Gulf of Alaska Play 1: Middleton Fold and Thrust Belt Play

Geological Assessment

<u>GRASP UAI</u>: AAAAA EAB <u>Play Area</u>: 6,350 square miles <u>Play Water Depth Range</u>: 100-700 feet <u>Play Depth Range</u>: 3,000-15,000 feet <u>Play Exploration Chance</u>: 0.0864

Play 1, Middleton Fold and Thrust Belt, Gulf of Alaska OCS Planning Area, 2006 Assessment, Undiscovered Technically-Recoverable Oil & Gas												
Assessmer	nt Results as o	f November 2	005									
Resource	F	Resources	*									
(Units)	F95	Mean	F05									
BOE (Mmboe)	0	87	367									
Total Gas (Tcfg)	0.000	0.412	1.750									
Total Liquids (Mmbo)	Total Liquids 0 13 55 (Mmbo)											
Free Gas** (Tcfg)	ree Gas** 0.000 0.411 1.743											
Solution Gas (Tcfg)	0.000	0.002	0.007									
Oil (Mmbo)	0	1	6									
Condensate (Mmbc)	0	12	50									
* Risked, Technically	Recoverable		10									
Firee Gas Includes F95 = 95% chance th given quantity	Gas Cap and I at resources w	von-Associate vill equal or ex	ed Gas ceed the									
F05 = 5% chance tha quantity	t resources wil	l equal or exc	eed the given									
BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural gas												
- Mmb = millions of barrels Tcf = trillions of cubic feet												

Table 1

Play 1, the "Middleton Fold and Thrust Belt" play, is the least significant play (of six plays), in the Gulf of Alaska OCS Planning Area, with 6% (87 Mmboe) of the Planning Area energy endowment (1,454 Mmboe). The overall assessment results for play 1 are shown in table 1. Oil and gascondensate liquids form 15% of the hydrocarbon energy endowment of the play. Table 5 reports the detailed assessment results by commodity for play 1.

Table 3 summarizes the volumetric input data developed for the *GRASP* computer model of Gulf of Alaska play 1. Table 4 reports the risk model used for play 1. The location of play 1 is shown in figure 1.

Play 1 encompasses the offshore area extending west from the Kayak zone to approximately 149 degrees W. longitude. Traps are primarily asymmetric anticlinal closures formed on the upthrown sides of high-angle thrust or reverse faults during the late Neogene to Pleistocene. Reservoir objectives consist of: 1) sandstones in the lower part of the glaciomarine, late Miocene to Pleistocene Yakataga Formation; and 2) sandstones locally developed in the underlying Oligocene to early Miocene Sitkinak Formation equivalent.

There are two potential source rock sequences in this play: 1) marginallymature to thermally-immature Oligocene to Miocene strata equivalent to the Sitkinak Formation of Kodiak Island; and 2) thermally mature Eocene strata equivalent to the Sitkalidak Formation of Kodiak Island. Both formations consist of deltaic to nonmarine sequences characterized by poor to marginal organic richness and gas-prone kerogen. The Tenneco Middleton Island State No. 1 well tested a structure in this play without recovering producible hydrocarbons.

A maximum of 26 hypothetical pools is forecast by the aggregation of the risk model and the prospect numbers model for play 1. These 26 pools range in mean conditional (un-risked) recoverable volumes from 0.43 Mmboe (pool rank 26) to 148 Mmboe (pool rank 1). Pool rank 1 ranges in possible conditional recoverable volumes from 9 Mmboe (F95) to 526 Mmboe (F05), or in a gas case from 0.05 (F95) to 2.956 Tcfge (F05). Table 2 shows the conditional sizes of the 10 largest pools in play 1.

