrealistic index 
of refraction.13 The dashed curve represents the results of the reflective facet scattering model, using n = 1.5.  While a 
very good agreement can be obtained using n = 1.2, such an index of refraction is unreasonable. For the CARC sample, 
we find reasonable agreement between the Monte Carlo model and the measured data without resorting to an unrealistic 
index. While other aspects of the calculation are not a perfect fit to the measured data, it can be considered to be 
surprisingly close considering the simplicity of the model and the lack of treatment of effects such as shadowing, 
retroreflection, and diffraction.  While the model does not predict any circular polarization, the addition of the effect of 
absorbing pigments to the model would be expected to remedy that deficiency. 
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Figure 3. Light scattering parameters for a green chemical agent resistant coating (CARC) measured at λ = 632.8 nm.  
The model curves represent the predictions of the reflective facet scattering model (dashed) and the Monte Carlo 
model described in the text (solid). 

The Maxwell-Beard model has been used with quite a bit of success to model the scattering by diffuse scattering 
paints.4  Even if the model is extended to account for the polarization behavior of the facet and volume scattering terms, 
it does not account for refraction into and out of the material.  For very rough surfaces, however, we found above that 
refraction from a rough surface tends to occur at a smaller angle than that predicted by the Snell’s law, and seems to 
follow an approximate Snell’s law behavior with a significantly lower index of refraction.  This finding might explain 
the apparent success of the Maxwell-Beard model for very rough surfaces.  Very rough surfaces enable one to ignore 
refraction in the material.  What we hope to have developed here is an improvement on the Maxwell-Beard model that 
extends the range of materials that can be modeled. 
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