Play 1, Middleton Fold and Thrust Belt, Gulf of Alaska OCS Planning Area, 2006 Assessment, Conditional BOE Sizes of Ten Largest Pools												
Assessme	nt Results as o	f November 2	005									
Dool Bonk	BO	E Resourc	es *									
PUUI Kalik	F95	Mean	F05									
1	9	148	526									
2 3.7 35 100												
3 1.73 17 51												
4 0.96 11 31												
5	0.62	7	21									
6	0.45	5	15									
7	0.35	3.9	11									
8	0.29	3.1	9									
9	0.25	2.5	7									
10	0.22	2.1	6									
 * Conditional, Technically-Recoverable, Millions of Barrels Energy-Equivalent (Mmboe), from "PSRK.out" file F95 = 95% chance that resources will equal or exceed the given quantity F05 = 5% chance that resources will equal or exceed the given quantity BOE = total hydrocarbon energy, expressed in barrels-of-oil- equivalent, where 1 barrel of oil = 5,620 cubic feet of natural 												

Table 2

In the computer simulation for play 1 a total of 33,128 "simulation pools" were sampled for size. These simulation pools can be grouped according to the USGS size class system in which sizes double with each successive class. Pool size class 8 contains the largest share (5,776, or 17%) of simulation pools (conditional, technically recoverable BOE resources) for play 1. Pool size class 8 ranges from 4 to 8 Mmboe. The largest simulation pool for play 1 falls within pool size class 18, which ranges in size from 4,096 to 8,192 Mmboe (or 23 to 46 Tcfge). Table 6 reports statistics for the simulation pools developed in the *GRASP* computer model for play 1.

GRASP Play Data Form (Minerals Management Service - Alaska Regional Office)

<u>Basin</u>: Gulf of Alaska <u>Play Number</u>: 1 <u>Play UAI Number</u>: AAAAAEAB
 Assessor:
 Comer / Larson

 Play Name:
 Middleton Fold and Thrust Belt

Date: March, 2005

 Play Area (mi²; millions of acres):
 6,350 mi², 4.064 million acres

 Reservoir Thermal Maturity, % Ro:
 0.3 - 0.7

 Play Depth Range, feet:
 3,000 - 8,000 - 15,000

 Expected Oil Gravity,
 ⁰ API:
 35

 Play Water Depth Range, feet:
 100 - 300 - 700

 Prospect Distance from shore, miles:
 16 - 28 - 42

POOLS Module (Volumes of Pools, Acre-Feet)

Fractile	F100	F95	F90	F75	F50	Mean / Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Prospect Area (acres)-Model Input	0				7290	~~~					64400		1
Prospect Area (acres)-Model Output	140	1273	1872	3564	7290	12796 / 18460	14910	21888	28388	41736	64400	85995	96000
Fill Fraction (Fraction of Area Filled)	0.03	0.06	0.08	0.1	0.15	.17307 / .099617	0.22	0.26	0.3	0.36	0.45	0.52	0.7
Productive Area of Pool (acres)	11	143	224	478	1110	2478.34 / 4678.33	2576	4046	5494	8645	14400	20235	57600
Pay Thickness (feet)	5	28	37	59	100	137.301 / 131.204	170	225	273	363	500	619	1844

MPRO Module (Numbers of Pools)

in ite medale (itambere e		- /										
Play Level Chance	0.48	0.48 Prospect Level Chance 0.18							Exploration	on Chance		0.0864
Risk Model	Play C	hance			Prospec							
					[See Risking Sheet]						
Fractile	F100	F95	F90	F75	F50	Mean / Std. Dev.	F25	F15	F10	F05	F02	F01

Fractile	F100	F95	F90	F75	F50	Mean / Std. Dev.	F25	F15	F10	F05	F02	F01	F00
Numbers of Prospects in Play	17	26	28	32	37	38.34 / 8.36	43	46	49	53	58	61	88
Numbers of Pools in Play	1	~	F47.93 = 0	F45 = 3	F35 = 5	3.31 / 3.96	7	8	9	11	12	13	26

Minimum Number of Pools

Mean Number of Pools

3.31

Maximum Number of Pools 26

POOLS/PSRK/PSUM Module (Play Resources)

0

Fractile	F100 F95 F90 F75 F50 Mean / Std. Dev. F25 F1					F15	F10	F05	F02	F01	F00			
Oil Recovery Factor (bbl/acre-foot)	29	61	69 86 110 117.649 / 44.929 141 10					160	175	200	232	256	425	
Gas Recovery Factor (Mcfg/acre-foot)	46	137	165	227	322	369.939 / 211.075	457	552	552 627 758 937 1080 22					
Gas Oil Ratio (Sol'n Gas)(cf/bbl)	380	573	650	801	1010	1071.547 / 379.550	1274	1443	43 1570 1779 2048 2250					
Condensate Yield ((bbl/Mmcfg)	11	20	22	25	28	28.534 / 5.669	32	34	36	39	42	44	55	
Pool Size Distribution Statistics from POOLS (1,000 BOE): μ (mu) = 8.92234722 σ^2 (sigma squared) = 2.48216030									Random	Number Ge	nerator Se	ed = 7214	26	
BOE Conversion Factor (cf/bbl) 5620 Probability Any Pool Contains Both Oil and Free Gas (Gas Cap)														

BOE Conversion Factor (cf/bbl)	5620	Probability Any Pool Contains Both Oil and Free Gas (Gas Cap)	0.1
Probability Any Pool is 100% Oil	0	Fraction of Pool Volume Gas-Bearing in Oil Pools with Gas Cap	0.9
Probability Any Pool is 100% Gas	0.9		

Table 3. Input data for Gulf of Alaska play 1, 2006 assessment.

		Risk Analysis Form - 20	005 National Assessn	nent								
As	sessment Province	: Gulf of Alaska	Play Number, Name:	1, Mi	ddleton Fold &	Thrust Belt						
	Assessor(s)	Comer & Larson	Play UAI:	AAAA	AAAAEAB							
	Date	e: 13-Oct-05										
For e certa prob	each component, a d ainty) based on cons ability that the minin	<i>quantitative</i> probability of success (i.e., between zero a ideration of the <i>qualitative</i> assessment of ALL element num geologic parameter assumptions have been met of	and one, where zero indicates nts within the component was or exceeded.	no con assigne	fidence and one ind ed. This is the asse	licates absolute ssment of the						
					Play Chance Factors	Averge Conditional Prospect Chance ¹						
1.	Hydrocarbon Fil	I component (1a * 1b * 1c)		1	0.6000	0.4000						
	a. Presence of a Probability of e rock of adequa	Quality, Effective, Mature Source Rock fficient source rock in terms of the existence of sufficie te quality located in the drainage area of the reservoirs Ision and Miaration	1a	0.60	1.00							
	Probability of e reservoirs.	ffective expulsion and migration of hydrocarbons from	the source rock to the	1b	1.00	0.40						
	c. Preservation Probability of e	ffective retention of hydrocarbons in the prospects after	er accumulation.	1c	1.00	1.00						
2.	Reservoir comp	onent (2a * 2b)		2	0.8000	0.5000						
	a. Presence of re	eservoir facies	es and net/gross ratio (as			1						
	specified in the	resource assessment).	ess and hel/gross fallo (as	2a	0.80	1.00						
	b. Reservoir qua Probability of e permeability (as	lity ffectiveness of the reservoir, with respect to minimum s specified in the resource assessment).	effective porosity, and	2b	1.00	0.50						
3.	Trap componen	t (3a * 3b)		3	1.0000	0.9000						
	a. Presence of tr Probability of p assessment).	ap resence of the trap with a minimum rock volume (as sp	pecified in the resource	3a	1.00	0.90						
	b. Effective seal	mechanism										
	Probability of e	ffective seal mechanism for the trap.		3b	1.00	1.00						
Ove	erall Play Chance	e (Marginal Probability of hydrocarbons, MF	Phc)		0 4800							
	(1 * 2 * 3) Proc	luct of All Subjective Play Chance Factors			0.4000							
Ave	erage Conditiona	Il Prospect Chance ¹ Juct of All Subjective Conditional Prospect Chance Factors of the Blance States of the Conditional Prospect Chance of the Plance States of the Plance State	ctors			0.1800						
	Must be cons	sistent with play chance and prospect distribution	.0) See discussion on Page 3	of Gui	de							
Exp	Ploration Chance (Product of Over	erall Play Chance and Average Conditional Prospect C	Chance)		0.	0864						
Cor	mments: See guid	lance document for explanation of the Risk Analysis F	orm									

 Table 4. Risk model for Gulf of Alaska play 1, 2006 assessment.

GRASP - Geologic and Economic Resource Assessment Model - PSUM Module Results

Minerals Management Service - Alaska OCS Region

GRASP Model Version: 8.29.2005)

Computes the Geologic Resource Potential of the Play

Play UA		AB	Play No.		1	
World	Level	-	World	Level	Resources	
Country	Level	-	UNITED	STATES	OF	AMERICA
Region	Level	-	MMS	-	ALASKA	REGION
Basin	Level	-	GULF	OF	ALASKA	
Play	Level	-	Play		1 Middleton	Fold and Thrust Belt
Geologist	Larson,	Comer	-			
Remarks	Play		1 Middleton S	Shelf Fold & Thrus	st Belt	
Run Date & Time:	-	Date	19-Sep-	05 Time	14:02:4	47

Summary of Play Potential

Product	MEAN	Standard Deviation
BOE (Mboe)	86,522	189,650
Oil (Mbo)	1,430	7,627
Condensate (Mbc)	11,747	26,955
Free (Gas Cap & Nonassociated) Gas (Mmcfg)	410,600	898,460
Solution Gas (Mmcfg)	1,603	10,066

10000 (Number of Trials in Sample) 0.4791 (MPhc [Probability] of First Occurrence of Non-Zero Resource)

Windowing Feature: used

Empirical Probability Distributions of the Products

Greater Than Percentage	BOE (Mboe)	Oil (Mbo)	Condensate (Mbc)	Free (Gas Cap & Nonassociated) Gas (Mmcfg)	Solution Gas (Mmcfg)
100	0	0	0	0	0
99.99	0	0	0	0	0
99	0	0	0	0	0
95	0	0	0	0	0
90	0	0	0	0	0
85	0	0	0	0	0
80	0	0	0	0	0
75	0	0	0	0	0
70	0	0	0	0	0
65	0	0	0	0	0
60	0	0	0	0	0
55	0	0	0	0	0
50	0	0	0	0	0
45	21,607	464	2,844	102,320	517
40	44,378	898	6,043	209,350	1,036
35	65,283	1,234	8,824	309,010	1,357
30	86,254	1,788	11,523	408,040	1,896
25	110,790	1,827	14,788	527,530	1,748
20	142,590	2,317	19,393	676,730	2,599
15	184,410	2,836	25,026	876,620	3,159
10	243,510	3,111	33,350	1,160,400	3,203
8	277,100	5,028	37,477	1,313,100	5,304
6	331,080	4,357	45,572	1,575,900	4,154
5	366,610	5,744	49,511	1,742,800	7,004
4	408,130	6,663	55,369	1,936,900	8,172
2	572,750	9,762	77,251	2,717,000	12,878
1	809,090	18,145	107,010	3,822,000	21,720
0.1	2,069,200	0	271,180	10,105,000	0
0.01	3,983,600	0	579,900	19,129,000	0
0.001	5,455,500	0	930,050	25,433,000	0

 Table 5. Assessment results by commodity for Gulf of Alaska play 1, 2006 assessment.

Basin: Play 0 UAI Ke	GULF OF A - Middleto y: AAAAAE	ALASKA n Fold and EAB	Thrust Be		Model Simu	lation "Pools	" Report	ed by "	Fieldsiz	e.out" G	RASP M	lodule											
	Classifica	ation and Siz	e	Poo	Count Statis	stics		Pool	Types C	ount	Mixed Po	ol Range	Oil Poo	I Range	Gas Po	ol Range	Total Po	ool Range		Pool Resource Statistics (MMBOE)			
Class	Min (MMBOE)	Max (MMBOE)	Pool Count	Percentage	Trial Average	Trials w/Pool Avg		Mixed Pool	Oil Poo	Gas Pool	Min	Max	Min	Max	Min	Мах	Min	Max		Min	Мах	Total Resource	Average Resource
1	0.0312	0.0625	27	0.081502	0.0027	0.005634		1	0	26	1	1	0	0	1	1	1	1		0.033367	0.061711	1.299220	48.119269
2	0.0625	0.125	116	0.350157	0.0116	0.024207		5	0	111	1	1	0	0	1	1	1	1		0.063897	0.124767	11.232982	96.836053
3	0.125	0.25	355	1.071601	0.0355	0.074082		25	0	330	1	1	0	0	1	2	1	2		0.125012	0.249670	68.413165	192.713141
4	0.25	0.5	930	2.807293	0.093	0.194073		59	0	871	1	1	0	0	1	3	1	3		0.250200	0.498526	348.027286	374.222875
5	0.5	1	1823	5.502898	0.1823	0.380426		135	0	1688	1	2	0	0	1	4	1	4		0.500059	0.999924	1372.856000	753.075182
6	1	2	3376	10.190775	0.3376	0.704508		333	0	3043	1	2	0	0	1	5	1	5		1.000085	1.999905	4979.093000	1.474850
7	2	4	4772	14.404733	0.4772	0.995826		474	0	4298	1	2	0	0	1	8	1	8		2.000038	3.999939	13975.727000	2.928694
8	4	8	5776	17.435402	0.5776	1.205342		578	0	5198	1	3	0	0	1	7	1	9		4.000564	7.999812	33424.093000	5.786720
9	8	16	5597	16.895073	0.5597	1.167988		572	0	5025	1	3	0	0	1	6	1	6		8.001358	15.998551	64309.769000	11.490043
10	16	32	4454	13.44482	0.4454	0.929466		477	0	3977	1	3	0	0	1	5	1	6		16.001223	31.998999	100597.086000	22.585785
11	32	64	3028	9.140305	0.3028	0.631886		317	0	2711	1	3	0	0	1	5	1	7		32.004564	63.993311	134907.390000	44.553299
12	64	128	1716	5.179908	0.1716	0.358097		186	0	1530	1	2	0	0	1	3	1	4		64.006203	127.950527	153472.512000	89.436195
13	128	256	743	2.242816	0.0743	0.15505		83	0	660	1	2	0	0	1	3	1	3		128.070571	255.120673	129896.918000	1/4.82/621
14	256	512	270	0.815021	0.027	0.056344		40	0	230	1	1	0	0	1	2	1	4		256.081551	508.395371	94601.554000	350.376129
15	512	1024	102	0.307697	0.0102	0.021265		15	0	07			0	0	1	2		2		512.371750	2004 205000	42206 244000	1 202750
10	2049	2040	51	0.093370	0.0031	0.000409		1	0	20	1	1	0	0	1	1		2		2107.020000	2004.705000	43200.241000	2 005720
18	2046	8102	1	0.013093	0.0003	0.001043		0	0	4	0		0	0	1	1	1	1		5452 881000	5452 881000	5452 881000	5 452880
10	4030 8102	1638/	0	0.003013	0.0001	0.000203		0	0		0	0	0	0	0	0				0.00000	0.000000	0.000000	0.00000
20	16384	32768	0	0	0	0		0	0	0	0	0	0	0	0	0	0			0.000000	0.000000	0.000000	0.000000
21	32768	65536	0	0	0	0		0	0	0	0	0	0	0	0	0	0			0.000000	0.000000	0.000000	0.000000
22	65536	131072	0	0	0	0		0	0	0	0	0	0	0	0	0	0) 0		0.000000	0.000000	0.000000	0.000000
23	131072	262144	0	0	0	0		0	0	0	0	0	0	0	0	0	0) 0		0.000000	0.000000	0.000000	0.000000
24	262144	524288	0	0	0	0		0	0	0	0	0	0	0	0	0	0) 0		0.000000	0.000000	0.000000	0.000000
25	524288	1048576	0	0	0	0		0	0	0	0	0	0	0	0	0	0) 0		0.000000	0.000000	0.000000	0.000000
Not Class	sified		6	0.018112	0.0006	0.001252	Below Class	0	0	6		•	•						Below Class	0.021691	0.026144	0.144855	24.142519
		Totals	33128	99.999992	3.3128	6.913189	Above Class	0	0	0									Above Class	0.000000	0.000000	0.000000	0.000000
Numbe Numbe Numbe	Number of Pools not Classified: 6 Min and Max refer to numbers of pools of the relevant size class that occur within any single trial in the simulation. Min and Max refer to aggregate resources of the relevant size class that that occur within any single trial in the simulation. Number of Pools below Class 1: 6 Number of Trials with Pools: 4792 Min and Max refer to aggregate resources of the relevant size class that occur within any single trial in the simulation.																						

Table 6. Statistics for simulation pools created in computer sampling run for Gulf of Alaska play 1, 2006 assessment.

Figure 1. Map location of Gulf of Alaska play 1, 2006 assessment.